Filomat 33:10 (2019), 3061–3072 https://doi.org/10.2298/FIL1910061Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The New Revisitation of Core EP Inverse of Matrices

Ke Zheng Zuo^a, Ying Jie Cheng^a

^aDepartment of Mathematics, Hubei Normal University, Huangshi 435000, China

Abstract. In this paper, we study some properties of *core-EP inverse* of square matrices. Firstly, we extend the obtained theorem proved by K.M. Prasad and K.S. Mohana. Then some properties of core-EP inverse have been given, through applying the conditions $(AX)^* = AX$, $XA^{k+1} = A^k$ and $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$. Secondly, we get some characterizations of *core-EP inverse* by employing the conditions $AX = P_{A^k}$ and $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^{k+1})^*A))}$. Finally, we get some properties of *core-EP inverse* by utilizing the condition $A^{k+1}X = A^kP_{A^k}$.

1. Introduction

Let $\mathbb{C}^{m \times n}$ be the set of $m \times n$ complex matrices. For $A \in \mathbb{C}^{m \times n}$, the symbols $\mathcal{R}(A)$, $\mathcal{N}(A)$, A^* and r(A) denote the *range space*, *null space*, *conjugate transpose* and *rank* of A, respectively. Moreover, the identity matrix of order n is denoted by I_n .

Let $A \in \mathbb{C}^{m \times n}$. The unique matrix $X \in \mathbb{C}^{n \times m}$, which satisfying the following conditions:

(*i*)
$$AXA = A$$
, (*ii*) $XAX = X$, (*iii*) $(AX)^* = AX$, (*iv*) $(XA)^* = XA$,

is called the *Moore-Penrose* inverse of *A* and written by A^+ [1]. If a matrix $X \in \mathbb{C}^{n \times m}$ only satisfies the equality AXA = A, then X is an inner inverse of A and we denote it by A^- [1]. Moreover, we denote the class of all inner inverse of A by $A^{(1)}$ [1]. A matrix $X \in \mathbb{C}^{n \times m}$ that satisfies XAX = X is an outer inverse of A and we denote it by $A^{(2)}$ [1]. Furthermore, let *P* and *L* be two complementary subspaces in \mathbb{C}^n . If the matrix X satisfies the following conditions:

(i)
$$X \in A^{(2)}$$
, (ii) $\mathcal{R}(X) = \mathcal{R}(P)$, (iii) $\mathcal{N}(X) = \mathcal{N}(L)$,

then X is denoted by $A_{PL}^{(2)}$ [9].

Here, we mainly consider the square matrices. The smallest nonnegative integer k, which satisfies $r(A^k) = r(A^{k+1})$, is called the index of A and we denote it as Ind(A). Furthermore, the set of all index 1 matrices also known as core matrices is denoted by \mathbb{C}_n^{CM} . The matrix A satisfying $\mathcal{R}(A^*) = \mathcal{R}(A)$, is called *EP-matrix* and set of *EP-matrices* in $\mathbb{C}^{n\times n}$ is \mathbb{C}_n^{EP} . The matrix A satisfying $A^2 = A$, is called idempotent matrix and it is denoted by \mathbb{C}_n^p . For $A \in \mathbb{C}^{n\times n}$, if a matrix $X \in \mathbb{C}^{n\times n}$ satisfies the following three conditions:

(*i*) XAX = X, (*ii*) XA = AX, (*iii*) $XA^{k+1} = A^k$, for some positive integer *k*,

²⁰¹⁰ Mathematics Subject Classification. 15A09

Keywords. core-EP inverse, core-EP decomposition of matrices, core inverse, the orthogonal projection of matrices. Received: 29 October 2018; Accepted: 03 January 2019

Communicated by Dragana Cvetković-Ilić

Email addresses: xiangzuo28@163.com (Ke Zheng Zuo), 18972773039@163.com (Ying Jie Cheng)

then *X* is called the *Drazin inverse* of *A* and written as A^D [1]. Moreover, when $Ind(A) \leq 1$, the matrix *X* is known as the *group inverse* and noticed by A^{\sharp} [1]. More on Drazin inverses and generalized Drazin inverses see in [10, 17]. For two complementary subspaces $L, M \in \mathbb{C}^n$, that satisfy $L \bigoplus M = \mathbb{C}^n$. $P_{L,M}$ is said to be the oblique projector onto *L* along *M*. Additionally, if *M* is the subspace orthogonal to *L*, we denote the orthogonal projection onto *L* by $P_{L,M}$. For $A \in \mathbb{C}^{n \times n}$, P_A is said to be the orthogonal projection onto $\mathcal{R}(A)$, i.e. $P_A = AA^{\dagger}$.

Baksalary and Trenker [6] introduced the *core inverse* on the set \mathbb{C}_n^{CM} : For $A \in \mathbb{C}_n^{CM}$, the core inverse of A is defined to be the unique matrix X such that

$$AX = P_A$$
 and $\mathcal{R}(X) \subseteq \mathcal{R}(A)$,

and written as A^{\oplus} . Moreover, three kinds of generalizations of the core inverses [3,19,22] were given for $n \times n$ complex matrices, called *core-EP inverse*, *BT-inverse*, and *DMP-inverse*, respectively. In order to introduce these inverses, we assume that $A \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Firstly, the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$XAX = X$$
 and $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$,

is called the core-EP inverse of A and noticed by A^{\oplus} [22]. It is clear that $A^{\oplus} \in \mathbb{C}_n^{EP}$. Secondly, for $A \in \mathbb{C}^{n \times n}$, the *DMP-inverse* of A, written by $A^{D,\dagger}$ [19], is defined as the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$XAX = X$$
, $XA = A^{D}A$ and $A^{k}X = A^{k}A^{\dagger}$.

