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Applications of Third Order Differential Subordination and
Superordination Involving Generalized Struve Function

Priyabrat Gochhayat?®, Anuja Prajapati?

*Department of Mathematics, Sambalpur University, Jyoti Vihar 768019, Burla, Sambalpur, Odisha, India

Abstract. In the present paper, by making use of the linear operator associated with generalized Struve
functions suitable classes of admissible functions are investigated and the dual properties of the third-order
differential subordinations are presented. As a consequence, various sandwich-type results are established
for a class of univalent analytic functions involving generalized Struve functions. Relevant connections of
the new results presented here with those that were considered in earlier works are pointed out.

1. Introduction and Preliminaries

The special functions have great importance in geometric function theory especially after the proof of
famous Bieberbach conjecture which is solved by de-Branges [12]. Since then, there are extensive literature
dealing with various geometric aspects of analytic univalent function involving special functions. In the
present paper, we are dealing with one of such function which is introduced and studied by Struve [39]
(also see [1], [44]), is the series solution of inhomogeneous second order Bessel differential equation. Struve
function and its generalizations are applied to various areas of applied mathematics and physics. For
example see the recent works [2, 7-11] and the references therein.

Let H be the class of functions analytic in D := {z : z € C and |z| < 1}. Denote H|[x,n] (n € N :=
{1,2,3,---}), the subclass of H consists of functions of the form f(z) = x +a,z" + A2 +---, (z€D)
and A(C H) be the class of functions analytic in ID and has the Taylor-Maclaurin series representation:

f(z) = z + apz® + a3z + --- . We consider a new linear operator S, : A — A, which is defined by the
Hadamard product or convolution as follows:
c/4)"

S0cf(2) = Upe@) * f2) = = + Z aamran™,  (@eD) O

where * denote the convolution or Hadamard product [32] and U, := zU, ;(2) is the normialized form of
generalized Struve function of order p (cf. [28], [34] and [46]) having following series representation:

o (Vz/2 o (c/4)y
T+ 3/2)r(p Tt (0+2)/2) LB/

)2n+p+1

Upp,e(z) = 2\/_1*(;7+—)z_pz1 Z', (zeQ), (2
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wherep,b,ceC,a=p+ ®+2)/2#0,-1,-2,---, and (A), is the Pochhammer symbol (or shifted factorial)
defined in terms of the gamma function, by

1, = fd+m )1 ; (n=0),
W =—Fm = AMA+DA+2)--A+n—-1) ; (meN:=1{1,2,---}).

In [20], Habibullah et al. derived the conditions on parameters p, b and c such that zU, ;(z) is univalent
in ID. We observed that, for suitable choices of the parameters b and c in (2) we obtain following new
operators:

(i) The operator & : A — A familiar with Struve function, defined by

S — IR B G Ve e
Sf(2) = 2Up11(2) * f2) =z + Z:; RN TEYE 3)
(ii) The operator J : A — A related with modified Struve function, defined by
3f(2) = 2Upa1(2) * flz) =2+ f’, bz (4)
B - (p+3/2)u@n+ 1)

n=1
It is easy to verify from (1) that

Z(Sa+1,cf(z))/ = asa,cf(z) - (ll - l)Su+1,cf(Z)/ (5)

wherea=p+(b+1)/2+0,-1,-2---.

The theory of first and second order differential subordination and superordination have been used
by numerous authors to solve various problems in geometric function theory. For detail treatment we
refer the monographs [13, 23, 35], also see [5, 6, 14-16, 18, 19, 24-26, 33, 37, 38, 45] and the references
therein. It is challenging to consider the dual problems for higher order cases. Though, the concept of
third order differential subordination have originally found in the work of Ponnusamy and Juneja [29], the
recent work due to Antonino and Miller [4] revive the attention among the researcher in this directions. In
2014, Tang et al. [43] introduced the concept of third order differential superordination, as a generalization
of the second order case. In the recent years, few works have been carried out on results related to
the third order differential subordination and superordination in the different context. For example see
[17, 21, 22, 27, 31, 36, 40—43]. In the present investigation our aim is to determine third order differential
subordination and superordination of generalized Struve function by using the technique developed in [4]
and [43]. Thus, to achieve our aim we recall some definitions and preliminary results from the theory of
differential subordination and superordination.

Suppose that f and g are in H. We say that f is subordinate to g, (or g is superordinate to f), write
as f < gin D or f(z) < g(z) (z € D), if there exists a function w € H, satisfying the conditions of
the Schwarz lemma ( i.e. w(0) = 0 and |w(z)] < 1) such that f(z) = g(w(z)) (z € D). It follows that
f(z) < g(z) (z € D) = f(0) = 9(0) and f(ID) c g(ID). In particular, if g is univalent in ID, then the reverse
implication also holds (cf.[23]).

