The New Revisitation of Core EP Inverse of Matrices

Ke Zheng Zuo ${ }^{\text {a }}$, Ying Jie Cheng ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Hubei Normal University, Huangshi 435000, China

Abstract

In this paper, we study some properties of core-EP inverse of square matrices. Firstly, we extend the obtained theorem proved by K.M. Prasad and K.S. Mohana. Then some properties of core-EP inverse have been given, through applying the conditions $(A X)^{*}=A X, X A^{k+1}=A^{k}$ and $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$. Secondly, we get some characterizations of core-EP inverse by employing the conditions $A X=P_{A^{k}}$ and $X A=$ $P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k+1}\right)^{*} A\right)}$. Finally, we get some properties of core-EP inverse by utilizing the condition $A^{k+1} X=A^{k} P_{A^{k}}$.

1. Introduction

Let $\mathbb{C}^{m \times n}$ be the set of $m \times n$ complex matrices. For $A \in \mathbb{C}^{m \times n}$, the symbols $\mathcal{R}(A), \mathcal{N}(A), A^{*}$ and $r(A)$ denote the range space, null space, conjugate transpose and rank of A, respectively. Moreover, the identity matrix of order n is denoted by I_{n}.

Let $A \in \mathbb{C}^{m \times n}$. The unique matrix $X \in \mathbb{C}^{n \times m}$, which satisfying the following conditions:

$$
\text { (i) } A X A=A, \quad \text { (ii) } X A X=X, \quad(i i i)(A X)^{*}=A X, \quad \text { (iv) }(X A)^{*}=X A,
$$

is called the Moore-Penrose inverse of A and written by A^{\dagger} [1]. If a matrix $X \in \mathbb{C}^{n \times m}$ only satisfies the equality $A X A=A$, then X is an inner inverse of A and we denote it by $A^{-}[1]$. Moreover, we denote the class of all inner inverse of A by $A^{(1)}$ [1]. A matrix $X \in \mathbb{C}^{n \times m}$ that satisfies $X A X=X$ is an outer inverse of A and we denote it by $A^{(2)}[1]$. Furthermore, let P and L be two complementary subspaces in \mathbb{C}^{n}. If the matrix X satisfies the following conditions:

$$
\text { (i) } X \in A^{(2)}, \quad \text { (ii) } \mathcal{R}(X)=\mathcal{R}(P), \quad \text { (iii) } \mathcal{N}(X)=\mathcal{N}(L)
$$

then X is denoted by $A_{P, L}^{(2)}$ [9].
Here, we mainly consider the square matrices. The smallest nonnegative integer k, which satisfies $r\left(A^{k}\right)=r\left(A^{k+1}\right)$, is called the index of A and we denote it as $\operatorname{Ind}(A)$. Furthermore, the set of all index 1 matrices also known as core matrices is denoted by $\mathbb{C}_{n}^{C M}$. The matrix A satisfying $\mathcal{R}\left(A^{*}\right)=\mathcal{R}(A)$, is called $E P$-matrix and set of $E P$-matrices in $\mathbb{C}^{n \times n}$ is $\mathbb{C}_{n}^{E P}$. The matrix A satisfying $A^{2}=A$, is called idempotent matrix and it is denoted by \mathbb{C}_{n}^{p}. For $A \in \mathbb{C}^{n \times n}$, if a matrix $X \in \mathbb{C}^{n \times n}$ satisfies the following three conditions:

$$
\text { (i) } X A X=X, \quad \text { (ii) } X A=A X, \quad \text { (iii) } X A^{k+1}=A^{k} \text {, for some positive integer } k \text {, }
$$

[^0]then X is called the Drazin inverse of A and written as $A^{D}[1]$. Moreover, when $\operatorname{Ind}(A) \leq 1$, the matrix X is known as the group inverse and noticed by $A^{\sharp}[1]$. More on Drazin inverses and generalized Drazin inverses see in [10, 17]. For two complementary subspaces $L, M \in \mathbb{C}^{n}$, that satisfy $L \bigoplus M=\mathbb{C}^{n} . P_{L, M}$ is said to be the oblique projector onto L along M. Additionally, if M is the subspace orthogonal to L, we denote the orthogonal projection onto L by $P_{L, M}$. For $A \in \mathbb{C}^{n \times n}, P_{A}$ is said to be the orthogonal projection onto $\mathcal{R}(A)$, i.e. $P_{A}=A A^{+}$.

Baksalary and Trenker [6] introduced the core inverse on the set $\mathbb{C}_{n}^{C M}$: For $A \in \mathbb{C}_{n}^{C M}$, the core inverse of A is defined to be the unique matrix X such that

$$
A X=P_{A} \text { and } \mathcal{R}(X) \subseteq \mathcal{R}(A),
$$

and written as A^{\oplus}. Moreover, three kinds of generalizations of the core inverses $[3,19,22]$ were given for $n \times n$ complex matrices, called core-EP inverse, BT-inverse, and DMP-inverse, respectively. In order to introduce these inverses, we assume that $A \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Firstly, the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$
X A X=X \text { and } \mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)
$$

is called the core-EP inverse of A and noticed by A^{\oplus} [22]. It is clear that $A^{\oplus} \in \mathbb{C}_{n}^{E P}$. Secondly, for $A \in \mathbb{C}^{n \times n}$, the $D M P$-inverse of A, written by $A^{D,+}$ [19], is defined as the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$
X A X=X, \quad X A=A^{D} A \text { and } A^{k} X=A^{k} A^{\dagger}
$$

Finally, the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$
X=\left(A P_{A}\right)^{\dagger}
$$

is called the BT-inverse of A and noticed by A^{\diamond} [3].
In 2017, Drazin introduced (B, C)-inverse on the ring. And then Benitez and Boasso et. al [7] researched (B, C)-inverse on the set $\mathbb{C}^{m \times n}$.