Finally, the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$X = (AP_A)^{\dagger},$$

is called the BT-inverse of *A* and noticed by A^{\diamond} [3].

In 2017, Drazin introduced (*B*, *C*)-inverse on the ring. And then Benitez and Boasso et. al [7] researched (*B*, *C*)-inverse on the set $\mathbb{C}^{m \times n}$.

Definition 1.1. [7] Let $A \in \mathbb{C}^{m \times n}$ and $B, C \in \mathbb{C}^{n \times m}$. The matrix A is said to be (B, C)-invertible, if there exist a matrix $X \in \mathbb{C}^{n \times m}$, satisfying the following conditions:

XAB = B, CAX = C, $\mathcal{N}(X) = \mathcal{N}(C)$ and $\mathcal{R}(X) = \mathcal{R}(B)$.

Furthermore, the matrix X is called (B, C)-inverse of A. And the matrix X is unique.

In [24] , Wang introduced core-EP decomposition of $A \in \mathbb{C}^{n \times n}$ as follows:

Lemma 1.2. [24] Let $A \in \mathbb{C}^{n \times n}$ with Ind(A) = k. Then A can be written as the sum of matrices A_1 and A_2 , i.e. $A = A_1 + A_2$, where

(*i*) $A_1 \in \mathbb{C}_n^{CM}$; (*ii*) $A_2^k = 0$; (*iii*) $A_1^*A_2 = A_2A_1 = 0$.

Moreover, A_1 is core partial and A_2 is nilpotent partial. Then we notice k is nilpotent index, moreover the nilpotent index of A_2 is equal to index of the matrix A.

Moreover, Wang [24] researched characterization of core-EP decomposition by using Schur lemma.

Lemma 1.3. [24] Let the core-EP decomposition of $A \in \mathbb{C}^{n \times n}$ be as in Lemma 1.2. Then there exists the unitary matrix U such that

$$A = U \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} U^*, \tag{1}$$

where T is non-singular and N is nilpotent. Moreover, A_1 and A_2 can be represented by

$$A_1 = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^* \text{ and } A_2 = U \begin{bmatrix} 0 & 0 \\ 0 & N \end{bmatrix} U^*,$$
(2)

and A^k can be given by

$$A^{k} = U \begin{bmatrix} T^{k} & \widetilde{S} \\ 0 & 0 \end{bmatrix} U^{*}, \tag{3}$$

where $\widetilde{S} = \sum_{i=0}^{k-1} T^i S N^{k-i}$.

Furthermore, in [24], some characterizations of core-EP inverse were introduced.

Lemma 1.4. [24] Let $A \in \mathbb{C}^{n \times n}$ with Ind(A) = k, and let the core-EP decomposition of A be as in Lemma 1.3. Then

$$A^{\oplus} = A_1^{\oplus} = U \begin{bmatrix} T^{-1} & 0\\ 0 & 0 \end{bmatrix} U^*.$$

In [24], the author obtained the relationship between *core-EP inverse* and *core inverse* by using the core-EP decomposition. In [12], some representations for *core-EP inverse* have been given.

In this paper we are concerned with some properties of *core-EP inverse* of square matrices by using core-EP decomposition. In Section 2, some necessary and sufficient conditions for *core-EP inverse* will be given by using the conditions $(AX)^* = AX$, $XA^{k+1} = A^k$ and $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$. In Section 3, we derived necessary and sufficient condition for *core-EP inverse* by using the conditions $AX = P_{A^k}$ and $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^{k+1})^*A)}$. In Section 4, we get some properties of *core-EP inverse* by utilizing the condition $A^{k+1}X = A^kP_{A^k}$. Also, we devoted a new representation of the core-EP inverse. Then by the definition of (B, C)-inverse, we get a result that the *core-EP inverse* is a specific (B, C)-inverse.

2. Some revisitations about core-EP inverse

In [22], Prasad and Mohana defined *core-EP inverse* for square matrices and presented some properties. In the following lemma, we provide one of its properties:

Lemma 2.1. [22] Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Then X is core-EP inverse of A if and only if X satisfies the following four conditions:

$$XA^{k+1} = A^k$$
, $XAX = X$, $(AX)^* = AX$, and $\mathcal{R}(X) \subseteq \mathcal{R}(A^k)$.

Whereas, we will see that the condition XAX = X is superfluous for Lemma 2.1. Therefore, we have the following theorem.

Theorem 2.2. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Then X is core-EP inverse of A if and only if X satisfies the conditions:

$$XA^{k+1} = A^k$$
 $(AX)^* = AX$, and $\mathcal{R}(X) \subseteq \mathcal{R}(A^k)$.

Proof. Suppose that $\mathcal{R}(X) \subseteq \mathcal{R}(A^k)$ and $XA^{k+1} = A^k$. We have $X = A^kT$, for some $T \in \mathbb{C}^{n \times n}$. Hence,

$$XAX = XA^{k+1}T = A^kT = X.$$

According to Theorem 2.2, we can find that X satisfies $XA^{k+1} = A^k$ and $(AX)^* = AX$, where X is *core-EP inverse* of A. Therefore, in the following theorem, we get some necessary and sufficient conditions about *core-EP inverse* by $(AX)^* = AX$ and $XA^{k+1} = A^k$. To prove the theorem, we need the following lemma.

3063

Lemma 2.3. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Suppose that the core-EP decomposition of A is given by $A = U\begin{bmatrix} T & S \\ 0 & N \end{bmatrix} U^*$. If $XA^{k+1} = A^k$, then X can be written as $X = U\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$, where X_2 and X_4 are arbitrary.