Definition 1.1. [[4], Definition 1, p.440]. Let ¢ : C* X D — C and the function h(z) be univalent in D. If the
function p(z) is analytic in 1D and satisfies the following third-order differential subordination

V(p@), 2 (2), 20" (2), 2P (2);2) < h(z), (6)
then p(z) is called a solution of the differential subordination.

A univalent function g(z) is called a dominant of the solutions of the differential subordination,or, more
simply, a dominant if p(z) < q(z) for all p(z) satisfying (6). A dominant §(z) that satisfies §(z) < g(z) for all
dominants g(z) of (6) is said to be the best dominant.
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Definition 1.2. [43] Let ¢ : C* X D — C and the function h(z) be univalent in D. If the function p(z) and
V(p(2),zp'(2), 22p"" (2), 2°p"" (2); z) are univalent in 1D and satisfies the following third-order differential superordina-
tion

h(z) < Y(p(2),2p'(2), 2p" (2), 2°p"" (2); 2), (7)

then p(z) is called a solution of the differential superordination. An analytic function q(z) is called a subordinant of
the solutions of the differential superordination, or more simply a subordinant, if q(z) < p(z) for all p(z) satisfying (7).

A univalent subordinant §(z) that satisfies g(z) < §(z) for all subordinant g(z) of (7) is said to be the best
subordinant. We note that both the best dominant and best subordinant are unique up to rotation of ID.

Definition 1.3. [[4], Definition 2, p.441]. Let Q denote the set of functions q that are analytic and univalent on the
set D\ E(q), where E(q) = {& : £ € dD : lim,_,; q(z) = oo} and are such that min | g’ (&) |= p > 0 for £ € D\ E(g).
Further, let the subclass of Q for which q(0) = x be denoted by Q(x), Q(0) = Qy and Q(1) = Q.

The subordination methodology is applied to an appropriate class of admissible functions. The following
class of admissible functions was given by Antonino and Miller.

Definition 1.4. [[4], Definition 3, p.449]. Let Qbeasetin C,q € Q andn € IN\{1}. The class of admissible functions
W,[Q, q] consists of those functions i : C* x ID — C achieving the admissibility condition: (r,s,t,u;z) ¢ Q
whenever

_ L t 4@ ’ 2y
r=q©, s =k, %(;H)Zk%(q,@ +1), and ‘R(;)zkz‘R( e )

wherez € D, € D \ E(q) and k > n.

The next lemma is the foundation result in the theory of third-order differential subordination.

Lemma 1.5. [[4], Theorem1,p.449]. Let q € H[x, n]withn > 2, q € Q(k) achieving the following conditions: R (%) >

0, |Zp/(z)‘ < k,wherez € D, € ID\E(q)andk > n. If QisasetinC, ¢ € V,[Q, gl and i (p(z), zp’(2), zzp”(z),z3p”’(z);z) C

7@ | =
Q, then p(z) < q(z), (z € D).
Definition 1.6. [43] Let Q be a set in C,q € H[x,n] and q'(z) # 0. The class of admissible functions W},[€2, q]

consists of those functions 1 : C* x D —> C that satisfy the following admissibility condition: (r,s,t,u;z) € Q
whenever

@ gt Ly (2O w1 (20
r=q@, s==-=, ‘R(§+1)SE‘R(W(Z) +1), and %(g)gﬁ«x( e )

wherez e D, e dDandm >n > 2.

Lemma 1.7. [43] Let g € H[x, n] with € V,[Q,q]. If Y(p(z), zp’(z), 2°p" (z), 20" (2); z) is univalent in D and

p € Q(x) satisfying the following conditions: R (Zg(g)) >0, |qu(f))| <m,wherezeD, (edDandmz=n>2,

then Q c { (p(z), zp'(2), zzp”(z),z3p”’(z);z) : z € D} implies that q(z) < p(z), (z e D).

In this investigation, by considering suitable classes of admissible functions, we obtained some interest-
ing inclusion results on third order differential subordination and superordination involving S,.. More
precisely, we have shown that the sandwich-type relations of the form

(2 <E@) <q(2), (zeD),

holds, where g1, ¢ are univalent in ID with suitable normalization, and E(z) is one of the variant of 5, f(z).
The proof of the main results are much akin to that of results found in [36] and [43] and hence omitted.



P. Gochhayat, A. Prajapati / Filomat 33:10 (2019), 3047-3059 3050

2. Results based on differential subordination

In this section the following class of admissible functions is introduced which are required to prove the
main third-order differential subordination theorems involving the operator S, defined by (1).