Definition 1.1. [7] Let $A \in \mathbb{C}^{m \times n}$ and $B, C \in \mathbb{C}^{n \times m}$. The matrix A is said to be (B, C)-invertible, if there exist a matrix $X \in \mathbb{C}^{n \times m}$, satisfying the following conditions:

$$
X A B=B, \quad C A X=C, \quad \mathcal{N}(X)=\mathcal{N}(C) \text { and } \quad \mathcal{R}(X)=\mathcal{R}(B) .
$$

Furthermore, the matrix X is called (B, C)-inverse of A. And the matrix X is unique.
In [24], Wang introduced core-EP decomposition of $A \in \mathbb{C}^{n \times n}$ as follows:
Lemma 1.2. [24] Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{Ind}(A)=k$. Then A can be written as the sum of matrices A_{1} and A_{2}, i.e. $A=A_{1}+A_{2}$, where
(i) $A_{1} \in \mathbb{C}_{n}^{C M}$;
(ii) $A_{2}^{k}=0$;
(iii) $A_{1}^{*} A_{2}=A_{2} A_{1}=0$.

Moreover, A_{1} is core partial and A_{2} is nilpotent partial. Then we notice k is nilpotent index, moreover the nilpotent index of A_{2} is equal to index of the matrix A.

Moreover, Wang [24] researched characterization of core-EP decomposition by using Schur lemma.
Lemma 1.3. [24] Let the core-EP decomposition of $A \in \mathbb{C}^{n \times n}$ be as in Lemma 1.2. Then there exists the unitary matrix U such that

$$
A=U\left[\begin{array}{cc}
T & S \tag{1}\\
0 & N
\end{array}\right] U^{*},
$$

where T is non-singular and N is nilpotent. Moreover, A_{1} and A_{2} can be represented by

$$
A_{1}=U\left[\begin{array}{ll}
T & S \tag{2}\\
0 & 0
\end{array}\right] U^{*} \text { and } A_{2}=U\left[\begin{array}{cc}
0 & 0 \\
0 & N
\end{array}\right] U^{*},
$$

and A^{k} can be given by

$$
A^{k}=U\left[\begin{array}{cc}
T^{k} & \widetilde{S} \tag{3}\\
0 & 0
\end{array}\right] U^{*}
$$

where $\widetilde{S}=\sum_{i=0}^{k-1} T^{i} S N^{k-i}$.
Furthermore, in [24] , some characterizations of core-EP inverse were introduced.
Lemma 1.4. [24] Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{Ind}(A)=k$, and let the core-EP decomposition of A be as in Lemma 1.3. Then

$$
A^{\oplus}=A_{1}^{\oplus}=U\left[\begin{array}{cc}
T^{-1} & 0 \\
0 & 0
\end{array}\right] U^{*} .
$$

In [24] , the author obtained the relationship between core-EP inverse and core inverse by using the core-EP decomposition. In [12], some representations for core-EP inverse have been given.

In this paper we are concerned with some properties of core-EP inverse of square matrices by using coreEP decomposition. In Section 2, some necessary and sufficient conditions for core-EP inverse will be given by using the conditions $(A X)^{*}=A X, X A^{k+1}=A^{k}$ and $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$. In Section 3, we derived necessary and sufficient condition for core-EP inverse by using the conditions $A X=P_{A^{k}}$ and $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k+1}\right)^{*} A\right)}$. In Section 4, we get some properties of core-EP inverse by utilizing the condition $A^{k+1} X=A^{k} P_{A^{k}}$. Also, we devoted a new representation of the core-EP inverse. Then by the definition of (B, C)-inverse, we get a result that the core-EP inverse is a specific (B, C)-inverse.

2. Some revisitations about core-EP inverse

In [22] , Prasad and Mohana defined core-EP inverse for square matrices and presented some properties. In the following lemma, we provide one of its properties:

Lemma 2.1. [22] Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Then X is core-EP inverse of A if and only if X satisfies the following four conditions:

$$
X A^{k+1}=A^{k}, \quad X A X=X, \quad(A X)^{*}=A X, \quad \text { and } \quad \mathcal{R}(X) \subseteq \mathcal{R}\left(A^{k}\right) .
$$

Whereas, we will see that the condition $X A X=X$ is superfluous for Lemma 2.1. Therefore, we have the following theorem.

Theorem 2.2. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Then X is core-EP inverse of A if and only if X satisfies the conditions:

$$
X A^{k+1}=A^{k} \quad(A X)^{*}=A X, \quad \text { and } \quad \mathcal{R}(X) \subseteq \mathcal{R}\left(A^{k}\right)
$$

Proof. Suppose that $\mathcal{R}(X) \subseteq \mathcal{R}\left(A^{k}\right)$ and $X A^{k+1}=A^{k}$. We have $X=A^{k} T$, for some $T \in \mathbb{C}^{n \times n}$. Hence,

$$
X A X=X A^{k+1} T=A^{k} T=X
$$

According to Theorem 2.2, we can find that X satisfies $X A^{k+1}=A^{k}$ and $(A X)^{*}=A X$, where X is core-EP inverse of A. Therefore, in the following theorem, we get some necessary and sufficient conditions about core-EP inverse by $(A X)^{*}=A X$ and $X A^{k+1}=A^{k}$. To prove the theorem, we need the following lemma.

Lemma 2.3. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Suppose that the core- $E P$ decomposition of A is given by $A=$ $U\left[\begin{array}{cc}T & S \\ 0 & N\end{array}\right] U^{*}$. If $X A^{k+1}=A^{k}$, then X can be written as $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$, where X_{2} and X_{4} are arbitrary. Proof. We assume that A can be written as (1). Then A^{k} can be written by (3). Assume that $X=$ $U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$. If X satisfies $X A^{k+1}=A^{k}$, we get

$$
\begin{gathered}
{\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{cc}
T^{k+1} & T \widetilde{S} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
T^{k} & \widetilde{S} \\
0 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
X_{1} T^{k+1} & X_{1} T \widetilde{S} \\
X_{3} T^{k+1} & X_{3} T \widetilde{S}
\end{array}\right]=\left[\begin{array}{cc}
T^{k} & \widetilde{S} \\
0 & 0
\end{array}\right]}
\end{gathered}
$$

Therefore, we can obtain the following equalities

$$
\begin{align*}
& X_{1} T^{k+1}=T^{k} \tag{4}\\
& X_{1} T \widetilde{S}=\widetilde{S} \tag{5}\\
& X_{3} T^{k+1}=0 \tag{6}\\
& X_{3} T \widetilde{S}=0 \tag{7}
\end{align*}
$$

It can be easily seen that $X_{1}=T^{-1}$ and $X_{3}=0$. Therefore, X can be written as $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$.
Theorem 2.4. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. If $A=A_{1}+A_{2}$ is the core-EP decomposition of $A(f r o m$ Lemma 1.2), where A_{1} is core partial of A and A_{2} is nilpotent partial of A. Then the following conditions are equivalent:
(i) $X=A^{\oplus}$;
(ii) $(A X)^{*}=A X, X A^{k+1}=A^{k}$ and $r\left(A^{k}\right)=r(X)$;
(iii) $(A X)^{*}=A X, X A^{k+1}=A^{k}$ and $A_{1} X^{2}=X$;
(iv) $(A X)^{*}=A X, X A^{k+1}=A^{k}$ and $A^{s} X^{s+1}=X$, for some positive integer s;
(v) $(A X)^{*}=A X, X A^{k+1}=A^{k}$ and $X A_{1} X=X$.

