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Available at: http://www.pmf.ni.ac.rs/filomat

On the Rates of Convergence to Symmetric Stable Laws for
Distributions of Normalized Geometric Random Sums

Tran Loc Hunga, Phan Tri Kiena

aUniversity of Finance and Marketing

Abstract. Let X1,X2, · · · be a sequence of independent, identically distributed random variables. Let νp be a
geometric random variable with parameter p ∈ (0, 1), independent of all X j, j ≥ 1.Assume that ϕ :N 7→ R+

is a positive normalized function such that ϕ(n) = o(1) when n → +∞. The paper deals with the rate of

convergence for distributions of randomly normalized geometric random sums ϕ(νp)
νp∑
j=1

X j to symmetric

stable laws in term of Zolotarev’s probability metric.

1. Introduction

Klebanov et al. [13] showed that the solution of Zolotarev’s problem must be a geometric random sum
and they introduced concepts of geometrically infinitely divisible (GID) random variables and geometrically
strictly stable (GSS) random variables (see [13], [14] and [28] for more details). Up to the present this
problem has attracted much attention. Moreover, weak limit theorems together with rates of convergence
for distributions of geometric random sums have many applications to risk theory, stochastic finance,
queuing theory, etc. (see [1], [2], [12], [4], [9], [8], [15], [16], [17], [18], [20], [21], [22], [23] and references
therein).

According to results presented by Butzer and Hahn [5], a positive function ϕ : N 7→ R+ such that
ϕ(n) = o(1) when n→ +∞, is called normalized function. One of extensions of concept of infinitely divisible
(ID) random variables (see for instance [26], page 28) is concept of ϕ-decomposable random variables (or
distributions) introduced by Butzer and Hahn [5], that is a random variable Z is said to be ϕ-decomposable,
if for each n ∈N there exist independent random variables Z j,Z j = Z j,n, 1 ≤ j ≤ n, such that the distribution
PZ of a random variable Z may be represented as

PZ = P
ϕ(n)

n∑
j=1

Z j,n
. (1)

Note that in (1) when ϕ(n) ≡ 1 for each n ∈ N, the ϕ-decomposable random variable Z will become a
ID distributed random variable (see for instance [22, Definition 1.2.1, p. 18]). Based on concept of ϕ-
decomposability, using Trotter-operator method original by Trotter [29], several limit theorems together
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with rates of convergence for normalized sums ϕ(n)
n∑

j=1
X j had been established in [5], where X1,X2, · · ·

is a compatible sequence of independent random variables. The appropriating limiting distributions are
distributions of ϕ-random variables including the standard normal distributed random variable X∗ leading
to Central limit theorem (CLT) and the random variable X0 generated at a point x0 which leads to Weak law
of large numbers (WLLN) (see [5] for more details).

The interesting problem had been extended for normalized random sums ϕ(Nλ)
Nλ∑
j=1

X j by Butzer and

Schulz in [6] and [7], where Nλ is a positive, integer – valued random variable such that Nλ
P
−→ +∞ when

λ→ +∞. The weak convergence concerns the o-rates andO- rates in limit theorems for normalized random

sumsϕ(Nλ)
Nλ∑
j=1

X j are established in [6] and [7] for a desired martingale difference sequence (MDS). Note that

the concept of ϕ-decomposability defined in (1) could be extended to randomly indexed random variables
since the range of the index random variable Nλ is a subset ofN. In fact, for any ϕ-decomposable random
variable Z one has by (1)

PZ = P
ϕ(Nλ)

Nλ∑
j=1

Z j

, λ ∈ R+, (2)

where Z j, j ≥ 1 are i.i.d random variables, and Nλ is assumed independent of all Z j, j ≥ 1. Since Nλ is
independent of of Z j, j ≥ 1, from the usual rules for conditional expectations, it follows that

PZ =

∞∑
n=1

P
(
Nλ = n

)
P
ϕ(n)

n∑
j=1

Z j
. (3)

The problem to be considered in this paper is to investigate weak limit theorems together with convergence
rates for desired normalized geometric random sums of independent, identically distributed (i.i.d.) random
variables whose applications are widely in various fields.