Definition 2.1. Let Q be a set in C and q € Qy (\ Ho. The class of admissible functions ®g[C, q] consists of those
functions ¢ : C* x D —> C that satisfy the admissibility condition: ¢p(a, B,y,6;z) ¢ Q whenever
_ K ©+@=1)90) o (ﬂ(ﬂ —l)y-@-2)@a-1a ¢q"(©) )
= , +1],
a ap—(@a-1a 70

a=4q(C), p —(261—3))2k%(

and

R (a(a - -a)a+@Bap+(1-3a)y+@— 2)6)) S PR (Cqu(C)),
a+a(f-a) q'(C)

wherez € D, € JD \ E(q) and k > 2.
Theorem 2.2. Let ¢ € Dg[Q, q]. If the function f € A, q € Qy satisfy the following conditions:

Cq"(©) Sacf(2)

%(¢@>)20’ 70 |<° ©
and

{O(Sar1,0f(2), Sacf(2), Sat,cf(2), Saaef(2);2) 1z € Dy € Q, ©

then Spi1.f(2z) < q(z), (z€ D).
Proof. Define the analytic function p(z) in ID by

P(2) = Sav1,cf (2). (10)
From equation (10) and (5), we have S, .f(z) = w. Similar argument yields,

zzp”(z) +2z(a-1)p'(z) + (a — 2)(a — 1)p(z)

Sufl,cf(z) = 11({1 — 1)
and
_2p""(2) + 3(a = 1)2%p" (2) + 3(a — 1)(a = 2)zp/(z) + (a — 1)(a - 2)(a — 3)p(2)
Si-20f) = D) . a1
Define the transformation from C* to C by
B _s+@-1Dr _t+2a-1)s+(a-2)a-1)r
a(r,s, t,u) =, B(r,s,t,u) = — y(r,s,t,u) = a@=1)
and
_u+3@-Dt+3@-1)a-2)s+(a—1)(a—-2)a-3)r
o0 s bu) = ala-1)a-2) '
Let
-1y t+2@-1 -2)a-1
O, b 10) = (a7, 6;2) = ¢)(r, S+ (aa )r, + 2(a )as(:_(al) )a )r/
u+3@—-1t+3@-1)a-2)s+(@a—-1)@a-2)a-3)r
aa—-D@a=2) ’Z)‘ (12)
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The proof will make use of Lemma 1.5. Using equations (10) to (11), and from (12), we have
1!1 (p(Z), Zp/(Z), Zzp” (Z), ZSPN, (Z)} Z) = (P (Sa+1,cf(z)r Sa,cf(z)/ Su—l,cf(z)/ Su—2,cf(z)/' Z) . (13)
Hence, (9) becomes 1 (p(z),zp’(z), 22" (2), 2" (2); z) € Q. Note that

_a@-1)y—(@a-2)a-1)a B

u _ala—1)((1-ka+3ap+(1-3a)y + (a—2)0)
ap—(@a—1a B '

(2a—3)andg 2+ aB—a)

t
-+1
S

Thus, the admissibility condition for ¢ € ®s[€, q] in Definition 2.1 is equivalent to the admissibility condition
for Y € W,[Q,q] as given in Definition 1.4 with n = 2. Therefore, by using (8) and Lemma 1.5, we have
Sa+1,f(z) < q(z). This completes the proof. [J

The next result is an extension of theorem 2.2 to the case where the behavior of 4(z) on JID is not known.
Corollary 2.3. Let Q C C and the function q be univalent in ID with q(0) = 0. Let ¢ € Ds[€2, q,] for some p € (0, 1),
where q,(z) = q(pz). If the function f € A, q, satisfy the following conditions:
" (qup (C)) >0, Sﬂ’f f(2)
7,0 7©
and (P (Sa+1,cf(z)r Stl,cf(z)/ Su—l,cf(z)/ Sa—Z,cf(Z); Z) € Q, then Sa+1,cf(z) < ‘1(2)/ (Z € D)

Proof. From Theorem 2.2, then S,41.f(2) < g5(2). The result asserted by Corollary 2.3 is now deduced from
the following subordination property q,(z) < g(z), (z€D). O

<k (zeD,CedD\E@,), (14)

If Q # Cis a simply connected domain, then Q = h(ID) for some conformal mapping h(z) of ID onto Q. In this
case, the class ®s[h(ID), ] is written as Pg[h, q]. The following result follows immediately as a consequence
of Theorem 2.2.

