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Abstract. In this paper we will characterize the completeness and barrelledness of a normed space through
the strong p-Cesáro summability of series. A new characterization of weakly unconditionally Cauchy series
and unconditionally convergent series through the strong p-Cesàro summability is obtained.

1. Introduction

Let X be a normed space and 0 < p < ∞, a sequence (xk) is said to be strongly p-Cesàro summable to L ∈ X
if

lim
n→∞

1
n

n∑
k=1

‖xk − L‖p = 0.

The strong 1-Cesàro summability for real numbers was introduced by Hardy-Littlewood [9] and Fekete
[6] in connection with the convergence of Fourier series (see [17], for historical notes, and the most recent
monograph [2]).
Some years later, in 1935, Professor A. Zygmund (see [18] for one of the reprints) introduced the idea of
statistical convergence in a independently way. A sequence (xn) is statistically convergent to L if for any
ε > 0 the subset {k : ‖xk − L‖ < ε} has density 1 on the natural numbers.
Both concepts were developed independently and surprisingly enough, both are related thanks to a result
by J. Connor ([5]). Since then, in this circle of ideas, a significant number of deep and beautiful results have
been obtained by Connor, Fridy, Mursaleen...and many others (see [1, 4, 8, 11, 12, 14–16])
There are also results that obtain characterizations of properties of Banach spaces through convergence
types. For instance, Kolk [10] was one of the pionnering contributors. Connor, Ganichev and Kadets [3]
obtained important results that relate the statistical convergence to classical properties of Banach spaces.
The aim of this paper is to obtain properties of a Banach space studying properties of strong p-Cesàro
summability of a series. Let X be a normed space, and set

∑
xi a series in X. In [13] the spaces of

convergence S(
∑

xi) associated to the series
∑

xi are introduced. S(
∑

xi) is defined as the sequences (a j) ∈ `∞
such that

∑
aixi converges. The space X is complete if and only if for every weakly unconditionally Cauchy
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F. León-Saavedra et al. / Filomat 33:10 (2019), 3013–3022 3014

series
∑

xi, the space S(
∑

xi) is complete. Moreover, the space X is barrelled if and only if each series
∑

i x∗i
in X∗ if the corresponding space of weak-∗ convergence associated to

∑
x∗i is the entire space `∞, that is,

Sw∗ (
∑

x∗i ) = `∞.
In this paper we explore this structure for the strong-p Cesàro summability. At first glance, it seems that in
order to show that a sequence is strongly p−Cesàro summable it is necessary to know the value of its limit
previously. However, thanks to the results by Connor [5] and Fridy [7], we can avoid this difficulty. Section
2 is an expository section where we will show examples and preliminary aspects related to the strong
p-Cesàro summability. Section 3 deals with space of strong p-Cesàro summability. It is shown that a series
in a Banach space is weakly unconditionally Cauchy if and only if its space of strong p-Cesàro summability
is complete. Moreover, if p ≥ 1 and this equivalence is true for each series in a normed space X, then the
space X must be complete. In Section 4 and 5 we will begin by defining reasonably, the strong p-Cesàro
summability for the weak and the weak-∗ topology in a Banach space X and its dual X∗ respectively. After
this, we will show analogous results for the strong p-Cesàro summability in these topologies. We also
prove a characterization of barrelledness which is similar to the aforementioned one, but replacing weak-∗
convergence by our concept of strong p-Cesàro summability for the weak-∗ topology.

2. Some preliminary results

We begin this section by recalling some preliminaries we will need throughout this work. If A ⊂ N, the
density of A is denoted by d(A) = limn

1
n card({k ≤ n : k ∈ A}), whenever this limit exists.

Let X be a normed space and x = (xk)k a sequence in X. The sequence x is said to be statistically convergent if
there is L ∈ X such that for every ε > 0, d

(
{k : ‖xk − L‖ ≥ ε}

)
= 0 or equivalently d

(
{k : ‖xk − L‖ < ε}

)
= 1 and

we will write (xk) st
→ L and L = st − limn xn. The sequence x is said to be statistically Cauchy if for each ε > 0

and n ∈N, there exists p ≥ n such that d
(
{k : ‖xk − xp‖ ≥ ε}

)
= 0 or equivalently d

(
{k : ‖xk − xp‖ < ε}

)
= 1.