Throughout the paper, for p ∈ (0, 1), let νp be a geometric random variable with parameter p ∈ (0, 1),
denoted by νp ∼ Geo(p), having probability mass function

P(νp = j) = p(1 − p) j−1, j = 1, 2, · · ·

Extending the known definition of ϕ-decomposability in [5], a concept of ϕ-Geometrically decomposable
(GD) random variables is introduced as follows

Definition 1.1. A random variable Z is said to be ϕ-Geometric decomposable, if there exist i.i.d. random variables
Z j, 1 ≤ j ≤ n, such that the distribution PZ of Z can be represented as

PZ =

∞∑
n=1

P
(
νp = n

)
P
ϕ(n)

n∑
j=1

Z j
. (4)

or in equivalent form

Z D
= ϕ(νp)

νp∑
j=1

Z j, (5)

where νp ∼ Geo(p), p ∈ (0, 1), independent of all Z j, j ≥ 1 for each p ∈ (0, 1). Here and from now on, the notation D
=

denotes identity in distribution.



T. L. Hung, P. T. Kien / Filomat 33:10 (2019), 3073–3084 3075

Note that the condition νp
P
−→ +∞ as p ↘ 0+ is used for Definition 1.1 in (4) and (5) whose proof will be

confirmed by Proposition 4.1 in Appendix. Moreover, condition ϕ(νp) a.s
= o(1) (equality in almost sure) when

p↘ 0+ is assumed in this paper. It is worth pointing out that the concept of ϕ–decomposability, defined by
Butzer and Schulz in [5] can be extended to concept of ϕ–Geometrically decomposable random variables
since the range of the geometric random variable νp, p ∈ (0, 1) is a subset ofN.

The main purpose of this paper is to study weak limit theorems together with convergence rates for

randomly normalized geometric random sums ϕ(νp)
νp∑
j=1

X j when p ↘ 0+. In this article the considered

limiting random variables are assumed to be ϕ-geometrically decomposable (Theorem 3.4) or the standard
normal distributed random variable (Theorem 3.6) and the symmetric stable distributed random variables
with 1 < α < 2 and σ = 1 (Theorem 3.8). Using Zolotarev’s probability metric [33], a general theorem

on rate of convergence for normalized geometric random sums ϕ(νp)
νp∑
j=1

X j is established (Theorem 3.4).

Particularly, when ϕ(νp) = ν−1/2
p , the rate of convergence for distribution of normalized geometric random

sum ν−1/2
p

νp∑
j=1

X j to standard normal distribution will be obtained (Theorem 3.6). Furthermore, for 1 < α < 2

andϕ(νp) = ν−1/α
p , the rate of convergence for distribution of normalized geometric random sums ν−1/α

p

νp∑
j=1

X j

towards the stable laws are also established (Theorem 3.8). Moreover, weak limit theorems for normalized
geometric random sums are shown directly from Theorems 3.4, 3.6 and 3.8 through corresponding remarks.

It is worth pointing out that, Zolotarev’s probability metric used in our paper is an ideal metric (see for
instance [32] and [24]), so it is easy to estimate the approximations concerning with geometric random sums
of i.i.d. random variables. Moreover, this metric can be compared with well-known metrics like Kolmogorov
metric, total variation metric, Lévy-Prokhorov metric and probability metric based on Trotter’s operator,
etc. (see [3], [30], [31], [32], [10] and [11] for more details).

The article is organized as follows. The definition of Zolotarev’s probability metric and some related
auxiliary results will be recalled in Section 2. Section 3 is devoted to main results of our paper with detailed
proofs. Throughout this paper, we denote by N = {1, 2, · · · } the set of natural numbers, by R = (−∞,+∞)

the set of real numbers, the symbol a.s.
= denotes that the identity is almost sure. The notations D

−→ and P
−→

denote convergence in distribution and convergence in probability, respectively.

2. Zolotarev’s probability metric

Before stating the main results we first recall the definition of Zolotarev’s probability metric and provide
some auxiliary results which will be used in this paper. For a deeper discussion of Zolotarev’s probability
metric and its applications we refer the reader to [3], [30], [31], [32], [33], and [12]. We denote by X the set
of all random variables defined on a probability space (Ω,A,P).