Proof. We assume that A can be written as (1). Then A^k can be written by (3). Assume that $X = U\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*$. If X satisfies $XA^{k+1} = A^k$, we get

$$\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} T^{k+1} & T\widetilde{S} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} X_1 T^{k+1} & X_1 T\widetilde{S} \\ X_3 T^{k+1} & X_3 T\widetilde{S} \end{bmatrix} = \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix}.$$

Therefore, we can obtain the following equalities

$$X_1 T^{k+1} = T^k, (4)$$

$$X_1 T \widetilde{S} = \widetilde{S},\tag{5}$$

$$X_3 T^{k+1} = 0, (6)$$

$$X_3 T S = 0. ag{7}$$

It can be easily seen that $X_1 = T^{-1}$ and $X_3 = 0$. Therefore, *X* can be written as $X = U \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$. \Box

Theorem 2.4. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. If $A = A_1 + A_2$ is the core-EP decomposition of A(from Lemma 1.2), where A_1 is core partial of A and A_2 is nilpotent partial of A. Then the following conditions are equivalent: (i) $X = A^{\oplus}$; (ii) $(AX)^* = AX, XA^{k+1} = A^k$ and $r(A^k) = r(X)$; (iii) $(AX)^* = AX, XA^{k+1} = A^k$ and $A_1X^2 = X$; (iv) $(AX)^* = AX, XA^{k+1} = A^k$ and $A^sX^{s+1} = X$, for some positive integer s; (v) $(AX)^* = AX, XA^{k+1} = A^k$ and $XA_1X = X$.

Proof. The proofs of (i) \Rightarrow (ii), (i) \Rightarrow (iii), (i) \Rightarrow (iv) and (i) \Rightarrow (v) are a direct consequences of Lemma 1.4. (ii) \Rightarrow (i) If $XA^{k+1} = A^k$ then $\mathcal{R}(A^k) \subseteq \mathcal{R}(X)$. Since $r(A^k) = r(X)$, we get $\mathcal{R}(A^k) = \mathcal{R}(X)$. Hence due to Theorem 2.2, we have $X = A^{\oplus}$.

 $(iii) \Rightarrow (i) \text{ Suppose that } X = U \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*. \text{ Let } A \text{ be of the form (1). Moreover according to Lemma 1.3, it follows that } A_1 = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^* \text{ and } A^k = U \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix} U^*. \text{ From Lemma 2.3, we set that } X \text{ can be given by } X = U \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*. \text{ By } A_1 X^2 = X, \text{ we obtain}$ $\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} = \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix}, \qquad (8)$

$$\begin{bmatrix} T^{-1} & X_2 + TX_2X_4 + SX_4^2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix}.$$
(9)

So we get $X_4 = 0$. From $(AX)^* = AX$ we get $X_2 = 0$. Hence $X = A^{\oplus}$.

(iv)
$$\Rightarrow$$
(i) By $XA^{k+1} = A^k$, we obtain $X = U\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$. Also, by $A^s X^{s+1} = X$, we have that

$$\begin{bmatrix} T & S \\ 0 & N \end{bmatrix}^{s} \begin{bmatrix} T^{-1} & X_{2} \\ 0 & X_{4} \end{bmatrix}^{s+1} = \begin{bmatrix} T^{-1} & X_{2} \\ 0 & X_{4} \end{bmatrix},$$
(10)

$$\begin{bmatrix} T^{s} & \widetilde{S} \\ 0 & N^{s} \end{bmatrix} \begin{bmatrix} T^{-(s+1)} & \widetilde{M} \\ 0 & X_{4}^{s+1} \end{bmatrix} = \begin{bmatrix} T^{-1} & X_{2} \\ 0 & X_{4} \end{bmatrix},$$
(11)

where $\widetilde{S} = \sum_{i=0}^{s-1} T^i S N^{s-i}$ and $\widetilde{M} = \sum_{i=0}^{s} T^{-i} X_2 X_4^{s-i}$. So we get

$$\begin{bmatrix} T^{-1} & T^s \widetilde{M} + \widetilde{S} X_4^{s+1} \\ 0 & N^s X_4^{s+1} \end{bmatrix} = \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix}$$

Hence $N^s X_4^{s+1} = X_4$. If $s \ge k$, then it is easy to check that $X_4 = 0$. If s < k, then $X_4 = N^s X_4^{s+1} = N^{2s} X_4^{2s+1} = \cdots = N^{ks} X_4^{ks+1}$. Due to $N^k = 0$, we obtain $X_4 = 0$. Thus, we have $X = U \begin{bmatrix} T^{-1} & X_2 \\ 0 & 0 \end{bmatrix} U^*$. Then, from $(AX)^* = AX$ we get $X_2 = 0$. Therefore, $X = A^{\oplus}$. The proof of $(v) \Rightarrow (i)$ is the same as $(iii) \Rightarrow (i)$. \Box

The following example shows that we can't lead to $X = A^{\oplus}$ by substituting XAX = X for $XA_1X = X$ in Theorem 2.4(v).

Example 2.5. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

It is easy to see that Ind(A) = 2. Also, we can verify that X satisfies $(AX)^* = AX$, $XA^3 = A^2$ and XAX = X. However, we can easily check that $\mathcal{R}(X) \neq \mathcal{R}(X^*) \neq \mathcal{R}(A^k)$. Therefore, $X \neq A^{\oplus}$.

In [22], the author introduced the definition of *core-EP inverse* which satisfies $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$ and XAX = X. In the following theorem, we show the other properties of *core-EP inverse* by using the condition $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$. To prove the theorem, we need the following lemma.

Lemma 2.6. Let
$$A, X \in \mathbb{C}^{n \times n}$$
 and $Ind(A) = k$. Let the core-EP decomposition of A be given by $A = U \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} U^*$.
If $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$, then X can be expressed as $X = U \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$, where X_1 is invertible.