Theorem 2.4. Let ¢ € Ds[h, q]. If the function f € A,q € Qy satisfy the conditions (8), and

¢(Su+1,cf(z)/ Su,cf(z)/ Sa—l,cf(z)/ Sa—Z,cf(Z); Z) < h(Z), (15)
then Sgi1cf(2z) < q(z), (z€ D).
The next result is an immediate consequence of Corollary 2.3.

Corollary 2.5. Let Q C C and the function q be univalent in ID with g(0) = 0. Let ¢ € Ds[h, q,] for some p € (0,1),
where q,(z) = q(pz). If the function f € A, q, satisfy the conditions (14), and

¢(Su+1,cf(z)/ Su,cf(z)/ Sa—l,Cf(Z)/ Sa—Z,cf(Z); Z) < h(Z), (Z € D)
then Sgi1cf(z) < q(z), (z€ D).
The following result yields the best dominant of the differential subordination (15).

Theorem 2.6. Let the function h be univalent in D. Also let ¢ : C* X D — C and ¢ be given by (12). Suppose
that the differential equation:

V(q(2),29'(2),2°0" (2), 29" (2); 2) = h(2), (16)

has a solution g(z) with q(0) = 0, which satisfies condition (8). If the function f € A satisfies condition (15) and if
O(Sar1,cf(2), Sacf(2), Sa-1,cf(2), Sa—2,c f(2); 2) is analytic in 1D, then Spy1,f(2) < q(z) and q(z) is the best dominant.

Proof. From Theorem 2.2, we have g is a dominant of (15). Since g satisfies (16), it is also a solution of (15)
and therefore g will be dominated by all dominants. Hence g is the best dominant. This completes the
proof. O
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In view of Definition 2.1, and in the special case q(z) = Mz, M > 0, the class of admissible functions ®g[(), q],
denoted by @[, M], is expressed as follows.

Definition 2.7. Let Q beaset in Cand M > 0. The class of admissible functions ®s[€}, M] consists of those functions
¢ : C* x D —> C such that

o (k+a—1Me L+[Q2k+a-2)a-1)]Me"?
¢(Me ! a ! a(a—1) !

N +3(a— 1)L + [(a — 1)(a — 2)(3k + a — 3)]Me"®
a@a—-1)@a-2) ’Z) £Q 17

where z € D, R(Le ) > (k — 1)kM, R(Ne=) > 0 for all 0 € Rand k > 2.
Corollary 2.8. Let ¢ € Dg[QQ, M]. If the function f € A satisfies

|Secf@| < kM, (k> 2; M > 0) and ¢(Sar1,f(2), Sacf(2), Sacr,e f(2), Sa2cf(2);2) € Q,
then |Ses1cf(2)| <M, (z e D).

In this special case Q = g(ID) = {w : [w| < M}, the class ®s[€2, M] is simply denoted by ®s[M]. Corollary 2.8
can now be written in the following form:

Corollary 2.9. Let ¢ € Dg[M]. If the function f € A satisfies

|Sa,Cf(Z)| < kM/ (k = 2; M > 0)/ and |¢(Sa+1,cf(z)/ Sa,cf(z)/ Sa—l,cf(z)/ Sa—Z,cf(Z);Z < M/

then [Sucf(z)| <M, (z€D).
Corollary 2.10. Let R(a) > 12;", k>2and M > 0.1If f € Asatisfies|S, f(z)| < M, then|Sei1,cf(2)l <M, (z € D).
Proof. This follows from Corollary 2.9 by taking ¢(a, ,7,6;z) = p = B=LMe®. [

Remark 2.11. For f(z) = 1% in Corollary 2.10, we have |U,(z)] < M = |Uy11,(2)| <M, (z € D), which is a
generalization of result given by Prajapat [30].

Corollary 2.12. Let 0 #a € C,k > 2and M > 0. If f € A satisfies |S,.f(z)] < kM and |S,f(2) — Sps1,cf(2)] < %,
then |Sgrcf(2)l <M, (z € D).

Proof. Let (v, B,7,0;z) = p— a and Q = h(D), where h(z) = 22, M > 0. In order to use Corollary 2.8, we
need to show that ¢ € Os[Q), M], that is, the admissibility condition (17) is satisfied. This follows since

M
>
la

(e, B,y,6;2)| =

4

(k — 1)Me'®
a

whenever z € D, 0 € R and k > 2. The required result now follows from Corollary 2.8.
Theorem 2.6 shows that the result is sharp. The differential equation zq’(z) = Mz has a univalent solution
q(z) = Mz. It follows from Theorem 2.6 that q(z) = Mz is the best dominant. [

Example 2.13. For p = +1/2, b = 1 and ¢ = -1, we have Uy _1(z) = zUy21,-1(z) = 2(cosh Vz—-1) and