Fridy [7, Theorem 1] proved that in a Banach space, a sequence is statistically convergent if and only if it is
statistically Cauchy.
Let us consider now 0 < p < +∞. The sequence x is said to be strongly p−Cesàro or wp summable if there is

L ∈ X such that lim
n

1
n

n∑
k=1

‖xk −L‖p = 0, in which case we say that x is strongly p−Cesàro summable to L, and

we will write (xk)
wp
→ L and L = wp − limn xn.

Although the convergent sequences are wp summable, it is easy to see that this kind of convergence is
weaker than the usual, as we will show in the next example:

Example 2.1. There exist unbounded sequences that are strong p−Cesàro summable.
Define the real-valued sequence (xk) by

xk =

{
0, k , j3 for all j ∈N.
j, k = j3 for some j ∈N.

Observe that the sequence (xk) is unbounded. Let n ∈N be given and suppose that r3
≤ n < (r + 1)3 for some r ∈N.

Now note that

1
n

n∑
k=1

|xk| =
1
n

n∑
k=1

xk ≤
1
r3

r3∑
k=1

xk =
1 + · · · + r

r3

tends to 0 as n tends to infinity.

However, a wp summable X−valued sequence (xk) necessarily satisfies that ( 1
n
∑n

k=1 ‖xk‖
p) is a bounded

sequence, as the following proposition shows:
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Proposition 2.2. Let 0 < p < ∞ and (xk)k be a wp summable sequence to L in a normed space X. Then, ( 1
n
∑n

k=1 ‖xk‖
p)n

is a bounded sequence.

Proof. Since (xk) is wp summable sequence to L ∈ X,

lim
n

1
n

n∑
k=1

‖xk − L‖p = 0.

Then, for all n ∈N:

1
n

n∑
k=1

‖xk‖
p
≤

1
n

n∑
k=1

(‖xk − L‖ + ‖L‖)p
≤

1
n

n∑
k=1

‖xk − L‖p + ‖L‖p,

which implies that ( 1
n
∑n

k=1 ‖xk‖
p)n is a bounded sequence. �

Connor [5, Theorem 2.1] discovered that the real bounded sequences wp convergent are exactly the statis-
tically convergent sequences. This fact also holds for normed spaces and we include the proof for the sake
of completeness.

Proposition 2.3 (Connor [5]). Set 0 < p < ∞ and let X be a normed space. If a sequence is strongly p−Cesàro
summable to L, then it is statistically convergent to L. Additionally, if the sequence is bounded, the converse is also
true.

Proof. Let us consider (xk)k a sequence which is strongly p−Cesàro summable to L ∈ X and ε > 0. For any
n ∈N,

n∑
k=1

‖xk − L‖p ≥
n∑

k=1
‖xk−L‖≥ε

‖xk − L‖p ≥
n∑

k=1
‖xk−L‖≥ε

εp = card
(
{k ≤ n : ‖xk − L‖p ≥ ε}

)
εp.

Since (xk)k is strongly p−Cesàro summable to L, we have that lim
n

1
n

n∑
k=1

||xk − L||p = 0, so for every ε > 0,

lim
n

1
n

card{k ≤ n : ||xk − L|| ≥ ε} = 0 which shows that (xk)k is statistically convergent to L.
Suppose now that x = (xk)k is a bounded sequence which is statistically convergent to L ∈ X and set
K = ‖x‖∞ + ‖L‖, where ‖x‖∞ = sup

k
‖xk‖. Given ε > 0, there exists Nε ∈N such that

1
n

card
({

k ≤ n : ‖xk − L‖ ≥
(
ε
2

)1/p})
<

ε
2Kp ,

for every n ≥ Nε. Set Ln = {k ≤ n : ‖xk − L‖ ≥
(
ε
2

)1/p
}. For every n ≥ Nε, we have:

1
n

n∑
k=1

‖xk − L‖p =
1
n


∑
k∈Ln

‖xk − L‖p +
∑
k≤n
k<Ln

‖xk − L‖p


<

1
n

(
Kpcard(Ln) +

nε
2

)
<

1
n

(
(Kp)

( nε
2Kp

)
+

nε
2

)
= ε.

Thus, (xk)k is strongly p−Cesàro summable to L. �
Next, we show that for the converse, boundedness is necessary.
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Example 2.4. There exist unbounded statistically convergent sequences which are not strongly p−Cesàro summable.
Indeed, set n j = j2 and let us define

xk =

{
0, k , j2 for all j.
j2/p, k = j2 for some j.