Proof. By Lemma 1.3, we have that A^k can be written by (3). Let X be given by $X = U\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*$. Due to $\mathcal{R}(A^k) = \mathcal{R}(X)$, then there exists a matrix Y satisfying $X = A^k Y$. So we divide the matrix Y into four blocks as $Y = U\begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^*$. From $X = A^k Y$, we get

$$\begin{split} & U \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^* = U \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{bmatrix} U^*, \\ & \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} = \begin{bmatrix} T^k Y_1 + \widetilde{S} Y_3 & T^k Y_2 + \widetilde{S} Y_4 \\ 0 & 0 \end{bmatrix}. \end{split}$$

Thus, $X_3 = 0$ and $X_4 = 0$. Similarly, according to $\mathcal{R}(X^*) = \mathcal{R}(A^k)$, it follows that $X_2 = 0$. Thus the matrix X can be written as $X = U \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$, where X_1 is invertible. \Box

3065

Theorem 2.7. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Then the following are equivalent: (i) $X = A^{\oplus}$; (ii) $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$ and $XA^{k+1} = A^k$; (iii) $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$ and $A^s X^{s+1} = X$, for some positive integer s; (iv) $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$ and $XA \in \mathbb{C}_n^p$; (v) $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$ and $AX \in \mathbb{C}_n^p$; (vi) $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$ and $AXA \in \mathbb{C}_n^p$;

Proof. The proofs of (i) \Rightarrow (ii), (i) \Rightarrow (iii), (i) \Rightarrow (iv), (i) \Rightarrow (v) and (i) \Rightarrow (vi) are trivial by Lemma 1.4.

 $(ii) \Rightarrow (i), (iii) \Rightarrow (i), and (vi) \Rightarrow (i).$ We suppose that A is written as in (1). Then $A^k = U\begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix} U^*$. Assume that $X = U\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*$. By Lemma 2.6, we have $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$, which yields $X = U\begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$, where X_1 is invertible. Then following the other conditions, we can obtain $X_1 = T^{-1}$ by a direct calculation. Hence we have $X = U\begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$.

(iv) \Rightarrow (i) By Lemma 2.6, we have $X = U \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$, where X_1 is invertible. Due to $XA \in \mathbb{C}_n^p$, we get

$$\begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & N \end{bmatrix},$$
$$\begin{bmatrix} X_1 T X_1 T & X_1 T X_1 S \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} X_1 T & X_1 S \\ 0 & 0 \end{bmatrix}.$$

Thus we have $X_1TX_1T = X_1T$. Since X_1 and T are invertible, we conclude $X_1T = I$. Then we have $X_1 = T^{-1}$. Hence we have $X = U\begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$.

The proof of $(v) \Rightarrow (i)$ is similar to the proof of $(iv) \Rightarrow (i)$. \Box

Remark 2.8. We obtain $X = A^{\oplus}$ by substituting A_1 for A in Theorem 2.7 (ii)-(vi).

3. Some properties of *core-EP inverse* under the condition $AX = P_{A^k}$

In this section, we mainly show several characterizations of *core-EP inverse* by applying some properties in [12]. Ferreyra, Levis, et. al [12] have presented some new characterizations about the *core-EP inverse* of a square matrix. In the following lemma, the important conclusion from [12] is given:

Lemma 3.1. [12] Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Then X is core-EP inverse of A if and only if $AX = P_{A^k}$ and $\mathcal{R}(X) \subseteq \mathcal{R}(A^k)$.

From this lemma we can obtain $AX = P_{A^k}$, if the matrix X is *core-EP inverse* of the square matrix A. Therefore, in the following theorem, we get some necessary and sufficient conditions about *core-EP inverse* by taking $AX = P_{A^k}$ into consideration.

Theorem 3.2. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. And $A = A_1 + A_2$ is the core-EP decomposition of A(from Lemma 1.1), where A_1 is core partial of A and A_2 is nilpotent partial of A. Then the following conditions are equivalent:

(i) $X = A^{\oplus}$; (ii) $AX = P_{A^k}$ and $AX^2 = X$; (iii) $AX = P_{A^k}$ and $A_1X^2 = X$; (iv) $AX = P_{A^k}$, $X \in \mathbb{C}_n^{EP}$ and XAX = X. *Proof.* The proofs of (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are trivial by applying Lemma 1.4.

(i) \Rightarrow (iv) By Lemma 3.1, we have $AX = P_{A^k}$. And due to the definition of core-EP inverse, we can

conclude $\mathcal{R}(X) = \mathcal{R}(X^*)$ and XAX = X. Also, since $\mathcal{R}(X) = \mathcal{R}(X^*)$, we get $X \in \mathbb{C}_n^{EP}$. (ii) \Rightarrow (i) If $AX = P_{A^k}$, then by $AX^2 = X$ we conclude $P_{A^k}X = X$. Also, we have $\mathcal{R}(X) \subseteq \mathcal{R}(A^k)$. Hence from Lemma 3.1 we have $X = A^{\oplus}$.

(iii) \Rightarrow (i) Assume that $X = U \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*$. Let *A* be as in (1). Then A_1 can be written as the equality (2) and write $A^k = U \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix} U^*$. Due to Lemma 3.1, we have

$$P_{A^k} = AA^{\oplus} = U \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = U \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*.$$

Therefore, we have $P_{A^k} = U \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*$. From $A_1 X^2 = X$, we obtain

$$\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}.$$

By a direct calculation, we get

$$\left[\begin{array}{cc} TX_1^2 + SX_3X_1 + TX_2X_3 + SX_4X_3 & TX_1X_2 + SX_3X_2 + TX_2X_4 + SX_4^2 \\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} X_1 & X_2 \\ X_3 & X_4 \end{array}\right],$$

which yield

$$TX_1^2 + SX_3X_1 + TX_2X_3 + SX_4X_3 = X_1,$$
(12)

$$TX_1X_2 + SX_3X_2 + TX_2X_4 + SX_4^2 = X_2,$$
(13)

$$X_3 = 0, \tag{14}$$

$$X_4 = 0.$$
 (15)

Therefore, $X_3 = 0$ and $X_4 = 0$. So the matrix X is of the form

$$X = U \begin{bmatrix} X_1 & X_2 \\ 0 & 0 \end{bmatrix} U^*.$$

Since $AX = P_{A^k}$, we have

$$\left[\begin{array}{cc} T & S \\ 0 & N \end{array}\right] \left[\begin{array}{cc} X_1 & X_2 \\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right].$$

So we get $X_1 = T^{-1}$ and $X_2 = 0$. Above all, we conclude $X = A^{\oplus}$.