Definition 2.1 ([30]). The mapping d : X × X→ [0,+∞] (infinite values of d are accepted) is called a probability
metric, denoted by d(X,Y), if for all random variables X,Y,Z ∈ X, the following statements hold:

1. P(X = Y) = 1 =⇒ d(X,Y) = 0;
2. d(X,Y) = d(Y,X);
3. d(X,Y) ≤ d(X,Z) + d(Z,Y).

Definition 2.2 ([30]). A metric d is called simple if its values are determined by a pair of marginal distributions
PX and PY.

It should be noted that, for a simple metric the following forms are equivalent

d(X,Y) = d(PX,PY) = d(FX,FY).



T. L. Hung, P. T. Kien / Filomat 33:10 (2019), 3073–3084 3076

According to Zolotarev [30, p. 418], if d is a simple metric, then

d(X,Y) = 0⇐⇒ X D
= Y.

Definition 2.3 ([30]). A simple metric d is called an ideal probability metric of order s ≥ 0 on X, if for all
X,Y,Z ∈ X, the following statements hold:

1. Regularity:

d(X + Z,Y + Z) ≤ d(X,Y),

for Z independent of X and Y.
2. Homogeneity of order s :

d(cX, cY) = |c|sd(X,Y),

for any c , 0.

We denote by C(R) the set of all real-valued, bounded, uniformly continuous functions defined on R,
with norm ‖ f ‖ = sup

x∈R
| f (x)|. Furthermore, for r ∈N, β ∈ (0, 1] and s = r + β, let us set

Cr(R) =
{

f ∈ C(R) : f (k)
∈ C(R), 1 ≤ k ≤ r

}
,

and

Ds =
{

f ∈ Cr(R) :
∣∣∣ f (r)(x) − f (r)(y)

∣∣∣ ≤ ∣∣∣x − y
∣∣∣β}.

Definition 2.4 ([30]). Let X,Y ∈ X. Zolotarev’s probability metric on X between two random variables X and Y,
denoted by dZ(X,Y), is defined by

dZ(X,Y) = sup
f∈Ds

∣∣∣∣E[ f (X) − f (Y)
]∣∣∣∣.

Remark 2.5 ([30]).

1. Zolotarev’s probability metric dZ(X,Y) on X is an ideal metric of order s, i.e., for any c , 0, and for X,Y,Z ∈ X,

dZ(X + Z,Y + Z) ≤ dZ(X,Y),

for Z independent of X and Y, and

dZ(cX, cY) = |c|sdZ(X,Y).

2. Let dZ(Xn,X) −→ 0 as n→∞. Then Xn
D
−→ X as n→∞. (see for instance [30], p. 424).

The following lemmas are useful in next section.

Lemma 2.6. Let {X j, j ≥ 1} and {Y j, j ≥ 1} be two sequences of independent random variables that are identically
distributed within each sequence. Then,

dZ

 n∑
j=1

X j,
n∑

j=1

Y j

 ≤ n · dZ

(
X1,Y1

)
. (6)

Proof. The proof is immediate from [33, Corollary 1.4.1, page 36].
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Lemma 2.7. Let X,Y ∈ X with E|X|s < +∞ and E|Y|s < +∞, for s = r + β, β ∈ (0, 1] and r ∈N. Then

dZ

(
X,Y

)
≤

r∑
k=1

Mk

k!

∣∣∣∣∣E(Xk) − E(Yk)
∣∣∣∣∣ +

θβ

r!

(
E|X|s + E|Y|s

)
,

where Mk = sup
f∈Ds

∣∣∣ f (k)(0)
∣∣∣.

Proof. According to Taylor series expansion for a function f ∈ Ds and x ∈ R with Lagrange remainder (see
for instance [27], page 110), we have

f (x) = f (0) +

r−1∑
k=1

f (k)(0)
k!

xk +
f (r)(θx)

r!
xr

= f (0) +

r−1∑
k=1

f (k)(0)
k!

xk +
f (r)(0)

r!
xr +

f (r)(θx)
r!

xr
−

f (r)(0)
r!

xr

= f (0) +

r∑
k=1

f (k)(0)
k!

xk +
xr

r!