The sequence (xk)k is unbounded. Take ε > 0, it is easy to see that d({k ≤ n : |xk| ≥ ε}) = 0, so (xk)k is statistically
convergent to zero. Let us Observe that:

1
n j

n j∑
k=1

|xk|
p =

1
n j

n j∑
k=1

xp
k =

1 + 22 + 32 + · · · + j2

j2
,

which diverges as j → ∞. Hence, by applying Proposition 2.2, we deduce that (xk)k is not strongly p−Cesàro
summable.

Let us recall that a sequence x = (xk)k in a normed space X is said to be Cesàro convergent if there is L ∈ X

such that lim
n

∥∥∥∥∥∥∥1
n

n∑
k=1

xk − L

∥∥∥∥∥∥∥ = 0. The wp summability is related to the Cesàro convergence in a natural way:

Proposition 2.5. Let X be a normed space and (xk)k a sequence in X. If p ≥ 1 and (xk)k is strongly p−summable to
L, then (xk)k is Cesàro convergent to L.

Proof. Let us observe that

0 ≤

∥∥∥∥∥∥∥1
n

n∑
k=1

xk − L

∥∥∥∥∥∥∥ =
1
n

∥∥∥∥∥∥∥
n∑

k=1

xk − nL

∥∥∥∥∥∥∥ =
1
n

∥∥∥∥∥∥∥
n∑

k=1

(xk − L)

∥∥∥∥∥∥∥
≤

1
n

n∑
k=1

‖xk − L‖ ≤
1
n

n∑
k=1

‖xk − L‖p →
n→∞

0

�

Remark 2.6. Let us observe that the condition p ≥ 1 is sharp. Indeed, the sequence

xk =

{
0, k , r3 for all r.
r2, k = r3 for some r.

is 1
2− Cesàro summable to zero, and the Cesàro means do not converge to zero.

The converse of Proposition 2.5 is clearly not true, as we show in the next example.

Example 2.7. There exist Cesàro convergent sequences which are not p−Cesàro summable. Let us define

xk =

{
1 if k is odd,
0 if k is even.

(xk)k is not strong p−Cesàro summable to any L ∈ R because it is not statistically convergent to any L. However,
observe that: ∣∣∣∣∣∣∣1n

n∑
k=1

xk

∣∣∣∣∣∣∣ =
n/2
n
→

1
2
,

so (xk)k is Cesàro convergent to 1
2 .

Finally, for future references, we have:
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Proposition 2.8. Let (xk)k be a sequence inR such that
∞∑

k=1

xk = L ∈ R∪{±∞}. If Sk =

k∑
j=1

x j, then lim
n

1
n

n∑
k=1

Sk = L.

3. The strong p−Cesàro summability space

Let
∑

i xi be a series in a real Banach space X, set 0 < p < +∞ and let us define

Swp

∑
i

xi

 =

(ai)i ∈ `∞ :
∑

i

aixi is wp summable


endowed with the supremum norm. This space will be called the space of wp summability associated to
the series

∑
i xi. The following theorem characterizes the completeness of the space Swp

(∑
i xi

)
.

Theorem 3.1. Let X be a real Banach space and 0 < p < +∞. The following conditions are equivalent:

(1)
∑

i xi is a weakly unconditionally Cauchy series (wuc).

(2) Swp (
∑

i xi) is a complete space.

(3) c0 ⊂ Swp (
∑

i xi).

Proof. Let us show that (1)⇒(2). Since
∑

xi is wuc, the following supremum is finite:

H = sup


∥∥∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥∥∥ : |ai| ≤ 1, 1 ≤ i ≤ n,n ∈N

 < +∞.

Let (am)m ⊂ Swp (
∑

i xi) such that lim
m
‖am
− a0
‖∞ = 0, with a0

∈ `∞. We will prove that a0
∈ Swp (

∑
i xi). Let us

suppose without any loss of generality that ‖a0
‖∞ ≤ 1. Then, the partial sums S0

k =
∑k

i=1 a0
i xi satisfy ‖S0

k‖ ≤ H
for every k ∈N, that is, the sequence (S0

k) is bounded. Then, a0
∈ Swp (

∑
i xi) if and only if (S0

k) is wp summable
to some L ∈ X. Since (S0

k) is bounded, according to Connor’s Theorem [5, Theorem 2.1] (Proposition 2.3),
(S0

k) is wp summable if and only if (S0
k) is statistically convergent to some L ∈ X. According to [7, Theorem

1], (S0
k) is statistically convergent to L ∈ X if and only if (S0

k) is a statistically Cauchy sequence.
Set ε > 0 and n ∈N. Then, we obtain statement (2) if we show that there exists p0 ≥ n such that

d
(
{k : ||S0

k − S0
p0
|| < ε}

)
= 1.