(iv) \Rightarrow (i) According to $AX = P_{A^k}$, we get XAX = X, which yields $XP_{A^k} = X$. So we have $\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} = X_1 + X_2 + X_2 + X_3 + X_4 = X_2$. $\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \text{ and } \begin{bmatrix} X_1 & 0 \\ X_3 & 0 \end{bmatrix} = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}. \text{ Therefore, we obtain } X_2 = 0 \text{ and } X_4 = 0. \text{ According to } X \in \mathbb{C}_n^{EP}, \text{ we have } X_3 = 0. \text{ Then since } AX = P_{A^k}, \text{ it follows that } X = A^{\oplus}. \square$

In Theorem 3.2 (iii), $X \in \mathbb{C}_n^{EP}$ is necessary to check $X = A^{\oplus}$. In the following example, we will demonstrate it.

Example 3.3. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

We can easily check that Ind(A) = 2. Also, X satisfies $AX = P_{A^2}$ and XAX = X. However, we have $\mathcal{R}(X) \neq \mathcal{R}(X^*)$ by a direct calculation. So $X \neq A^{\oplus}$.

Furthermore, in [12], the authors have provided other properties of *core-EP inverse*. In the following lemma, one of properties in [12] will be recalled.

Lemma 3.4. [12] Let $A \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Then, (i) $AA^{\oplus} = P_{A^k}$; (ii) $A^{\oplus}A = P_{\mathcal{R}(A^k), \mathcal{N}((A^{k+1})^*A)}$.

Moreover, combining the equality (ii) in Lemma 3.3 with the condition $\mathcal{N}((A^k)^*A) = \mathcal{N}((A^{k+1})^*A)$ lead to $A^{\oplus}A = P_{\mathcal{R}(A^k),\mathcal{N}((A^k)^*A)}$. It is clear that $AX = P_{A^k}$ and $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^k)^*A)}$ by $X = A^{\oplus}$. However, the conditions $AX = P_{A^k}$ and $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^k)^*A)}$ can't deduce that $X = A^{\oplus}$.

Example 3.5. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

We can easy to check that Ind(A) = 2. Also, X satisfies $AX = P_{A^2}$ and $XA = P_{\mathcal{R}(A^2),\mathcal{N}((A^2)^*A)}$. However, we have $\mathcal{R}(X) \neq \mathcal{R}(X^*) \neq \mathcal{R}(A^2)$ by a direct calculation. So $X \neq A^{\oplus}$.

From Example 3.5, we see that the matrix *X* only satisfying $AX = P_{A^k}$ and $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^k)^*A)}$ can not be *core-EP inverse* of *A*. Consequently, from the following theorem, we obtain various representions of *core-EP inverse* by $AX = P_{A^k}$ and $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^k)^*A)}$.

Theorem 3.6. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. If $A = A_1 + A_2$ is the core-EP decomposition of A(from Lemma 1.2), where A_1 is core partial of A and A_2 is nilpotent partial of A. Then the following conditions are equivalent: (i) $X = A^{\oplus}$;

(i) $AX = P_{A^k}$, $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$ and XAX = X; (iii) $AX = P_{A^k}$, $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$ and $r(X) = r(A^k)$; (iv) $AX = P_{A^k}$, $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$ and $XA_1X = X$; (v) $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$, $X \in \mathbb{C}_n^{EP}$ and XAX = X.

Proof. The proofs of (i) \Rightarrow (ii), (i) \Rightarrow (iii) and (i) \Rightarrow (iv) can be showed by using Lemma 3.3 and Lemma 2.1.

(i)⇒(v) If (i) holds, by Lemma 3.4 we have $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$. By the definition of core-EP inverse, we have $\mathcal{R}(X) = \mathcal{R}(X^*)$ and XAX = X. Also, $X \in \mathbb{C}_n^{EP}$ by $\mathcal{R}(X) = \mathcal{R}(X^*)$.

(ii) \Rightarrow (i) Write $X = U\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*$. Suppose that the core-EP decomposition of A be as in (1), then A_1 and A^k can be written as equalities (2) and (3). From $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^k)^*A)}$, we can obtain $XA^{k+1} = A^k$. From the following Lemma 2.3, the matrix X can be written as $X = U\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$. Then due to $AX = P_{A^k}$ and XAX = X, we have $XP_{A^k} = X$. So it can be easily checked that $X_2 = 0$ and $X_4 = 0$. Therefore, $X = U\begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$.

(iii) \Rightarrow (i) From (ii) \Rightarrow (i) and $XA = P_{\mathcal{R}(A^k),\mathcal{N}((A^k)^*A)}$, the matrix *X* can be expressed as $X = U\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$. As $r(X) = r(A^k)$, we obtain $X_4 = 0$. For $AX = P_{A^k}$, we have the following equality

$$\begin{bmatrix} T & S \\ 0 & N \end{bmatrix} \begin{bmatrix} T^{-1} & X_2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}.$$
 (16)

So
$$X_2 = 0$$
. Thus, $X = U \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$.