Proof. The proofs of $(\mathrm{i}) \Rightarrow(\mathrm{ii}),(\mathrm{i}) \Rightarrow($ (iii), $(\mathrm{i}) \Rightarrow(\mathrm{iv})$ and $(\mathrm{i}) \Rightarrow(\mathrm{v})$ are a direct consequences of Lemma 1.4.
(ii) \Rightarrow (i) If $X A^{k+1}=A^{k}$ then $\mathcal{R}\left(A^{k}\right) \subseteq \mathcal{R}(X)$. Since $r\left(A^{k}\right)=r(X)$, we get $\mathcal{R}\left(A^{k}\right)=\mathcal{R}(X)$. Hence due to Theorem 2.2, we have $X=A^{\oplus}$.
(iii) \Rightarrow (i) Suppose that $X=U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$. Let A be of the form (1). Moreover according to Lemma 1.3, it follows that $A_{1}=U\left[\begin{array}{cc}T & S \\ 0 & 0\end{array}\right] U^{*}$ and $A^{k}=U\left[\begin{array}{cc}T^{k} & \widetilde{S} \\ 0 & 0\end{array}\right] U^{*}$. From Lemma 2.3, we set that X can be given by $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$. By $A_{1} X^{2}=X$, we obtain

$$
\begin{align*}
& {\left[\begin{array}{ll}
T & S \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]=\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]} \tag{8}\\
& {\left[\begin{array}{cc}
T^{-1} & X_{2}+T X_{2} X_{4}+S X_{4}^{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]} \tag{9}
\end{align*}
$$

So we get $X_{4}=0$. From $(A X)^{*}=A X$ we get $X_{2}=0$. Hence $X=A^{\oplus}$.
(iv) \Rightarrow (i) By $X A^{k+1}=A^{k}$, we obtain $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$. Also, by $A^{s} X^{s+1}=X$, we have that

$$
\begin{align*}
& {\left[\begin{array}{cc}
T & S \\
0 & N
\end{array}\right]^{s}\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]^{s+1}=\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right],} \tag{10}\\
& {\left[\begin{array}{cc}
T^{s} & \widetilde{S} \\
0 & N^{s}
\end{array}\right]\left[\begin{array}{cc}
T^{-(s+1)} & \widetilde{M} \\
0 & X_{4}^{s+1}
\end{array}\right]=\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right],} \tag{11}
\end{align*}
$$

where $\widetilde{S}=\sum_{i=0}^{s-1} T^{i} S N^{s-i}$ and $\widetilde{M}=\sum_{i=0}^{s} T^{-i} X_{2} X_{4}^{s-i}$. So we get

$$
\left[\begin{array}{cc}
T^{-1} & T^{s} \widetilde{M}+\widetilde{S} X_{4}^{s+1} \\
0 & N^{s} X_{4}^{s+1}
\end{array}\right]=\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]
$$

Hence $N^{s} X_{4}^{s+1}=X_{4}$. If $s \geq k$, then it is easy to check that $X_{4}=0$. If $s<k$, then $X_{4}=N^{s} X_{4}^{s+1}=N^{2 s} X_{4}^{2 s+1}=\cdots=$ $N^{k s} X_{4}^{k s+1}$. Due to $N^{k}=0$, we obtain $X_{4}=0$. Thus, we have $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & 0\end{array}\right] U^{*}$. Then, from $(A X)^{*}=A X$ we get $X_{2}=0$. Therefore, $X=A^{\oplus}$.

The proof of $(v) \Rightarrow(i)$ is the same as $(i i i) \Rightarrow(i)$.
The following example shows that we can't lead to $X=A^{\oplus}$ by substituting $X A X=X$ for $X A_{1} X=X$ in Theorem 2.4(v).

Example 2.5. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and } X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

It is easy to see that $\operatorname{Ind}(A)=2$. Also, we can verify that X satisfies $(A X)^{*}=A X, X A^{3}=A^{2}$ and $X A X=X$. However, we can easily check that $\mathcal{R}(X) \neq \mathcal{R}\left(X^{*}\right) \neq \mathcal{R}\left(A^{k}\right)$. Therefore, $X \neq A^{\oplus}$.

In [22] , the author introduced the definition of core-EP inverse which satisfies $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$ and $X A X=X$. In the following theorem, we show the other properties of core-EP inverse by using the condition $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$. To prove the theorem, we need the following lemma.

Lemma 2.6. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Let the core-EP decomposition of A be given by $A=U\left[\begin{array}{cc}T & S \\ 0 & N\end{array}\right] U^{*}$. If $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$, then X can be expressed as $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$, where X_{1} is invertible.

Proof. By Lemma 1.3, we have that A^{k} can be written by (3). Let X be given by $X=U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$. Due to $\mathcal{R}\left(A^{k}\right)=\mathcal{R}(X)$, then there exists a matrix Y satisfying $X=A^{k} Y$. So we divide the matrix Y into four blocks as $Y=U\left[\begin{array}{ll}Y_{1} & Y_{2} \\ Y_{3} & Y_{4}\end{array}\right] U^{*}$. From $X=A^{k} Y$, we get

$$
\begin{gathered}
U\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] U^{*}=U\left[\begin{array}{cc}
T^{k} & \widetilde{S} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
Y_{1} & Y_{2} \\
Y_{3} & Y_{4}
\end{array}\right] U^{*}, \\
{\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]=\left[\begin{array}{cc}
T^{k} Y_{1}+\widetilde{S} Y_{3} & T^{k} Y_{2}+\widetilde{S} Y_{4} \\
0 & 0
\end{array}\right]}
\end{gathered}
$$

Thus, $X_{3}=0$ and $X_{4}=0$. Similarly, according to $\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$, it follows that $X_{2}=0$. Thus the matrix X can be written as $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$, where X_{1} is invertible.