Given ε > 0, since am
→ a0 in `∞, there exists m0 > n such that ‖am

− a0
‖∞ <

ε
4H

for all m > m0, and since Sm0
k

is statistically Cauchy, there exists p0 ≥ n such that the density d
({

k : ||Sm0
k − Sm0

p0
|| <

ε
2

})
= 1. Fix k such that

‖Sm0
k − Sm0

p0
‖ <

ε
2
. (3.1)

We will show that ‖S0
k − S0

p0
‖ < ε, and this will prove that{

k : ‖Sm0
k − Sm0

p0
‖ <

ε
2

}
⊂ {k : ‖S0

k − S0
p0
‖ < ε}.

Since the first set has density 1, the second will also have density 1 and we will be done.
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Let us observe first that for every j ∈N, ∥∥∥∥∥∥∥
j∑

i=1

4H
ε

(ap
i − am0

i )xi

∥∥∥∥∥∥∥ ≤ H,

therefore

∥∥∥S0
j − Sm0

j

∥∥∥ =

∥∥∥∥∥∥∥
j∑

i=1

(a0
i − am0

i )xi

∥∥∥∥∥∥∥ ≤ ε4 . (3.2)

Then, by applying the triangular inequality,∥∥∥S0
k − S0

p0

∥∥∥ ≤ ∥∥∥S0
k − Sm0

k

∥∥∥ +
∥∥∥Sm0

k − Sm0
p0

∥∥∥ +
∥∥∥S0

p0
− Sm0

p0

∥∥∥
<
ε
4

+
ε
2

+
ε
4

= ε.

where the last inequality follows by applying (3.1) and (3.2), which yields to the desired result.
Now, let us observe that if Swp (

∑
i xi) is a complete space, it contains the space of eventually zero sequences

c00 and therefore we get (2)⇒ (3).

Finally, let us show (3) ⇒ (1). If the series
∑

xi is not wuc, there exists f ∈ X∗ such that
∞∑

i=1

| f (xi)| = +∞.

Inductively, we will construct a sequence (ai)i ∈ c0 such that
∑

i ai f (xi) = +∞ and ai f (xi) ≥ 0. If we denote

by Sk =

k∑
i=1

ai f (xi), then by applying Proposition 2.8, lim
n

1
n

∑
Sk = +∞. This implies that, by applying

Proposition 2.2, (Sk)k is not wp summable to any L ∈ R, which is a contradiction with statement (3).
Since

∑
∞

i=1 | f (xi)| = +∞, there exists m1 such that
∑m1

i=1 | f (xi)| > 2 · 2. We define ai = 1
2 if f (xi) ≥ 0 and ai = − 1

2
if f (xi) < 0 for i ∈ {1, 2, . . . ,m1}. This implies that

∑m1
i=1 ai f (xi) > 2 and ai f (xi) ≥ 0 if i ∈ {1, 2, . . . ,m1}.

Let m2 > m1 be such that
∑m2

i=m1+1 | f (xi)| > 22
· 22. We define ai = 1

22 if f (xi) ≥ 0 and ai = − 1
22 if f (xi) < 0 for

i ∈ {m1 + 1, . . . ,m2}. Then,
∑m2

i=m1+1 ai f (xi) > 22 and ai f (xi) ≥ 0 if i ∈ {m1 + 1, . . . ,m2}.
Inductively we obtain a sequence (ai)i ∈ c0 with the above properties which lead us to a contradiction. �

Remark 3.2. Let us observe that in the above proof, the completeness hypothesis is used in the implication (1)⇒ (2).
Specifically, when we use Fridy’s result ([7, Theorem 1]). On the other hand, the implication (2) ⇒ (3) that we will
use in Theorem 3.5 does not use the completeness of the space X.

Remark 3.3. Let
∑

i xi be a series in a normed space X and let

S

∑
i

xi

 =

(ai)i ∈ `∞ :
∑

i

aixi converges

 ,
endowed with the supremum norm. Clearly, S (

∑
i xi) is a subspace of `∞ and S (

∑
i xi) ⊆ Swp (

∑
i xi). If X is a Banach

space, then
∑

i xi is wuc if and only if S(
∑

i xi) is complete [13]. Theorem 3.1 gives us a similar characterization by
considering wp summability.