 $(iv) \Rightarrow (i)$ From $(ii) \Rightarrow (i)$ and combining $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$, the matrix X can be written as $X = U\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$. And thanks to $XA_1X = X$, we have

$$\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} = \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix}$$
$$\begin{bmatrix} T^{-1} & X_2 + T^{-1}SX_4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix},$$

So we have $X_4 = 0$. Then following (i) \Rightarrow (iii), we have $X = U \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$.

 $(v) \Rightarrow (i)$ Due to $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$, we have $XA^{k+1} = A^k$. Then *X* can be written as $X = U\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$ by Lemma 2.2. And due to XAX = X, we have $\mathcal{R}(X) \subseteq \mathcal{R}(XA)$. According to $XA = P_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*A)}$, we have $\mathcal{R}(XA) = \mathcal{R}(A^k)$. It follows that $\mathcal{R}(X) \subseteq \mathcal{R}(A^k)$. So we have $X_4 = 0$. By applying $X \in \mathbb{C}_n^{EP}$, we have $\mathcal{R}(X) = \mathcal{R}(X^*)$. So it is simple to show that $X_2 = 0$. And the matrix *X* can be written as $X = U\begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^*$. Then from Lemma 1.3, we can obtain $X = A^{\oplus}$. \Box

4. The other characterizations for core-EP inverse

In this section, we provide other properties of *core-EP inverse*. In fact, the following theorem will be useful to obtain the other revisitations of *core-EP inverse*.

Theorem 4.1. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Then the following conditions are equivalent: (*i*) $X = A^{\oplus}$:

(i) X A X = X, $\mathcal{R}(X) = \mathcal{R}(A^{k})$ and $XP_{A^{k}} = X$; (iii) $XA^{k+1} = A^{k}$, $\mathcal{R}(X) = \mathcal{R}(A^{k})$ and $XP_{A^{k}} = X$; (iv) $XA^{k+1} = A^{k}$ and $\mathcal{R}(X^{*}) = \mathcal{R}(A^{k})$; (v) $X = P_{A^{k}}X = XP_{A^{k}}$ and $P_{A^{k}} = XAP_{A^{k}}$; (vi) $X = P_{A^{k}}X = XP_{A^{k}}$ and $P_{A^{k}} = P_{A^{k}}AX$.

Proof. The proof of (i) \Rightarrow (iv) is easy to check, by Lemma 1.4.

By Lemma 1.3, we have $P_{A^k} = U \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*$, where $r(I) = r(A^k)$. Then we can check (i) \Rightarrow (ii), (i) \Rightarrow (iii), (i) \Rightarrow (i)), (i) \Rightarrow (v) and (i) \Rightarrow (vi), by using the definition of *core-EP inverse*.

(ii)⇒(i) *A* can be written as the equality (1). Also, A^k can be written as the equality (2). Partitioning of *X* as $X = U\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*$ conformable for matrix with the partition of *A*. We know $P_{A^k} = U\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*$. And since $XP_{A^k} = X$, we conclude the following equalities

$$U\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^* = U\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*,$$
(17)

$$\begin{bmatrix} X_1 & 0 \\ X_3 & 0 \end{bmatrix} = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}.$$
 (18)

3069

Hence $X_2 = 0$ and $X_4 = 0$. Then from Theorem 2.7 (ii) \Rightarrow (i), we have $X_3 = 0$ by $\mathcal{R}(X) = \mathcal{R}(A^k)$. So the matrix X can be written as $X = U\begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$, where the matrix X_1 is invertible. Therefore, for XAX = X, we get $X_1 = T^{-1}$ by a simple calculation. Therefore, $X = U\begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$. (iii) \Rightarrow (i) The proof is similar to (ii) \Rightarrow (i). (iv) \Rightarrow (i) Following Lemma 2.3, the matrix X can be written as $X = U\begin{bmatrix} T^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} U^*$. Then we have $X_2 = 0$ and $X_4 = 0$ by using $\mathcal{R}(X^*) = \mathcal{R}(A^k)$. Above all, the matrix X can be written as $X = U\begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^*$. So $X = U\begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$. (v) \Rightarrow (i) As $P_{A^k} = U\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*$, then we get $X_2 = 0$ and $X_4 = 0$ by $XP_{A^k} = X$. So we obtain $X = U\begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$. Thus from $X = P_{A^k}X$, we have $X_3 = 0$. Hence $X = U\begin{bmatrix} X_1 & 0 \\ X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*$. From $P_{A^k} = XAP_{A^k}$, we

$$\begin{bmatrix} X_1 & 0 \\ X_3 & 0 \end{bmatrix} U^*. \text{ Thus from } X = P_{A^k}X, \text{ we have } X_3 = 0. \text{ Hence } X = U \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} U^*. \text{ From } P_{A^k} = XAP_{A^k}, \text{ we have}$$

$$U \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^* = U \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*,$$

$$\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} X_1T & 0 \\ 0 & 0 \end{bmatrix}.$$

Hence $X_1T = I$. Note that the matrix T is invertible, so we obtain $X_1 = T^{-1}$. Thus we get the conclusion that $X = U \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}$. (vi) \Rightarrow (i) The proof is similar to (v) \Rightarrow (i). \Box

In the previous arguments, we always concern on the condition $XA^{k+1} = A^k$. Now, we will take the condition $A^{k+1}X = A^kP_{A^k}$ into consideration. According to Lemma 3.1, we can obtain $A^{k+1}X = A^kP_{A^k}$ by $X = A^{\oplus}$. Therefore, in the following theorem, we will present some characterizations in reference to *core-EP inverse* by using the condition $A^{k+1}X = A^kP_{A^k}$.