[
f (r)(θx) − f (r)(0)

]
,

where 0 < θ < 1.
Thus, for any x, y ∈ R, it follows that

f (x) − f (y) =

r∑
k=1

f (k)(0)
k!

(xk
− yk) +

xr

r!

[
f (r)(θx) − f (r)(0)

]
−

yr

r!

[
f (r)(θy) − f (r)(0)

]
≤

r∑
k=1

f (k)(0)
k!

(xk
− yk) +

|x|r

r!

∣∣∣∣ f (r)(θx) − f (r)(0)
∣∣∣∣ +
|y|r

r!

∣∣∣∣ f (r)(θy) − f (r)(0)
∣∣∣∣

≤

r∑
k=1

f (k)(0)
k!

(xk
− yk) +

|x|r

r!

∣∣∣θx
∣∣∣β +
|y|r

r!

∣∣∣θy
∣∣∣β

=

r∑
k=1

f (k)(0)
k!

(xk
− yk) +

θβ

r!

(
|x|s + |y|s

)
.

Therefore,

dZ

(
X,Y

)
= sup

f∈Ds

∣∣∣∣E[ f (X) − f (Y)
]∣∣∣∣

≤ sup
f∈Ds

r∑
k=1

| f (k)(0)|
k!

∣∣∣E(Xk) − E(Yk)
∣∣∣ +

θβ

r!

(
E|X|s + E|Y|s

)
=

r∑
k=1

Mk

k!

∣∣∣E(Xk) − E(Yk)
∣∣∣ +

θβ

r!

(
E|X|s + E|Y|s

)
,

where Mk = sup
f∈Ds

∣∣∣ f (k)(0)
∣∣∣.

Based on boundedness of E|X|s and E|Y|s, since f ∈ Ds, it follows that dZ

(
X,Y

)
is finite. The proof is

straightforward.

Lemma 2.8. Let X,Y ∈ X with E|X| < +∞ and E|Y| < +∞. Then,

dZ

(
X,Y

)
≤ sup

f∈D2

‖ f ′‖.
(
E|X| + E|Y|

)
,
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where ‖ f ′‖ = sup
w∈R

∣∣∣ f ′(w)
∣∣∣.

Proof. For any f ∈ C1(R), on account of Mean Value Theorem ([27], page 107), for z is between x and y, we
have

f (x) − f (y) = (x − y) f ′(z).

Since f ∈ C1(R) and for all z ∈ R, one has∣∣∣ f ′(z)
∣∣∣ ≤ sup

w∈R

∣∣∣ f ′(w)
∣∣∣ = ‖ f ′‖.

Then, we infer that, for f ∈ C1(R),

f (x) − f (y) ≤ |x − y|.
∣∣∣ f ′(z)

∣∣∣ ≤ ‖ f ′‖(|x| + |y|).

Therefore,

dZ(X,Y) = sup
f∈D2

∣∣∣∣E[ f (X) − f (Y)
]∣∣∣∣ ≤ sup

f∈D2

‖ f ′‖.
(
E|X| + E|Y|

)
.

The proof is immediate.

3. Main results

The following proposition is one of the important properties of geometric random variable which will
be used in the sequel.

Proposition 3.1. Let νp be a geometric random variable with parameter p ∈ (0, 1). Then, for any γ ∈ (0, 1),

E
(
ν−γp

)
≤

pγ

1 − p
Γ(1 − γ),

where Γ(x), x > 0 is Gamma function (see for instance [27], Definition 8.17, page 192).

Proof. It is plain that

E
(
ν−γp

)
=

∞∑
k=1

P
(
νp = k

)
k−γ =

( p
1 − p

) ∞∑
k=1

(1 − p)kk−γ.

Let 1 be a decreasing, positive and continuous function on (0,+∞). Then, we shall begin with showing that

∞∑
k=1

1(k) ≤
∫
∞

0
1(x)dx.