Theorem 2.7. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Then the following are equivalent:
(i) $X=A^{\oplus}$;
(ii) $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$ and $X A^{k+1}=A^{k}$;
(iii) $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$ and $A^{s} X^{s+1}=X$, for some positive integer s;
(iv) $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$ and $X A \in \mathbb{C}_{n}^{P}$;
(v) $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$ and $A X \in \mathbb{C}_{n}^{P}$;
(vi) $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$ and $A X A^{k}=A^{k}$.

Proof. The proofs of $(\mathrm{i}) \Rightarrow(\mathrm{ii}),(\mathrm{i}) \Rightarrow(\mathrm{iii}),(\mathrm{i}) \Rightarrow(\mathrm{iv}),(\mathrm{i}) \Rightarrow(\mathrm{v})$ and $(\mathrm{i}) \Rightarrow(\mathrm{vi})$ are trivial by Lemma 1.4.
$(\mathrm{ii}) \Rightarrow(\mathrm{i}),(\mathrm{iii}) \Rightarrow(\mathrm{i})$, and $(\mathrm{vi}) \Rightarrow(\mathrm{i})$. We suppose that A is written as in (1). Then $A^{k}=U\left[\begin{array}{cc}T^{k} & \widetilde{S} \\ 0 & 0\end{array}\right] U^{*}$. Assume that $X=U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$. By Lemma 2.6, we have $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$, which yields $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$, where X_{1} is invertible. Then following the other conditions, we can obtain $X_{1}=T^{-1}$ by a direct calculation. Hence we have $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.
(iv) \Rightarrow (i) By Lemma 2.6, we have $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$, where X_{1} is invertible. Due to $X A \in \mathbb{C}_{n}^{P}$, we get

$$
\begin{gathered}
{\left[\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T & S \\
0 & N
\end{array}\right]\left[\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T & S \\
0 & N
\end{array}\right]=\left[\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T & S \\
0 & N
\end{array}\right]} \\
{\left[\begin{array}{cc}
X_{1} T X_{1} T & X_{1} T X_{1} S \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
X_{1} T & X_{1} S \\
0 & 0
\end{array}\right] .}
\end{gathered}
$$

Thus we have $X_{1} T X_{1} T=X_{1} T$. Since X_{1} and T are invertible, we conclude $X_{1} T=I$. Then we have $X_{1}=T^{-1}$. Hence we have $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.

The proof of $(\mathrm{v}) \Rightarrow(\mathrm{i})$ is similar to the proof of $(\mathrm{iv}) \Rightarrow(\mathrm{i})$.
Remark 2.8. We obtain $X=A^{\oplus}$ by substituting A_{1} for A in Theorem 2.7 (ii)-(vi).

3. Some properties of core-EP inverse under the condition $A X=P_{A^{k}}$

In this section, we mainly show several characterizations of core-EP inverse by applying some properties in [12]. Ferreyra, Levis, et. al [12] have presented some new characterizations about the core-EP inverse of a square matrix. In the following lemma, the important conclusion from [12] is given:

Lemma 3.1. [12] Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Then X is core-EP inverse of A if and only if $A X=P_{A^{k}}$ and $\mathcal{R}(X) \subseteq \mathcal{R}\left(A^{k}\right)$.

From this lemma we can obtain $A X=P_{A^{k}}$, if the matrix X is core-EP inverse of the square matrix A. Therefore, in the following theorem, we get some necessary and sufficient conditions about core-EP inverse by taking $A X=P_{A^{k}}$ into consideration.

Theorem 3.2. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. And $A=A_{1}+A_{2}$ is the core-EP decomposition of $A(f r o m$ Lemma 1.1), where A_{1} is core partial of A and A_{2} is nilpotent partial of A. Then the following conditions are equivalent:
(i) $X=A^{\oplus}$;
(ii) $A X=P_{A^{k}}$ and $A X^{2}=X$;
(iii) $A X=P_{A^{k}}$ and $A_{1} X^{2}=X$;
(iv) $A X=P_{A^{k}}, X \in \mathbb{C}_{n}^{E P}$ and $X A X=X$.

Proof. The proofs of $(\mathrm{i}) \Rightarrow$ (ii) and (i) \Rightarrow (iii) are trivial by applying Lemma 1.4.
(i) \Rightarrow (iv) By Lemma 3.1, we have $A X=P_{A^{k}}$. And due to the definition of core-EP inverse, we can conclude $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)$ and $X A X=X$. Also, since $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)$, we get $X \in \mathbb{C}_{n}^{E P}$.
(ii) \Rightarrow (i) If $A X=P_{A^{k}}$, then by $A X^{2}=X$ we conclude $P_{A^{k}} X=X$. Also, we have $\mathcal{R}(X) \subseteq \mathcal{R}\left(A^{k}\right)$. Hence from Lemma 3.1 we have $X=A^{\oplus}$.
(iii) \Rightarrow (i) Assume that $X=U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$. Let A be as in (1). Then A_{1} can be written as the equality (2) and write $A^{k}=U\left[\begin{array}{cc}T^{k} & \widetilde{S} \\ 0 & 0\end{array}\right] U^{*}$. Due to Lemma 3.1, we have

$$
P_{A^{k}}=A A^{\oplus}=U\left[\begin{array}{cc}
T & S \\
0 & N
\end{array}\right]\left[\begin{array}{cc}
T^{-1} & 0 \\
0 & 0
\end{array}\right] U^{*}=U\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Therefore, we have $P_{A^{k}}=U\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] U^{*}$. From $A_{1} X^{2}=X$, we obtain

$$
\left[\begin{array}{ll}
T & S \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]
$$

By a direct calculation, we get

$$
\left[\begin{array}{cc}
T X_{1}^{2}+S X_{3} X_{1}+T X_{2} X_{3}+S X_{4} X_{3} & T X_{1} X_{2}+S X_{3} X_{2}+T X_{2} X_{4}+S X_{4}^{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]
$$

which yield

$$
\begin{align*}
& T X_{1}^{2}+S X_{3} X_{1}+T X_{2} X_{3}+S X_{4} X_{3}=X_{1} \tag{12}\\
& T X_{1} X_{2}+S X_{3} X_{2}+T X_{2} X_{4}+S X_{4}^{2}=X_{2} \tag{13}\\
& X_{3}=0 \tag{14}\\
& X_{4}=0 \tag{15}
\end{align*}
$$