Uy,-1(2) = zU_12,1,-1(2) = Vzsinh vz, where Uy, is given by (2). Furthermore, taking f(z) = 1= in Corollary
2.12, we have

Vzsinh vz — 2(cosh Vz — 1)| < M implies that |cosh vz - 1| < A—/I, (z e D).
P 2
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Definition 2.14. Let Q be a set in C and q € Q; N H,. The class of admissible functions ®s.[C2, q] consists of those
functions ¢ : C* x ID —> C that satisfy the admissibility condition: ¢(a, B,y,5;z) ¢ Q whenever

_ kg ©+aq(©) o ((ﬂ Do - (- 2a)) S kR (CLI"(C) 1)
a 7 —_— 7

@=q(0), p i o

and

% ((a ~D@-2)(0-a)-3a@-1y-2a+p) 6a2) S 2R (Czq”’(C)),

B-a q'(C)
wherez € D, € dD \ E(g) and k > 2.
The proof the following theorem run parallel to that of Theorem 2.2 and we choose to omit the details.

Theorem 2.15. Let ¢ € Og1[Q, q]. If the function f € Aand q € @, satisfy the following conditions:

Cq” (C) Sa,cf(z)
%( 70 ) sl P

and { & <sa+1;f(z>, Suc é’(z), Su1cf@) Swacf@ . Z) e D} C Q, then 220 < o) (z e D).

z z z

<k, (18)

If Q # Cis a simply connected domain, then Q = h(ID) for some conformal mapping h(z) of ID onto Q. In
this case, the class @g1[h(ID), ] is written as @g1[l, q]. Proceeding similarly as in the previous theorem, the
following result is an immediate consequence of Theorem 2.15.

Theorem 2.16. Let ¢ € Pg1[h,q]. If the function f € Aand q € Q satisfy the conditions (18) and

gb (Sa+l,ch(z)/ SHIC;Zf(Z), Sa—l,;f(z), Sa—Z;f(Z);Z < ]’l(Z), then Sa+1;f(z)

<q(z), (zeD).
In the particular case q(z) = 1 + Mz, M > 0, and in view of Definition 2.14 the class of admissible functions
Dg1[Q, q], denoted by Dg1[€2, M], is expressed as follows.

Definition 2.17. Let Q) be a set in C,a € C\ {0,1,2} and M > 0. The class of admissible functions ®g1[CQ, M]
consists of those functions ¢ : C* x D — C such that

o a+[k+alMe® L+a(@—1)+[aQk+a—1)]Me"
qb(l + MY, a ’ a(a—1) ’
N +3aL +a(a — 1)(a — 2) + [(a — 1)aBk + a — 2)]Me"?
a(a—1)(a—-2) 'Z) %9,

whenever z € D, R(Le™) > (k — 1)kM, R(Ne~) > 0 for all 0 € Rand k > 2.
Corollary 2.18. Let ¢ € Og[Q, M]. If the function f € A satisfies

Sa,Cf(Z) Sa+1,cf(z) Sa,cf(z) Su—l,cf(z) Su—Z,cf(Z) 'Z) cQ
Z 7 7 7 a 7

<kM, (k=22;,M>0) and ¢ - - - -

then

Sat /cf(z)
17—1' <M, (zeD).

In this special case Q = g(ID) = {w : [w—1| < M}, the class ®g1[CQ, M] is simply denoted by ®g1[M]. Corollary
2.18 can now be written in the following form:
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Corollary 2.19. Let ¢ € Og1[M]. If the function f € A satisfies

Sacf(2) a+1,cf (@) Sacf(2) Sa-1,cf(2) Sa2cf(2) ‘Z) _1

<M,
zZ Z Z zZ zZ

S
<kM, (k=2;M>0) and ‘(p(

then

Sunsf @ _ 1' <M, (zeD).

Corollary 2.20. Let R(a) > 2,0 #a € C k>2and M > 0. If f € A satisfies

Sa,cf(z) Sa,cf(z) _ Su+1,cf(z) _
z z z

< kM and 1

<M, (zeD).

1' <M, then

Proof. This follows from Corollary 2.18 by taking ¢(a, B,y,0;z) = —-1. O
Remark 2.21. For f(z) = 1% in Corollary 2.20, we have

Us,c(2)
z

ua+1,c(z) _

-1 1

<M, (zeD),

<M implies that

which is given by Andras and Baricz [3].

Example 2.22. For p = +1/2, b = 1 and ¢ = 1, we have Uy1(z) = zUy21,1(z) = 2(1 — cos Vz) and Uy1(z) =
zU_1/21,1(z) = Vzsin Vz, where Uy, is given by (2). Therefore, from Remark 2.21, we get

‘M —1| < M implies that

> <—, (zeD).