Consider

1(x) = (1 − p)xx−γ,

a decreasing, positive and continuous function on (0,+∞).
Taking (1 − p)x = e−t, yields

∞∑
k=1

(1 − p)kk−γ ≤
∫
∞

0
(1 − p)xx−γdx =

( 1
ln(1/(1 − p))

)1−γ
∫
∞

0
e−tt−γdt

=
( 1
ln(1/(1 − p))

)1−γ
Γ(1 − γ),
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where Γ(z) =

∫
∞

0
e−xxz−1dx is Gamma function.

Thus,

E
(
ν−γp

)
≤

( p
1 − p

)( 1
ln 1

1−p

)1−γ
Γ(1 − γ).

Since ln
( 1

1 − p

)
> p for all p ∈ (0, 1), we get

E
(
ν−γp

)
≤

( p
1 − p

)(1
p

)1−γ
Γ(1 − γ) =

( pγ

1 − p

)
Γ(1 − γ).

The proof is straight-forward.

Remark 3.2. It is clear that with γ = 1/2, since Γ(1/2) =
√
π, we have

E
(
νp
−1/2

)
≤

p1/2√π

1 − p
.

We follow the notation used in [25]. A random variable Y is said to be symmetric stable distributed random
variable with parameters α ∈ (0, 2] and σ > 0, denoted by Y ∼ S(α, σ), if its characteristic function is defined
as follows

fY(t) = exp
{
− σα|t|α

}
, t ∈ R. (7)

Proposition 3.3. Let Y ∼ S(α, σ) with α ∈ (0, 2] and σ > 0. Then Y is a ϕ–geometrically decomposable random
variable.

Proof. Let Y1,Y2, · · · be a sequence of i.i.d. random variables copied from Y. The characteristic function of

sum
n∑

j=1
Y j is defined by

f n∑
j=1

Y j
(t) = E

(
eit(Y1+Y2+···+Yn)

)
=

[
E
(
eitY

)]n
= exp

{
− nσα|t|α

}
, for t ∈ R.

Thus, characteristic function of the sum n−1/α
n∑

j=1
Y j will be given by

f
n−1/α

n∑
j=1

Y j
(t) = E

exp
{
itn−1/α

n∑
j=1

Y j

} = f n∑
j=1

Y j

(
n−1/αt

)
= exp

{
− σα|t|α

}
, for t ∈ R.

Let us consider the normalized function ϕ(νp) = ν−1/α
p . Then the characteristic function of the normalized

geometric sums ν−1/α
p

νp∑
j=1

Y j is given by

f
ν−1/α

p

νp∑
j=1

Y j

(t) = E

exp
{
itν−1/α

p

νp∑
j=1

Y j

}
= E

 ∞∑
n=1

P
(
νp = n

)
exp

{
itn−1/α

n∑
j=1

Y j

}
=

∞∑
n=1

P
(
νp = n

)
E

exp
{
itn−1/α

n∑
j=1

Y j

}
=

∞∑
n=1

P
(
νp = n

)
exp

{
− σα|t|α

}
= fY(t), for t ∈ R.
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This finishes the proof.

The general theorem on rate of convergence for normalized geometric random sums ϕ(νp)
νp∑
j=1

X j will be

established as follows

Theorem 3.4. Let X,X1,X2, · · · be a sequence of i.i.d. random variables with E|X|s < +∞ for 1 ≤ s ≤ r, r ∈ N.
Let νp be a geometric random variable with mean 1/p, p ∈ (0, 1), independent of all X j for j ≥ 1. Assume that Y is a
ϕ–geometrically decomposable random variable with E|Y|s < +∞ for s = r + β, β ∈ (0, 1] and r ∈N. Then,

dZ

(
ϕ(νp)

νp∑
j=1

X j,Y
)
≤ E

{[
ϕ(νp)

]s
νp

}  r∑
k=1

Mk

k!

∣∣∣EXk
− EYk

∣∣∣ +
θβ

r!

(
E|X|s + E|Y|s

) ,
where s = r + β, β ∈ (0, 1], r ∈N and Mk = sup

f∈Ds

∣∣∣ f (k)(0)
∣∣∣.