Theorem 4.2. Let $A, X \in \mathbb{C}^{n \times n}$ and Ind(A) = k. And $A = A_1 + A_2$ is the core-EP decomposition of A(from Lemma 1.1), which A_1 is core partial of A and A_2 is nilpotent partial of A. Then the following conditions are equivalent: (i) $X = A^{\oplus}$;

(i) $A^{k+1}X = A^k P_{A^k}$ and $\mathcal{R}(X) = \mathcal{R}(A^k)$; (iii) $A^{k+1}X = A^k P_{A^k}$ and $P_{A^k}X = X$; (iv) $A^{k+1}X = A^k P_{A^k}$ and $A_1X^2 = X$; (v) $A^{k+1}X = A^k P_{A^k}$ and $AX^2 = X$.

ha

Proof. (i) \Rightarrow (ii)-(v) are obvious by Lemma 1.4 and Lemma 3.1.

$$(ii) \Rightarrow (i) \text{ Let } A = U \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} U^*. \text{ Then we have } A_1 = U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} U^* \text{ and } A^k = U \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix} U^*. \text{ We}$$

$$suppose \text{ that } X = U \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*. \text{ For } A^{k+1}X = A^k P_{A^k}, \text{ we have}$$

$$U \begin{bmatrix} T^{k+1} & T\widetilde{S} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^* = U \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} U^*,$$

$$\begin{bmatrix} T^{k+1}X_1 + T\widetilde{S}X_3 & T^{k+1}X_2 + T\widetilde{S}X_4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T^k & 0 \\ 0 & 0 \end{bmatrix}.$$

Therefore, we obtain the following equalities:

$$T^{k+1}X_1 + T\widetilde{S}X_3 = T^k,$$
(19)

$$T^{k+1}X_2 + T\widetilde{S}X_4 = 0.$$
(20)

Then from Lemma 2.6 and $\mathcal{R}(X) = \mathcal{R}(A^k)$, we have $X_3 = 0$ and $X_4 = 0$. By equalities (19) and (20), we have $T^{k+1}X_1 = T^k$ and $T^{k+1}X_2 = 0$. Since the matrix T is invertible, we can get $X_1 = T^{-1}$ and $X_2 = 0$. So we have $X = U \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^* = A^{\oplus}.$

(iii) \Rightarrow (i) By $A^{\vec{k}+1}X = A^k P_{A^k}$, we get equalities (19) and (20). Then, by $P_{A^k}X = X$, we have

$$U\begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix}\begin{bmatrix} X_1 & X_2\\ X_3 & X_4 \end{bmatrix}U^* = U\begin{bmatrix} X_1 & X_2\\ X_3 & X_4 \end{bmatrix}U^*$$
$$\begin{bmatrix} X_1 & X_2\\ X_3 & X_4 \end{bmatrix} = \begin{bmatrix} X_1 & X_2\\ 0 & 0 \end{bmatrix}.$$

Hence $X_3 = 0$ and $X_4 = 0$. Then we can obtain $X = A^{\oplus}$ by (ii) \Rightarrow (i).

л г

(iv)⇒(i) From (ii)⇒(i) we have equalities (19) and (20). According to $A_1X^2 = X$, we have

$$\begin{split} U \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^* = U \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} U^*, \\ \begin{bmatrix} TX_1^2 + SX_3X_1 + TX_2X_4 + SX_4X_3 & TX_1X_2 + SX_3X_2 + TX_2X_4 + SX_4^2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \end{split}$$

г

Hence we obtain $X_3 = 0$ and $X_4 = 0$. Then the following is same as (ii) \Rightarrow (i). (v) \Rightarrow (ii) By $AX^2 = X$, we conclude $X = AX^2 = A^2X^3 = \cdots = A^kX^{k+1}$. Thus, we have $\mathcal{R}(X) \subseteq \mathcal{R}(A^k)$, which implies $P_{A^k}X = X$. Hence (ii) holds. \Box

Then, in the following theorem, a simpler version of characterization about *core-EP inverse* by comparing with the matrix of Theorem 2.4 will be provided.

Theorem 4.3. Let $A \in \mathbb{C}^{n \times n}$ and Ind(A) = k. Then $A^{\oplus} = A_{\mathcal{R}(A^k), \mathcal{N}((A^k)^*)}^{[2]}$.

Proof. Let X satisfies $X = A_{\mathcal{R}(A^k), \mathcal{N}(A^k)}^{[2]}$, then the theorem will be proved by showing that $X = A^{\oplus}$. From $X = A_{\mathcal{R}(A^k), \mathcal{N}(A^k)}^{[2]}$, we obtain XAX = X, $\mathcal{R}(X) = \mathcal{R}(A^k)$ and $\mathcal{N}(X) = \mathcal{N}((A^k)^*)$. For any $A \in \mathbb{C}^{n \times n}$, we always have $\mathcal{N}(A) = \mathcal{R}(A^*)^{\perp}$. Therefore, we get $\mathcal{N}((A^k)^*) = \mathcal{R}(A^k)^{\perp}$ and $\mathcal{N}(X) = \mathcal{R}(X^*)^{\perp}$. Then, according to $\mathcal{N}(X) = \mathcal{N}((A^k)^*)$, we get $\mathcal{R}(A^k)^{\perp} = \mathcal{R}(X^*)^{\perp}$. Taking the complementary subspace of both sides, we have $\mathcal{R}(A^k) = \mathcal{R}(X^*)$. Therefore, we get $\mathcal{R}(A^k) = \mathcal{R}(X) = \mathcal{R}(X^*)$ and XAX = X. So $X = A^{\oplus}$.

According to the definition of (B, C)-inverse and core-EP inverse, we can show that core-EP inverse is a specific (*B*, *C*)-inverse of *A*.

Theorem 4.4. Let $A \in \mathbb{C}^{n \times n}$ and Ind(A) = k, then core-EP inverse of A is a specific (B, C)-inverse of A, where $B = A^k$ and $C = (A^*)^k$.