Therefore, $X_{3}=0$ and $X_{4}=0$. So the matrix X is of the form

$$
X=U\left[\begin{array}{cc}
X_{1} & X_{2} \\
0 & 0
\end{array}\right] U^{*}
$$

Since $A X=P_{A^{k}}$, we have

$$
\left[\begin{array}{cc}
T & S \\
0 & N
\end{array}\right]\left[\begin{array}{cc}
X_{1} & X_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]
$$

So we get $X_{1}=T^{-1}$ and $X_{2}=0$. Above all, we conclude $X=A^{\oplus}$.
(iv) \Rightarrow (i) According to $A X=P_{A^{k}}$, we get $X A X=X$, which yields $X P_{A^{k}}=X$. So we have $\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]=$ $\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right]$ and $\left[\begin{array}{ll}X_{1} & 0 \\ X_{3} & 0\end{array}\right]=\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right]$. Therefore, we obtain $X_{2}=0$ and $X_{4}=0$. According to $X \in \mathbb{C}_{n}^{E P}$, we have $X_{3}=0$. Then since $A X=P_{A^{k}}$, it follows that $X=A^{\oplus}$.

In Theorem 3.2 (iii), $X \in \mathbb{C}_{n}^{E P}$ is necessary to check $X=A^{\oplus}$. In the following example, we will demonstrate it.

Example 3.3. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and } X=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We can easily check that $\operatorname{Ind}(A)=2$. Also, X satisfies $A X=P_{A^{2}}$ and $X A X=X$. However, we have $\mathcal{R}(X) \neq \mathcal{R}\left(X^{*}\right)$ by a direct calculation. So $X \neq A^{\oplus}$.

Furthermore, in [12], the authors have provided other properties of core-EP inverse. In the following lemma, one of properties in [12] will be recalled.

Lemma 3.4. [12] Let $A \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Then,
(i) $A A^{\oplus}=P_{A^{k}}$;
(ii) $A^{\oplus} A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k+1}\right)^{*} A\right)}$.

Moreover, combining the equality (ii) in Lemma 3.3 with the condition $\mathcal{N}\left(\left(A^{k}\right)^{*} A\right)=\mathcal{N}\left(\left(A^{k+1}\right)^{*} A\right)$ lead to $A^{\oplus} A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$. It is clear that $A X=P_{A^{k}}$ and $X A=P_{\mathcal{R}\left(A^{k}\right), N\left(\left(A^{k}\right)^{*} A\right)}$ by $X=A^{\oplus}$. However, the conditions $A X=P_{A^{k}}$ and $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$ can't deduce that $X=A^{\oplus}$.

Example 3.5. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and } X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

We can easy to check that $\operatorname{Ind}(A)=2$. Also, X satisfies $A X=P_{A^{2}}$ and $X A=P_{\mathcal{R}\left(A^{2}\right), \mathcal{N}\left(\left(A^{2}\right)^{*} A\right)}$. However, we have $\mathcal{R}(X) \neq \mathcal{R}\left(X^{*}\right) \neq \mathcal{R}\left(A^{2}\right)$ by a direct calculation. So $X \neq A^{\oplus}$.

From Example 3.5, we see that the matrix X only satisfying $A X=P_{A^{k}}$ and $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$ can not be core-EP inverse of A. Consequently, from the following theorem, we obtain various representions of core- $E P$ inverse by $A X=P_{A^{k}}$ and $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$.

Theorem 3.6. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. If $A=A_{1}+A_{2}$ is the core-EP decomposition of $A(f r o m$ Lemma 1.2), where A_{1} is core partial of A and A_{2} is nilpotent partial of A. Then the following conditions are equivalent:
(i) $X=A^{\oplus}$;
(ii) $A X=P_{A^{k}}, X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$ and $X A X=X$;
(iii) $A X=P_{A^{k}}, X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$ and $r(X)=r\left(A^{k}\right)$;
(iv) $A X=P_{A^{k}}, X A=P_{\mathcal{R}\left(A^{k}\right), N\left(\left(A^{k}\right)^{*} A\right)}$ and $X A_{1} X=X$;
(v) $X A=P_{\mathcal{R}\left(A^{k}\right), N\left(\left(A^{k}\right)^{*} A\right)}, X \in \mathbb{C}_{n}^{E P}$ and $X A X=X$.

Proof. The proofs of $(\mathrm{i}) \Rightarrow(\mathrm{ii}),(\mathrm{i}) \Rightarrow$ (iii) and (i) \Rightarrow (iv) can be showed by using Lemma 3.3 and Lemma 2.1.
(i) \Rightarrow (v) If (i) holds, by Lemma 3.4 we have $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$. By the definition of core-EP inverse, we have $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)$ and $X A X=X$. Also, $X \in \mathbb{C}_{n}^{E P}$ by $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)$.
(ii) \Rightarrow (i) Write $X=U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$. Suppose that the core-EP decomposition of A be as in (1), then A_{1} and A^{k} can be written as equalities (2) and (3). From $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$, we can obtain $X A^{k+1}=A^{k}$. From the following Lemma 2.3, the matrix X can be written as $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$. Then due to $A X=P_{A^{k}}$ and $X A X=X$, we have $X P_{A^{k}}=X$. So it can be easily checked that $X_{2}=0$ and $X_{4}=0$. Therefore, $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.
 As $r(X)=r\left(A^{k}\right)$, we obtain $X_{4}=0$. For $A X=P_{A^{k}}$, we have the following equality

$$
\left[\begin{array}{cc}
T & S \tag{16}\\
0 & N
\end{array}\right]\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] .
$$

So $X_{2}=0$. Thus, $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.
(iv) \Rightarrow (i) From $($ ii $) \Rightarrow($ i $)$ and combining $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$, the matrix X can be written as $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$.