Proof. Since Y is aϕ–geometrically decomposable random variable, so there exist the i.i.d. random variables
Y1,Y1, · · · are copied from Y, such that

Y D
= ϕ(νp)

νp∑
j=1

Y j.

Based on ideality of Zolotarev’s probability metric of order s, according to Lemma 2.6 and Lemma 2.7, we
have

dZ

(
ϕ(νp)

νp∑
j=1

X j,Y
)

= dZ

(
ϕ(νp)

νp∑
j=1

X j, ϕ(νp)
νp∑
j=1

Y j

)

=

∞∑
n=1

P(νp = n
)
dZ

(
ϕ(n)

n∑
j=1

X j, ϕ(n)
n∑

j=1

Y j

)
≤

∞∑
n=1

{
P
(
νp = n

)[
ϕ(n)

]s
ndZ

(
X1,Y1

)}
= E

{[
ϕ(νp)

]s
νp

}
dZ

(
X,Y

)
≤ E

{[
ϕ(νp)

]s
νp

}  r∑
k=1

Mk

k!

∣∣∣EXk
− EYk

∣∣∣ +
θβ

r!

(
E|X|s + E|Y|s

) ,
where Mk = sup

f∈Ds

∣∣∣ f (k)(0)
∣∣∣. The proof is complete.

On account of Theorem 3.4, the limit theorem for normalized geometric random sums will be formulated
as follows

Remark 3.5. Suppose that

E
{[
ϕ(νp)

]s
νp

}
= o(1) as p↘ 0+.

Then

ϕ(νp)
νp∑
j=1

X j
D
−→ Y, as p↘ 0+.
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From now on, let X? be a standard normal distributed random variable, denoted by X?
∼ N(0, 1), with

the characteristic function

fX? (t) = exp
{
−

t2

2

}
, t ∈ R.

It is easily seen that, E(X?) = 0,E(X?2) = 1 and E(|X?
|
3) = 4/

√
2π. Moreover, when α = 2 and σ = 1/

√
2,

the symmetric stable laws reduce to the standard normal distribution. Hence, according to Proposition 3.3,
the X? is a ϕ–geometrically decomposable random variable.

Theorem 3.6. Let X,X1,X2, · · · be a sequence of i.i.d. random variables with moments EX = 0,EX2 = 1 and
E|X|3 = ρ < +∞. Let νp be a geometric random variable with mean p−1, p ∈ (0, 1), independent of X and X j, j ≥ 1.
Then,

dZ

(
ν−1/2

p

νp∑
j=1

X j,X?
)
≤

p1/2√π

1 − p

(
ρ

2
+

2
√

2π

)
.

Proof. Applying to Theorem 3.4 for normalized function ϕ(νp) = ν−1/2
p , r = 2, β = 1 and s = r + β = 3, we

obtain

dZ

(
ν−1/2

p

νp∑
j=1

X j,X?
)
≤ E

[(
ν−1/2

p

)3
νp

] { θ
2!

(
E|X|3 + E|X?

|
3
)}

≤ E
(
ν−1/2

p

) (ρ
2

+
2
√

2π

)
.

According to Remark 3.1, one has

E
(
ν−1/2

p

)
≤

p1/2√π

1 − p
.

Therefore,

dZ

(
ν−1/2

p

νp∑
j=1

X j,X?
)
≤

p1/2√π

1 − p

(
ρ

2
+

2
√

2π

)
.

The proof has completed.

It is worth pointing out that a type of Central limit theorem for normalized geometric random sums is
formulated immediate from Theorem 3.6 as follows

Remark 3.7. On account of Theorem 3.6, since p1/2 √π
1−p = o(1) as p↘ 0+, it follows that

dZ

(
ν−1/2

p

νp∑
j=1

X j,X?
)
−→ 0 as p↘ 0+

Hence

ν−1/2
p

νp∑
j=1

X j
D
−→ X?