Proof. Suppose that the core-EP decomposition of *A* is $A = U \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} U^*$. Then A^k can be written as $A^k = U \begin{bmatrix} T^k & \widetilde{S} \\ 0 & 0 \end{bmatrix} U^*$. By applying Lemma 1.4, we get $A^{\oplus} = U \begin{bmatrix} T^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^*$. Thus it can be easily verified that $A^{\oplus}A^{k+1} = A^k$ and $(A^*)^k A A^{\oplus} = (A^*)^k$. By the definition of *core-EP inverse* we have $\mathcal{R}(A^{\oplus}) = \mathcal{R}(A^k)$ and $\mathcal{N}(A^{\oplus}) = \mathcal{N}((A^*)^k)$. Therefore, according to the uniqueness of (B, C)-inverse, we obtain that core-EP inverse of *A* is a specific (*B*, *C*)-inverse of *A*, where $B = A^k$ and $C = (A^*)^k$. \Box

Remark 4.5. Moreover, if the matrix $A \in \mathbb{C}^{n \times n}$ satisfies $Ind(A) \leq 1$, then $A^{\oplus} = A^{\oplus}$. All of the results obtained in this paper generalize the relevant ones in [16].

Acknowledgments. The authors would like to thank the referees and Professor Dragana Cvetković-Ilić for their helpful suggestions to the improvement of this paper.

References

- A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd Edition, Springer Verlag, New York, 2003.
- [2] J.K. Baksalary, O.M. Baksalary, X. Liu, G. Trenkler. Further results on generalized and hypergeneralized projectors. Linear Algebra and its Applications. 429 (2008): 1038-1050.
- [3] O.M. Bakasalary, G. Trenkler.On a generalized core inverse. Applied Mathematics and Computation. 236 (2014): 450-457.
- [4] O.M. Baksalary, G.P. Styan, G. Trenkler. On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra and its Applications. 430 (2009): 2798-2812.
- [5] O.M. Baksalary and G. Trenkler. Revisitation of the product of two orthogonal projectors. Linear Algebra and its Applications. 430 (2009): 2813C2833.
- [6] O.M. Baksalary, G. Trenkler. Core inverse of matrices. Linear and Multilinear Algebra. 58 (2010): 681C697.
- [7] J. Benitez, Enrico Boasso, H. Jin. On one-sided (B;C)-inverse of arbitrary matrices. Electronic Journal of Linear Algebra. 32 (2017): 391-422.
- [8] J. Benitez, X. Liu. A short proof of a matrix decomposition with applications. Linear Algebra and its Applications. 438 (2013): 1398-1414.
- [9] D. S. Cvetković Ilić, Y. Wei, Algebraic Properties of Generalized Inverses, Series: Developments in Mathematics, Vol. 52, Springer, 2017.
- [10] C. Deng, D.S. Cvetković Ilić, Y. Wei, Some results on the generalized Drazin inverse of operator matrices, Linear Multilinear Algebra, 58(4) (2010), 503-521.
- [11] D.E. Ferreyra, F.E. Levis, N. Thome. Maximal classes of matrices determining generalized inverse. Applied Mathematics and Computation. 333 (2018): 42-52.
- [12] D.E. Ferreyra, F.E. Levis, N. Thome. Revisiting the core EP inverse and its extension to rectangular matrices. Quaestiones Mathematicae. 41 (2018): 1-17.
- [13] M.I. Gareis, M. Lattanzi, N. Thome. Nilpotent matrices and the minus partial order. Quaestiones Mathematicae. 40 (2017): 1-7.
- [14] M.C. Gouveia, R. Puystjens. About the group inverse and Moore-Penrose inverse of a product. Linear Algebra and its Applications. 150 (1991): 361C369.
- [15] H. Kurata. Some theorems on the core inverse of matrices and the core partial ordering. 316 (2018): 43-51.
- [16] G. Luo, K. Zuo, L. Zhou. Revisitation of the core inverse. Wuhan University Journal of Natural Sciences. 20 (2015): 381-385.
- [17] J. Ljubisavljević, D.S. Cvetkovi-Ili, Additive results for the Drazin inverse of block matrices and applications, Journal of Computational and Applied Mathematics, 235(12)(2011), 3683-3690.
- [18] M. Mehdipour, A. Salemi. On a new generalized inverse of matrices. Linear and Multilinear Algebra. 66 (2018): 1-8.
- [19] S.B. Malik, N. Thome. On a new generalized inverse for matrices of an arbitrary index. Applied Mathematics and Computation. 226 (2014): 575-580.
- [20] S. Malik, L. Rueda and N. Thome. Further properties on the core partial order and other matrix partial orders. Linear and Multilinear Algebra. 62 (2014): 1629C1648.
- [21] V. Nikiforov. Beyond graph energy: Norms of graphs and matrices. Linear Algebra and its Applications. 506 (2016): 82-138.
- [22] K.M. Prasad, K.S. Mohana. Core-EP inverse. Linear and Multilinear Algebra. 62 (2014): 792-802.
- [23] G. Wang, X. Liu, S. Qiao. Generalized Inverses: Theory and Computations. Science Press, Beijing. 2006.
- [24] H. Wang. Core-EP decomposition and its applications. Linear Algebra and its Applications. 508 (2016): 289-300.
- [25] H. Wang, X. Liu. Partial orders based on core-nilpotent decomposition. Linear Algebra and its Applications. 488 (2016): 235-248.
- [26] Y. Yuan, K. Zuo. Compute $\lim_{\lambda\to 0} X(\lambda I_p + YAX)^{-1}Y$ by the product singular value decomposition. Linear and Multilinear Algebra. 64 (2016): 269-278.
- [27] G. Zhuang, J. Chen, D.S. Cvetković-Ilić, Y. Wei, Additive Property of Drazin Invertibility of Elements in a ring, Linear and Multilinear Algebra, 60(8) (2012), 903-910.