Corollary 3.4. Let X be a Banach space,
∑

i xi a series in X and p ≥ 1. The following properties are equivalent:

(1)
∑

i xi is wuc.

(2) S(
∑

i xi) is a complete space.

(3) c0 ⊆ S(
∑

i xi).
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(4) Swp (
∑

i xi) is a complete space.

(5) c0 ⊆ Swp (
∑

i xi).

(6)
∑
| f (xi)| is wp summable for every f ∈ X∗.

Proof. The first three equivalence properties (1), (2) and (3) can be found in [13] and the rest of equivalences
are consequences of Theorem 3.1. �
Now let us show another main theorem.

Theorem 3.5. Let X be a normed space and p ≥ 1. Then X is complete if and only if Swp (
∑

i xi) is a complete space
for every

∑
i xi.

Proof. By Theorem 3.1, the condition is necessary. Now if X is not complete, there exists
∑

xi a series in X
such that ‖xi‖ ≤

1
i2i and

∑
xi = x∗∗ ∈ X∗∗ \ X. We will construct a wuc series

∑
n yn such that Swp (

∑
n yn) is not

complete, a contradiction.
Indeed, since X∗∗ is a Banach space with the dual topology, if Sk =

∑k
j=1 x j, sup

‖y∗‖≤1
|y∗(Sn) − x∗∗(y∗)| → 0, that is,

∞∑
i=1

y∗(xi) = x∗∗(y∗), for all ‖y∗‖ ≤ 1. By applying Proposition 2.8, we have:

lim
N→∞

1
N

N∑
k=1

y∗(Sk) = x∗∗(y∗) (3.3)

Set yn = nxn and let us observe that since ‖yn‖ < 1
2n ,

∑
yn is absolutely convergent, and hence weakly

unconditionally Cauchy. We claim that the series
∑

n
1
n yn is not wp summable in X.

On the contrary, let us suppose that SN =
∑N

n=1
1
n yn is wp summable in X. That is, there exists L ∈ X such that

lim
N→∞

1
N

N∑
n=1

‖Sn−L‖p = 0. In particular, for every y∗ ∈ X∗with ‖y∗‖ ≤ 1 we have that sup
‖y∗‖≤1

1
N

N∑
k=1

|y∗(Sk−L)|p → 0.

By applying Proposition 2.5, since p ≥ 1, we have that

1
N

N∑
k=1

y∗(Sk) = y∗(L), for every ‖y∗‖ ≤ 1. (3.4)

From equations 3.3 and 3.4 and the uniqueness of the limit, we have that x∗∗(y∗) = y∗(L) for every ‖y∗‖ ≤ 1,
so we obtain x∗∗ = L ∈ X, which is a contradiction. This means that SN =

∑N
n=1

1
n yn is not wp summable to

any L ∈ X.
Finally, let us observe that since

∑
n yn is a weakly unconditionally Cauchy series and SN =

∑N
n=1

1
n yn is not

wp summable, we have that ( 1
n ) < Swp (

∑
n yn) and this means that c0 * Swp (

∑
n yn) which is a contradiction

according to (3) in Theorem 3.1 (see Remark 3.2) and the proof is completed. �

Theorem 3.6. Let
∑

i xi be a series in a Banach space. The series
∑

i xi is wuc if and only if the operator T :
Swp (

∑
i xi)→ X defined by T((ai)i) = wp − limn Sn is continuous (where Sn =

∑n
i=1 aixi).

Proof. Suppose that T is continuous and let us show that
∑

i xi is wuc. Since c00 ⊂ Swp (
∑

i xi), for every
(ai)i ∈ c00, ‖T

(
(ai)i

)
‖ ≤ ‖T‖‖(ai)i‖∞. Hence,

sup
n∈N


∥∥∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥∥∥ : |ai| ≤ 1

 ≤ ‖T‖,
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and this implies that the series
∑

xi is wuc.
Let us suppose that

∑
i xi is wuc. Then,

H = sup
n∈N


∥∥∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥∥∥ : |ai| ≤ 1

 < +∞.