2 7

1—cos vz l' M

Corollary 2.23. Leta € C\ {0,1,-2},k > 2 and M > 0. If f € A satisfies

Sa,cf(z) Su—l,cf(z) _ Sa,cf(z)
z z z

2(a +2)M

< kM and da=1)

then

Sﬂ C
H’Tf(z)—l <M, (zeD).

Proof. This follows from Corollary 2.18 by taking ¢(«, ,7,0;,z) =y —p. O

Definition 2.24. Let Q) be a set in C and q € Q; N H,. The class of admissible functions ®s[C2, q] consists of those
functions ¢ : C* x ID — C that satisfy the admissibility condition: ¢(a, B,y,0;z) ¢ Q whenever

1 (qu’(C) [@=2)y —(a-1)B+1]@a—-1)pa
(@-1\ q(Q) (a—1DBa—aa*+a

Cq”(©) +1)/

+(a—1)[3+1) > k?R( S

a=q(), p= +ag(0) - 1), R(

and

R|(676aa - 1@ - 2)a - 3) - (@ - 2@ - Dya - pyate - Da-2)-
yﬁza(a 1) a-2)+ ﬁ3a(a -1)° - 2Ba(a—1) + ﬁza(a ~-1)* - afya(a—1)(a - 2)+

1
ﬁzaa(a - 12 —a(a - 1)[3(1) X ((u -1)pa - ao® + oz) +3ypla—1)(a - 2) - 4p(a — 1)(aa — 1)—

CZq///(C) )
7@ /

28%(a — 1)* - a(a — 1) - 3aaf(a — 1) + 2a°a — a + 4a*a” + aoc] > kZ%(

wherez € D, € JD \ E(q) and k > 2.

Following the same method as in the proof of Theorem 2.2, (also see [27, 36]) we arrive the following results:
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Theorem 2.25. Let ¢ € Pg,[Q, q]. If the function f € Aand q € @, satisfy the following conditions:

CW@U Su1.f(2)
%(¢@> 2015, Forol =~ 19)

S0cf@)  Se1cf@ Siacf@ Sacf@ ) . Sucf(2)
and {¢ (sm,ff(zv 5@ ST safz,cf(zvz) z¢€ ]D} C Q, then g5 < 4(2), (z€D).

If Q # Cis a simply connected domain, then Q = h(ID) for some conformal mapping k(z) of ID onto Q. In
this case, the class @g1[h(ID), 4] is written as Pg5[h, q]. The following result is an immediate consequence of
Theorem 2.25 and hence we omit the proof.

Theorem 2.26. Let ¢ € Dgy[h, q]. If the function f € Aand q € @ satisfy the conditions (19) and

( Sa,cf(z) Sa—l,cf(z) Sa—Z,cf(Z) Sa—3,cf(z) . Sa,cf(z)
Su+1,cf(z)/ Sn,cf(z) ’ Safl,cf(z), Safz,cf(z), Sa+1,cf(z)

z) < h(z), then <4q(z), (zeD).

3. Results based on differential superordination

In this section, the third-order differential superordination theorems for the operator S, defined in (1)
is investigated. For the purpose, we considered the following class of admissible functions.

Definition 3.1. Let Q be a set in C and q € Hy with q'(z) # 0. The class of admissible functions ®¢[Q, q] consists
of those functions ¢ : C* x D — C that satisfy the admissibility condition: (e, B, ,0;C) € Q whenever

zq'(z) + m(a — 1)q(z) R ala - 1)y —(a—-2)a—-1a zq" (z) 41
ma ! ap—(a—-1)a 7 (2) !

a=qz),p= —(2a—3))$%‘R(

and

% (a(a -1)((1-a)a+ @ap+(1-3a)y +(@a- 2)6)) < LGR (zzq”’(z))’
a+alf-a) m? q'(z)

wherez € D, € D and m > 2.

Theorem 3.2. Let ¢ € DL[Q, q. If the function f € A, Spi1,.f(2) € Qo and if g € Hy with q'(z) # 0 satisfying the
following conditions:
Sacf(2)

Zq/l (Z) )
%(W® SR TE)
and (Sav1,cf(2), Suc f(2), Sa1,cf(2), Sa-2,c f(2); 2) is univalent in 1D, then

Qc {¢(Sa+1,cf(z)/ Sa,cf(z)/ Sa—l,cf(z)/ Sa—Z,cf(Z); Z)}/ (21)
implies that q(z) < Sp41,cf(2) (z € D).