∼ N(0, 1), as p↘ 0+.
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Theorem 3.8. Let X,X1,X2, · · · be a sequence of i.i.d. random variables with E|X| = % < +∞. Let νp be a
geometric random variable with parameter p ∈ (0, 1), independent of all X j, j ≥ 1. Assume that Y is a symmetric
stable distributed random variable with 1 < α < 2 and σ = 1. Then,

dZ

(
ν−1/α

p

νp∑
j=1

X j,Y
)
≤

p
2−α
α

1 − p
Γ
(2α − 2

α

)
sup
f∈D2

‖ f ′‖
{
% +

2
√
π

Γ
(
1 −

1
α

)}
.

Proof. According to Proposition 3.3, since Y ∼ S(α, 1), we have

Y D
= ν−1/α

p

νp∑
j=1

Y j,

where Y,Y1,Y2, · · · are i.i.d. random variables and they are independent of νp.
On account of ideality of Zolotarev’s probability metric of order s, from Lemma 2.6, it follows that

dZ

(
ν−1/α

p

νp∑
j=1

X j,Y
)

= dZ

(
ν−1/α

p

νp∑
j=1

X j, ν
−1/α
p

νp∑
j=1

Y j

)

=

∞∑
n=1

P(νp = n)dZ

(
n−1/α

n∑
j=1

X j,n−1/α
n∑

j=1

Y j

)
=

∞∑
n=1

P(νp = n)n−s/αdZ

( n∑
j=1

X j,
n∑

j=1

Y j

)
≤

∞∑
n=1

{
P(νp = n)n

α−s
α dZ

(
X1,Y1

)}
= E

{
ν
α−s
α

p

}
dZ

(
X,Y

)
.

According to Lemma 2.8 with r = 1, β = 1 and s = 2, we have

dZ

(
X,Y

)
≤ sup

f∈D2

‖ f ′‖.
(
E|X| + E|Y|

)
.

Since Y ∼ S(α, 1) with 1 < α < 2, according to [19, Corollary 5, page 305], then

E|Y| =
2
√
π

Γ
(
1 −

1
α

)
.

Moreover, based on hypothesis that E|X| = % < +∞, we obtain

dZ

(
X,Y

)
≤ sup

f∈D2

‖ f ′‖
{
% +

2
√
π
.Γ

(
1 −

1
α

)}
.

Furthermore, according to Proposition 3.1 for γ =
2 − α
α

, since 0 <
2 − α
α

< 1 with 1 < α < 2, it follows that

E
{
ν
α−2
α

p

}
≤

p
2−α
α

1 − p
Γ
(
1 −

2 − α
α

)
=

p
2−α
α

1 − p
Γ
(2α − 2

α

)
.

Therefore,

dZ

(
ν−1/α

p

νp∑
j=1

X j,Y
)
≤

p
2−α
α

1 − p
Γ
(2α − 2

α

)
sup
f∈D2

‖ f ′‖
{
% +

2
√
π
.Γ

(
1 −

1
α

)}
.

The proof is complete.
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Remark 3.9. According to Remark 2.5, a weak limit theorem of geometric random sums may be concluded from
Theorem 3.8 as follows

ν−1/α
p

νp∑
j=1

X j
D
−→ Y ∼ S(α, 1) as p↘ 0.
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4. Appendix

Proposition 4.1. For any p ∈ (0, 1), let νp be a geometric random variable with mean 1/p. Then,

νp
P
−→ +∞, as p↘ 0+,

i. e. for any M > 0

lim
p↘0+
P(νp > M) = 1.

Proof. Since νp ∼ Geo(p), it follows that for M > 0 is sufficiently large, we have

P
(
νp > M

)
= 1 − P

(
νp ≤M

)
= 1 −

M∑
j=1

p(1 − p) j−1

= 1 −
p

1 − p

M∑
j=1

(1 − p) j.

It is clear that,

M∑
j=1

(1 − p) j =
(1 − p)[1 − (1 − p)M]

1 − (1 − p)
=

1 − p
p

[1 − (1 − p)M]

Then,

P
(
νp > M

)
= 1 −

p
1 − p

.
1 − p

p
[1 − (1 − p)M] = (1 − p)M

→ 1 as p↘ 0+.

The proof is immediate.
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[20] S. Kotz, Tomaz J. Kozubowski, and Krzysztof Podgórsky, The Laplace Distribution and Generalization, Springer Science +

Business Media, LLC., 2001.
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