And thanks to $X A_{1} X=X$, we have

$$
\begin{gathered}
{\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]\left[\begin{array}{ll}
T & S \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]=\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]} \\
{\left[\begin{array}{cc}
T^{-1} & X_{2}+T^{-1} S X_{4} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
T^{-1} & X_{2} \\
0 & X_{4}
\end{array}\right]}
\end{gathered}
$$

So we have $X_{4}=0$. Then following $(\mathrm{i}) \Rightarrow($ iii $)$, we have $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.
(v) \Rightarrow (i) Due to $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$, we have $X A^{k+1}=A^{k}$. Then X can be written as $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$ by Lemma 2.2. And due to $X A X=X$, we have $\mathcal{R}(X) \subseteq \mathcal{R}(X A)$. According to $X A=P_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*} A\right)}$, we have $\mathcal{R}(X A)=\mathcal{R}\left(A^{k}\right)$. It follows that $\mathcal{R}(X) \subseteq \mathcal{R}\left(A^{k}\right)$. So we have $X_{4}=0$. By applying $X \in \mathbb{C}_{n}^{E P}$, we have $\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)$. So it is simple to show that $X_{2}=0$. And the matrix X can be written as $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}$. Then from Lemma 1.3, we can obtain $X=A^{\oplus}$.

4. The other characterizations for core-EP inverse

In this section, we provide other properties of core-EP inverse. In fact, the following theorem will be useful to obtain the other revisitations of core-EP inverse.

Theorem 4.1. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Then the following conditions are equivalent:
(i) $X=A^{\oplus}$;
(ii) $X A X=X, \mathcal{R}(X)=\mathcal{R}\left(A^{k}\right)$ and $X P_{A^{k}}=X$;
(iii) $X A^{k+1}=A^{k}, \mathcal{R}(X)=\mathcal{R}\left(A^{k}\right)$ and $X P_{A^{k}}=X$;
(iv) $X A^{k+1}=A^{k}$ and $\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$;
(v) $X=P_{A^{k}} X=X P_{A^{k}}$ and $P_{A^{k}}=X A P_{A^{k}}$;
(vi) $X=P_{A^{k}} X=X P_{A^{k}}$ and $P_{A^{k}}=P_{A^{k}} A X$.

Proof. The proof of $(\mathrm{i}) \Rightarrow$ (iv) is easy to check, by Lemma 1.4.
By Lemma 1.3, we have $P_{A^{k}}=U\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] U^{*}$, where $r(I)=r\left(A^{k}\right)$. Then we can check (i) $\Rightarrow(\mathrm{ii}),(\mathrm{i}) \Rightarrow(\mathrm{iii})$, $(\mathrm{i}) \Rightarrow(\mathrm{v})$ and $(\mathrm{i}) \Rightarrow(\mathrm{vi})$, by using the definition of core-EP inverse.
(ii) \Rightarrow (i) A can be written as the equality (1). Also, A^{k} can be written as the equality (2). Partitioning of X as $X=U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$ conformable for matrix with the partition of A. We know $P_{A^{k}}=U\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] U^{*}$. And since $X P_{A^{k}}=X$, we conclude the following equalities

$$
\begin{align*}
& U\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] U^{*}=U\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] U^{*}, \tag{17}\\
& {\left[\begin{array}{ll}
X_{1} & 0 \\
X_{3} & 0
\end{array}\right]=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] .} \tag{18}
\end{align*}
$$

Hence $X_{2}=0$ and $X_{4}=0$. Then from Theorem $2.7(\mathrm{ii}) \Rightarrow(\mathrm{i})$, we have $X_{3}=0$ by $\mathcal{R}(X)=\mathcal{R}\left(A^{k}\right)$. So the matrix X can be written as $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$, where the matrix X_{1} is invertible. Therefore, for $X A X=X$, we get $X_{1}=T^{-1}$ by a simple calculation. Therefore, $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.
(iii) \Rightarrow (i) The proof is similar to (ii) \Rightarrow (i).
(iv) \Rightarrow (i) Following Lemma 2.3, the matrix X can be written as $X=U\left[\begin{array}{cc}T^{-1} & X_{2} \\ 0 & X_{4}\end{array}\right] U^{*}$. Then we have $X_{2}=0$ and $X_{4}=0$ by using $\mathcal{R}\left(X^{*}\right)=\mathcal{R}\left(A^{k}\right)$. Above all, the matrix X can be written as $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}$. So $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$ As $P_{A^{k}}=U\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right] U^{*}$, then we get $X_{2}=0$ and $X_{4}=0$ by $X P_{A^{k}}=X$. So we obtain $X=$ $U\left[\begin{array}{ll}X_{1} & 0 \\ X_{3} & 0\end{array}\right] U^{*}$. Thus from $X=P_{A^{k}} X$, we have $X_{3}=0$. Hence $X=U\left[\begin{array}{cc}X_{1} & 0 \\ 0 & 0\end{array}\right] U^{*}$. From $P_{A^{k}}=X A P_{A^{k}}$, we have

$$
\begin{gathered}
U\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] U^{*}=U\left[\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T & S \\
0 & N
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right] U^{*} \\
{\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
X_{1} T & 0 \\
0 & 0
\end{array}\right]}
\end{gathered}
$$

Hence $X_{1} T=I$. Note that the matrix T is invertible, so we obtain $X_{1}=T^{-1}$. Thus we get the conclusion that $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}=A^{\oplus}$.
$(\mathrm{vi}) \Rightarrow(\mathrm{i})$ The proof is similar to $(\mathrm{v}) \Rightarrow(\mathrm{i})$.
In the previous arguments, we always concern on the condition $X A^{k+1}=A^{k}$. Now, we will take the condition $A^{k+1} X=A^{k} P_{A^{k}}$ into consideration. According to Lemma 3.1, we can obtain $A^{k+1} X=A^{k} P_{A^{k}}$ by $X=A^{\oplus}$. Therefore, in the following theorem, we will present some characterizations in reference to core-EP inverse by using the condition $A^{k+1} X=A^{k} P_{A^{k}}$.

Theorem 4.2. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. And $A=A_{1}+A_{2}$ is the core-EP decomposition of $A(f r o m$ Lemma 1.1), which A_{1} is core partial of A and A_{2} is nilpotent partial of A. Then the following conditions are equivalent:
(i) $X=A^{\oplus}$;
(ii) $A^{k+1} X=A^{k} P_{A^{k}}$ and $\mathcal{R}(X)=\mathcal{R}\left(A^{k}\right)$;
(iii) $A^{k+1} X=A^{k} P_{A^{k}}$ and $P_{A^{k}} X=X$;
(iv) $A^{k+1} X=A^{k} P_{A^{k}}$ and $A_{1} X^{2}=X$;
(v) $A^{k+1} X=A^{k} P_{A^{k}}$ and $A X^{2}=X$.