<m, (20)

If Q # Cis a simply connected domain, then Q = h(ID) for some conformal mapping k(z) of ID onto Q. In
this case, the class ®¢[i(ID), q] is written as @[k, g]. The following result is an immediate consequence of
Theorem 3.2.

Theorem 3.3. Let ¢ € D[h,q] and h be analytic in D. If the function f € A, Sps1,.f(2) € Qo and if q € Ho with
q'(2) # 0, satisfying the conditions (20) and ¢(Sai1,c f(2), Sacf(2), Sa-1,cf(2), Sa=2,c f(2); 2) is univalent in 1D, then

h(z) < ¢(Sar1,f(2), Sacf(2), Sa-1,f(2), Sa-2,f(2); 2) (22)
implies that q(z) < Sg41,.f(z), (z € D).
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Theorem 3.2 and 3.3 can only be used to obtain subordinants of the third-order differential superordination
of the forms (21) or (22). The next result shows the existence of the best subordinant of (22) for a suitable ¢.

Theorem 3.4. Let the function h be univalent in D and let ¢ : C* x D —> C and  be given by (12). Suppose that
the differential equation

V(@) 29 (2), 220" (2), 2" (2); 2) = h(z), (23)

has a solution q(z) € Q. If the function f € A, Spcf(z) € Qo and if q € Hy with q'(z) # 0, which
satisfying the conditions (20) and @(Sa+1,cf(2), Sacf(2), Su-1,cf(2), Sa—2cf(2));2) is analytic in D, then h(z) <

O(Sar1,cf(2), Sacf(2), Su-1,cf(2), Sac f(2); 2) implies that q(z) < Sgr1f(z), (z € D) and q(z) is the best domi-
nant.

Definition 3.5. Let Q) be a set in C,q € Hy with q'(z) # 0. The class of admissible functions @ | [Q, q] consists of
those functions ¢ : C* x ID — C that satisfy the admissibility condition: ¢(a, B, 7, 6;z) € Q, whenever

a=q@p= TEID g (L0 L - 2))<— ( (S)+1) and

" ((a ~D@-2)0-a)-3a@-1)(y ~2a+p) 6a2) la (zzq”’(z))
p-a m? o\ q'(2)
wherez € D, € D and m > 2.

Theorem 3.6. Let ¢ € O, [Q, q]. If the function f € A, S““Tf(z) € @ and if g € H,y with q'(z) # 0 satisfying the
conditions:

Zq”(z) a cf(z)
Q%( q'(z) ) 20 zq'(z) (24)
and ﬁb( e S”f(z), S 1sz ) Secze f @, ) is univalent in 1D, then
Sﬂ C, Sa C, Sa— C Stl— c
Qc {<¢>( ”:Zf @, 5 € 1:Zf © 2’Zf (Z);z) ze ]D}, (25)

implies that (z) < 22</@  (; e D).

If Q # Cis a simply connected domain, then Q = h(ID) for some conformal mapping k(z) of ID onto Q. In
this case, the class @, [1(ID), q] is written as @, [, q]. The following result is an immediate consequence of
Theorem 3.6. ' '

Theorem 3.7. Let ¢ € @ [h,ql. If the function f € A, Sl f ® ¢ @ and if g € H, with q'(z) # 0 satisfy the
conditions (24) and (1)( il ff 2 Su ; @) Si1cf@  So- zzf @, ) is unwalent in D, then

z

Sﬂ+ C,
implies that  q(z) < %, (z e D).

Sa+1,cf(z) Sa,cf(z) Sa—l,cf(z) Su—Z,cf(Z) ) Z)
z ’ z

’
z 4

<o

Definition 3.8. Let Q be a set in C and q € Hy with q'(z) # 0. The class of admissible functions @ ,[Q, q] consists
of those functions ¢ : C* x D — C that satisfy the admissibility conditions: ¢(a, B, 0;z) € Q, whenever

e L (@) (la-2y-@-Dp+la-Dpa 1y (2@
a—q(z)'ﬁ_a—l(mq(Z)Jraq(Z) 1)’ 9%( (a—1Ba—aa%+a v 1)ﬁ+1)Sm%(q,(Z) +1)’
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and
®|(¢vpate - D@~ 2)a - 3) - (1~ 2% - Dpy*a ~ fyate ~ Da—2) - yfa(a— 1a -2+
Bra(a— 1) — 2a(a — 1) + faa — 1 — apya(a — 1)(a — 2) + fPaa(a — 1 — a(a - 1)ﬁa)><

-1
((a “1)a—ad® + a) £ 3yB(a - 1)(a—2) - 48(a — 1)(ac — 1) — 26%(@ — 1) — paa — 1)—

1 %(ZZQ"'(Z) )

3aaB(a -1 +2a2a—a+4a2a2+aa] < —
pe=b q'(2)

m2

wherez € D, € D and m > 2.