Set a = (ai)i ∈ Swp (
∑

i xi) such that ‖a‖∞ = 1. Then, Sn =
∑n

i=1 aixi is wp summable and since it is a bounded
sequence, by applying Connor’s Theorem 2.3, it is statistically convergent to some L, and L = st− limn Sn =

wp − limn Sn = T
(
(ai)i

)
. By applying Fridy’s result [7, Theorem 1], there exists A ⊂ N of density 1 such that

lim
n

n∈A

‖Sn − L‖ = 0. For every k ∈ A, ‖Sk‖ ≤ H, so

‖T
(
(ai)i

)
‖ = ‖L‖ = lim

k
k∈A

‖Sk‖ ≤ ‖H‖.

which proves that T is continuous and this completes the desired result. �

4. The space of weak wp− summability

In this section we study a similar structure with respect to the weak wp− summability.
Let X be a normed space. Set 0 < p < +∞, a sequence (xk)k is said to be weak wp− summable to L ∈ X if for

every f ∈ X∗, f (xk)
wp
→ f (L), that is,

lim
n

1
n

n∑
k=1

| f (xk) − f (L)|p = 0,

and we will write (xk)
w−wp
→ L and L = w −wp − limn xn.

Let
∑

i xi be a series in a Banach space X, 0 < p < +∞. We now consider the space of w −wp summability
given by:

Sw−wp

∑
i

xi

 =

(ai)i ∈ `∞ :
∑

i

aixi is w −wp summable


endowed with the supremum norm.

Theorem 4.1. Let 0 < p < +∞. The following conditions are equivalent:

(1)
∑

i xi is a weakly unconditionally Cauchy series (wuc).

(2) Sw−wp (
∑

i xi) is a complete space.

(3) c0 ⊂ Sw−wp (
∑

i xi).

Proof. Since
∑

i xi is wuc,

H = sup


∥∥∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥∥∥ : |ai| ≤ 1,n ∈N

 < +∞.

Let (am)m ⊂ Sw−wp (
∑

i xi) be such that lim
m
‖am
− a0
‖∞ = 0, with a0

∈ `∞; we will prove that a0
∈ Sw−wp (

∑
i xi).

Suppose without any loss of generality that ‖a0
‖∞ ≤ 1. The sequence S0

k =
∑k

i=1 a0
i xi is bounded, and for

every f ∈ X∗, we have that f (S0
k) =

∑k
i=1 ai f (xi) is a bounded sequence. We will show that f (S0

k) is wp

summable. By applying again Connor’s Theorem 2.3 and Fridy’s result, it is sufficient to prove that
(

f (S0
k)
)

is statistically convergent or equivalently,
(

f (S0
k)
)

is statistically Cauchy.
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Given ε > 0, we will show that for every n ∈N there exists p0 ≥ n such that

d({k : | f (S0
k) − f (S0

p0
)| < ε}) = 1.

Since am
→ a0 in `∞, there exists m0 such that ‖am

− a0
‖∞ ≤

ε
4H‖ f ‖

for every m ≥ m0. And since
(

f (Sm0
k )

)
is statistically Cauchy, for every n ∈ N, there exists p0 ≥ n such that the set

{
k : | f (Sm0

k ) − f (Sm0
p0

)| ≤
ε
2

}
has

density 1. Let us consider k ≤ n such that

| f (Sm0
k ) − f (Sm0

p0
)| <

ε
2
. (4.1)

Let us observe that, for every j,

∥∥∥∥∥∥∥
j∑

i=1

ε
4H‖ f ‖

(a0
i − am0

i )xi

∥∥∥∥∥∥∥ ≤ H, so we deduce that

‖S0
j − Sm0

j ‖ =

∥∥∥∥∥∥∥
j∑

i=1

(a0
i − am0

i )xi

∥∥∥∥∥∥∥ ≤ ε
4‖ f ‖

. (4.2)

Then, using (4.1) and (4.2) and the triangular inequality,

| f (S0
k) − f (S0

p0
)| ≤ | f (S0

k − Sm0
k )| + | f (S0

p0
− Sm0

p0
)| + | f (Sm0

k − Sm0
p0

)|

≤ ‖ f ‖
ε

4‖ f ‖
+ ‖ f ‖

ε
4‖ f ‖

+
ε
2

= ε,

which implies that {
k : | f (Sm0

k ) − f (Sm0
p0

)| ≤
ε
2

}
⊆

{
k : | f (S0

k) − f (S0
p0

)| ≤
ε
2

}
and since the first set has density 1, the second has also density 1 and we are done.
Finally, let us observe that implication (2)⇒ (3) is obvious and (3)⇒ (1) follows by a similar argument like
in Theorem 3.1, and this finishes the proof. �

5. The weak∗ wp− summability space

We begin this section by defining a reasonable concept for weak∗ wp− summability. This convergence
provides a different result due to the singular structure of this new topology.
Let X be a normed space, 0 < p < +∞ and ( fk)k a sequence in X∗. The sequence ( fk)k is said to be weak∗ wp−

summable to f ∈ X∗ if for every x ∈ X, fk(x)
wp
→ f (x), that is,

lim
n

1
n

n∑
k=1

| fk(x) − f (x)|p = 0,

and we will write ( fk)
w∗−wp
→ f and f = w∗ −wp − limn fn.

Let
∑

i fi be a series in the dual space X∗ of a Banach space X, 0 < p < +∞. We now consider the space of
w∗ −wp summability defined by:

Sw∗−wp

∑
i

fi

 =

(ai)i ∈ `∞ :
∑

i

ai fi is w∗ −wp summable


endowed with the supremum norm.
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Theorem 5.1. Let X be a normed space and
∑

fi a series in X∗. Let us consider the following statements:

(1)
∑

i fi is a weakly unconditionally Cauchy series (wuc).

(2) Sw∗−wp (
∑

i fi) = `∞.

(3) If x ∈ X and M ⊂N, then
∑

i∈M fi(x) is wp convergent.

Then (1)⇒ (2)⇒ (3), and if X is barrelled, then (3)⇒ (1).

Proof. If (ai)i ∈ `∞, since the unit ball of X∗ is weak-star compact, the series
∑

i ai fi is weak-star convergent

in X∗. Hence, there exists f ∈ X∗ such that
∑n

i=1 ai fi
w∗
→ f . This implies that for every x ∈ X,

∑
i fi(x) = f (x),

and it is easily shown that
∑n

i=1 ai fi(x)
wp
→ f (x), which implies that (ai)i ∈ Sw∗−wp .

The implication (2)⇒ (3) follows directly.
Now, if X is barrelled, let us define

E =

 n∑
i=1

ai fi : n ∈N, |ai| ≤ 1

 .
In order to prove (3)⇒ (1), it is sufficient to show that E is pointwise bounded. Suppose on the contrary that
there exists x0 ∈ X such that

∑
i | fi(x0)|diverges. If M+ = {i ∈N : fi(x0) ≥ 0} and M− = {i ∈N : fi(x0) < 0}, then

either
∑

i∈M+ fi(x0) diverges or
∑

i∈M− (− fi)(x0) diverges. Then, by applying Proposition 2.8 and Proposition
2.2, we obtain that the series is not wp convergent, which is a contradiction with (3). �

Finally, from the preceding results, the following questions arise:

Remark 5.2. 1. What happens if p ∈ (0, 1)? Is Theorem 3.5 still valid?

2. For any non negative regular summability method A, the connection between strong A-summability and
A-statistical convergence holds. Is it possible to generalize the results in this manuscript in that framework?

3. If we consider θ = (kr)r ⊂N a lacunar sequence, i.e. kr − kr−1 →∞ as r→∞. What happens with the strong
lacunary convergence Nθ and the statistical lacunary convergence Sθ?
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[13] F. J. Pérez-Fernández, F. Benı́ tez Trujillo, and A. Aizpuru. Characterizations of completeness of normed spaces through weakly

unconditionally Cauchy series. Czechoslovak Math. J., 50(125)(4):889–896, 2000.
[14] Ekrem Sava¸s. Generalized asymptotically I-lacunary statistical equivalent of order α for sequences of sets. Filomat, 31(6):1507–

1514, 2017.
[15] Ekrem Sava¸s. Iλ-statistically convergent functions of order α. Filomat, 31(2):523–528, 2017.
[16] Ekrem Sava¸s. On I-lacunary statistical convergence of weight 1 of sequences of sets. Filomat, 31(16):5315–5322, 2017.
[17] K. Zeller and W. Beekmann. Theorie der Limitierungsverfahren. Zweite, erweiterte und verbesserte Auflage. Ergebnisse der

Mathematik und ihrer Grenzgebiete, Band 15. Springer-Verlag, Berlin-New York, 1970.
[18] Antoni Zygmund. Trigonometrical series. Dover Publications, New York, 1955.