Proof. (i) \Rightarrow (ii)-(v) are obvious by Lemma 1.4 and Lemma 3.1.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$ Let $A=U\left[\begin{array}{cc}T & S \\ 0 & N\end{array}\right] U^{*}$. Then we have $A_{1}=U\left[\begin{array}{cc}T & S \\ 0 & 0\end{array}\right] U^{*}$ and $A^{k}=U\left[\begin{array}{cc}T^{k} & \widetilde{S} \\ 0 & 0\end{array}\right] U^{*}$. We suppose that $X=U\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] U^{*}$. For $A^{k+1} X=A^{k} P_{A^{k}}$, we have

$$
\begin{gathered}
U\left[\begin{array}{cc}
T^{k+1} & T \widetilde{S} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] U^{*}=U\left[\begin{array}{cc}
T^{k} & \widetilde{S} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] U^{*}, \\
{\left[\begin{array}{cc}
T^{k+1} X_{1}+T \widetilde{S} X_{3} & T^{k+1} X_{2}+T \widetilde{S} X_{4} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
T^{k} & 0 \\
0 & 0
\end{array}\right] .}
\end{gathered}
$$

Therefore, we obtain the following equalities:

$$
\begin{align*}
& T^{k+1} X_{1}+T \widetilde{S} X_{3}=T^{k} \tag{19}\\
& T^{k+1} X_{2}+T \widetilde{S} X_{4}=0 \tag{20}
\end{align*}
$$

Then from Lemma 2.6 and $\mathcal{R}(X)=\mathcal{R}\left(A^{k}\right)$, we have $X_{3}=0$ and $X_{4}=0$. By equalities (19) and (20), we have $T^{k+1} X_{1}=T^{k}$ and $T^{k+1} X_{2}=0$. Since the matrix T is invertible, we can get $X_{1}=T^{-1}$ and $X_{2}=0$. So we have $X=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right]^{*}=A^{\oplus}$.
(iii) \Rightarrow (i) By $A^{k+1} X=A^{k} P_{A^{k}}$, we get equalities (19) and (20). Then, by $P_{A^{k}} X=X$, we have

$$
\begin{gathered}
U\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] U^{*}=U\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] U^{*}, \\
{\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]=\left[\begin{array}{cc}
X_{1} & X_{2} \\
0 & 0
\end{array}\right]}
\end{gathered}
$$

Hence $X_{3}=0$ and $X_{4}=0$. Then we can obtain $X=A^{\oplus}$ by (ii) $\Rightarrow(\mathrm{i})$.
(iv) \Rightarrow (i) From (ii) \Rightarrow (i) we have equalities (19) and (20). According to $A_{1} X^{2}=X$, we have

$$
\begin{gathered}
U\left[\begin{array}{ll}
T & S \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] U^{*}=U\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] U^{*}, \\
{\left[\begin{array}{cc}
T X_{1}^{2}+S X_{3} X_{1}+T X_{2} X_{4}+S X_{4} X_{3} & T X_{1} X_{2}+S X_{3} X_{2}+T X_{2} X_{4}+S X_{4}^{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] .}
\end{gathered}
$$

Hence we obtain $X_{3}=0$ and $X_{4}=0$. Then the following is same as (ii) $\Rightarrow(\mathrm{i})$.
(v) \Rightarrow (ii) By $A X^{2}=X$, we conclude $X=A X^{2}=A^{2} X^{3}=\cdots=A^{k} X^{k+1}$. Thus, we have $\mathcal{R}(X) \subseteq \mathcal{R}\left(A^{k}\right)$, which implies $P_{A^{k}} X=X$. Hence (ii) holds.

Then, in the following theorem, a simpler version of characterization about core-EP inverse by comparing with the matrix of Theorem 2.4 will be provided.
Theorem 4.3. Let $A \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$. Then $A^{\oplus}=A_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(\left(A^{k}\right)^{*}\right)}^{\{2\}}$.
Proof. Let X satisfies $X=A_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(A^{k}\right)^{\prime}}^{\{2\}}$, then the theorem will be proved by showing that $X=A^{\oplus}$. From $X=A_{\mathcal{R}\left(A^{k}\right), \mathcal{N}\left(A^{k}\right)^{\prime}}^{\{2\}}$ we obtain $X A X=X, \mathcal{R}(X)=\mathcal{R}\left(A^{k}\right)$ and $\mathcal{N}(X)=\mathcal{N}\left(\left(A^{k}\right)^{*}\right)$. For any $A \in \mathbb{C}^{n \times n}$, we always have $\mathcal{N}(A)=\mathcal{R}\left(A^{*}\right)^{\perp}$. Therefore, we get $\mathcal{N}\left(\left(A^{k}\right)^{*}\right)=\mathcal{R}\left(A^{k}\right)^{\perp}$ and $\mathcal{N}(X)=\mathcal{R}\left(X^{*}\right)^{\perp}$. Then, according to $\mathcal{N}(X)=\mathcal{N}\left(\left(A^{k}\right)^{*}\right)$, we get $\mathcal{R}\left(A^{k}\right)^{\perp}=\mathcal{R}\left(X^{*}\right)^{\perp}$. Taking the complementary subspace of both sides, we have $\mathcal{R}\left(A^{k}\right)=\mathcal{R}\left(X^{*}\right)$. Therefore, we get $\mathcal{R}\left(A^{k}\right)=\mathcal{R}(X)=\mathcal{R}\left(X^{*}\right)$ and $X A X=X$. So $X=A^{\oplus}$.

According to the definition of (B, C)-inverse and core-EP inverse, we can show that core-EP inverse is a specific (B, C)-inverse of A.
Theorem 4.4. Let $A \in \mathbb{C}^{n \times n}$ and $\operatorname{Ind}(A)=k$, then core-EP inverse of A is a specific (B, C)-inverse of A, where $B=A^{k}$ and $C=\left(A^{*}\right)^{k}$.