Theorem 3.9. Let ¢ € O, [Q, q]. If the function f € A, Sfif{ﬁ;) € Qq, and if g € Hy with q'(z) # 0 satisfying the
following conditions:

24"(2)) Sa-1,cf(2)
9{( q'(2) =0 Sac’(2)

Sn,cf(z) Sa—l,cf(z) Su—Z,cf(Z) Sa—B,Cf(Z) .
and ¢ (sm,f F@ Sacf@ ! 51 f @) Sencf@)

<m, (26)

z) is univalent in D, then

Sa,cf(z) Sa—l,cf(z) Sa—Z,cf(Z) Sa—3,cf(z) . 3
Qe {(P (Sﬂ+1,6f(z), Sacf(2) " Sa-1,ef(2)’ Su—Z,Cf(Z),Z) 2€ ]D} ' @7

implies that q(z) < Ssﬂfj(,z), (z e D).

If O # Cis a simply connected domain, then Q) = i(ID), for some conformal mapping h(z) of ID on to Q. In
this case the class @ ,[h(ID), q] is written as ®;[h, q]. The following result is a consequence of Theorem 3.9.

Theorem 3.10. Let ¢ € D, [Q, q]. If the function f € A, Sfj]‘cf}z) € Qq, and if q € Hy with q'(z) # 0 satisfying the

conditions (26), and ¢ ( Ssﬂfﬁi), Ssilf{g)r zjﬁg, 2:2;8 ; z) is univalent in D, then

Sa,cf(Z) Sa—l,cf(z) Su—Z,Cf(Z) S“_3'Cf(z) .
h(Z) A (P (Sa+1,cf(z)’ Sa,cf(z) ’ Sa—l,cf(z)l Sa—Z,Cf(Z)/

Sacf(2)
Sar1cf(2)’

z) implies that  q(z) < (z e D).
4. Sandwich type results
Combining Theorem 2.4 and 3.3, we obtain the following sandwich-type result.

Corollary 4.1. Let hy and g, be analytic functions in 1D, hy be univalent function inID, q, € Qp with g1(0) = g2(0) = 0
and ¢ € Ps[hy, q2]NDL[h1, q1]. Ifthe function f € A, Sas1,c € QoNHy, and ¢(Sav1,cf(2), Sacf(2), Sa-1,f(2), Sa—2,cf(2); 2)
is univalent in D, and if the conditions (8) and (20) are satisfied, then

1(2) < §(Sas1,f(2), Sacf(2)s Sa-1,cf(2), Sa-2f(2);2) < ho(2)  implies that  41(2) < Sps1,ef(2) < q1(2), (z € D).
Combining Theorems 2.16 and 3.7, we obtain the following sandwich-type result.

Corollary 4.2. Let hy and g1 be analytic functions in 1D, hy be univalent function inID, g2 € Qq with q1(0) = g2(0) = 1

and ¢ € Pgq[hy, qz]ﬂCD’S,l [, g1]. If the function f € A, —S””;f(z) € QiNHy,and ¢ (S"“;f(z), S”"f(z), S”’lgf(z), S”’Z'Zcf(z);z)

is univalent in ID, and if the conditions (18) and (24) are satisfied, then
Su+1,cf(z) Su,cf(z) Su—l,cf(z) Sa—Z,Cf(Z)

hi(z) < ¢ T, T, T, ;z)<hz(2) implies that ~ q1(z) <

S“Tf(z) <q1(2), (z € D).
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Combining Theorem 2.26 and 3.10, we obtain the following sandwich-type result.

Corollary 4.3. Let hy and g1 be analytic functions in 1D, hy be univalent function inID, g, € @ withq1(0) = g2(0) = 1
and p € @ lla, qINDS [, ). fthe function f € A, L2y € Quthy, and (£, 08, 524, 3245 2)
is univalent in ID, and if the conditions (19) and (26) are satisfied, then

Sacf(2)  Sa-1,f(2) Sa-2cf(2) Sa-scf(2) . Sacf(2)
Sa+1,cf(z), Su,cf(z) ’ Su—l,cf(z)l Sa—Z,Cf(Z)I Su+1,cf(z)

Remark 4.4. For special cases all of above results, we can obtain the corresponding results for family associated with
the operators S, 3, which are defined by (3), and (4), respectively.

hi(z) < ¢ z) < hy(z) implies that q1(z) < < q1(2), (z€ D).
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