Proof. Suppose that the core-EP decomposition of A is $A=U\left[\begin{array}{cc}T & S \\ 0 & N\end{array}\right] U^{*}$. Then A^{k} can be written as $A^{k}=U\left[\begin{array}{cc}T^{k} & \widetilde{S} \\ 0 & 0\end{array}\right] U^{*}$. By applying Lemma 1.4, we get $A^{\oplus}=U\left[\begin{array}{cc}T^{-1} & 0 \\ 0 & 0\end{array}\right] U^{*}$. Thus it can be easily verified that $A^{\oplus} A^{k+1}=A^{k}$ and $\left(A^{*}\right)^{k} A A^{\oplus}=\left(A^{*}\right)^{k}$. By the definition of core-EP inverse we have $\mathcal{R}\left(A^{\oplus}\right)=\mathcal{R}\left(A^{k}\right)$ and $\mathcal{N}\left(A^{\oplus}\right)=\mathcal{N}\left(\left(A^{*}\right)^{k}\right)$. Therefore, according to the uniqueness of (B, C)-inverse, we obtain that core-EP inverse of A is a specific (B, C)-inverse of A, where $B=A^{k}$ and $C=\left(A^{*}\right)^{k}$.

Remark 4.5. Moreover, if the matrix $A \in \mathbb{C}^{n \times n}$ satisfies $\operatorname{Ind}(A) \leq 1$, then $A^{\oplus}=A^{\oplus}$. All of the results obtained in this paper generalize the relevant ones in [16] .

Acknowledgments. The authors would like to thank the referees and Professor Dragana Cvetković-Ilić for their helpful suggestions to the improvement of this paper.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd Edition, Springer Verlag, New York, 2003.
[2] J.K. Baksalary, O.M. Baksalary, X. Liu, G. Trenkler. Further results on generalized and hypergeneralized projectors. Linear Algebra and its Applications. 429 (2008): 1038-1050.
[3] O.M. Bakasalary, G. Trenkler.On a generalized core inverse. Applied Mathematics and Computation. 236 (2014): 450-457.
[4] O.M. Baksalary, G.P. Styan, G. Trenkler. On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra and its Applications. 430 (2009): 2798-2812.
[5] O.M. Baksalary and G. Trenkler. Revisitation of the product of two orthogonal projectors. Linear Algebra and its Applications. 430 (2009): 2813C2833.
[6] O.M. Baksalary, G. Trenkler. Core inverse of matrices. Linear and Multilinear Algebra. 58 (2010): 681C697.
[7] J. Benitez, Enrico Boasso, H. Jin. On one-sided (B;C)-inverse of arbitrary matrices. Electronic Journal of Linear Algebra. 32 (2017): 391-422.
[8] J. Benitez, X. Liu. A short proof of a matrix decomposition with applications. Linear Algebra and its Applications. 438 (2013): 1398-1414.
[9] D. S. Cvetković Ilić, Y. Wei, Algebraic Properties of Generalized Inverses, Series: Developments in Mathematics, Vol. 52, Springer, 2017.
[10] C. Deng, D.S. Cvetković Ilić, Y. Wei, Some results on the generalized Drazin inverse of operator matrices, Linear Multilinear Algebra, 58(4) (2010), 503-521.
[11] D.E. Ferreyra, F.E. Levis, N. Thome. Maximal classes of matrices determining generalized inverse. Applied Mathematics and Computation. 333 (2018): 42-52.
[12] D.E. Ferreyra, F.E. Levis, N. Thome. Revisiting the core EP inverse and its extension to rectangular matrices. Quaestiones Mathematicae. 41 (2018): 1-17.
[13] M.I. Gareis, M. Lattanzi, N. Thome. Nilpotent matrices and the minus partial order. Quaestiones Mathematicae. 40 (2017): 1-7.
[14] M.C. Gouveia, R. Puystjens. About the group inverse and Moore-Penrose inverse of a product. Linear Algebra and its Applications. 150 (1991): 361C369.
[15] H. Kurata. Some theorems on the core inverse of matrices and the core partial ordering. 316 (2018): 43-51.
[16] G. Luo, K. Zuo, L. Zhou. Revisitation of the core inverse. Wuhan University Journal of Natural Sciences. 20 (2015): 381-385.
[17] J. Ljubisavljević, D.S. Cvetkovi-Ili; Additive results for the Drazin inverse of block matrices and applications, Journal of Computational and Applied Mathematics, 235(12)(2011), 3683-3690.
[18] M. Mehdipour, A. Salemi. On a new generalized inverse of matrices. Linear and Multilinear Algebra. 66 (2018): 1-8.
[19] S.B. Malik, N. Thome. On a new generalized inverse for matrices of an arbitrary index. Applied Mathematics and Computation. 226 (2014): 575-580.
[20] S. Malik, L. Rueda and N. Thome. Further properties on the core partial order and other matrix partial orders. Linear and Multilinear Algebra. 62 (2014): 1629C1648.
[21] V. Nikiforov. Beyond graph energy: Norms of graphs and matrices. Linear Algebra and its Applications. 506 (2016): 82-138.
[22] K.M. Prasad, K.S. Mohana. Core-EP inverse. Linear and Multilinear Algebra. 62 (2014): 792-802.
[23] G. Wang, X. Liu, S. Qiao. Generalized Inverses:Theory and Computations. Science Press, Beijing. 2006.
[24] H. Wang. Core-EP decomposition and its apllications. Linear Algebra and its Applications. 508 (2016): 289-300.
[25] H. Wang, X. Liu. Partial orders based on core-nilpotent decomposition. Linear Algebra and its Applications. 488 (2016): 235-248.
[26] Y. Yuan, K. Zuo. Compute $\lim _{\lambda \rightarrow 0} X\left(\lambda I_{p}+Y A X\right)^{-1} Y$ by the product singular value decomposition. Linear and Multilinear Algebra. 64 (2016): 269-278.
[27] G. Zhuang, J. Chen, D.S. Cvetković-Ilić, Y. Wei, Additive Property of Drazin Invertibility of Elements in a ring, Linear and Multilinear Algebra, 60(8) (2012), 903-910.

[^0]: 2010 Mathematics Subject Classification. 15A09
 Keywords. core-EP inverse, core-EP decomposition of matrices, core inverse, the orthogonal projection of matrices.
 Received: 29 October 2018; Accepted: 03 January 2019
 Communicated by Dragana Cvetković-Ilić
 Email addresses: xiangzuo28@163.com (Ke Zheng Zuo), 18972773039@163.com (Ying Jie Cheng)

