Filomat 33:10 (2019), 2963–2973 https://doi.org/10.2298/FIL1910963Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Ideal Versions of the Bolzano-Weierstrass Property

Jiakui Yu^a, Shuguo Zhang^a

^aCollege of Mathematics, Si Chuan University, Chengdu, 610064 China

Abstract. Let I, \mathcal{J} be ideals on ω , we say that a space X has (I, \mathcal{J}) -BW property if every sequence in X contains a \mathcal{J} -converging subsequence indexed by an I-positive set. This is a common generalization of BW-like properties types. By modifying some classic notions, we obtain some characterizations of (I, \mathcal{J}) -BW property.

1. Introduction

We need to recall first some necessary notions in order to formulate problems we will consider in this paper. The letter ω denote the set of all natural numbers, an **ideal** on ω is a family of subsets of ω closed under taking finite unions and subsets of its elements. By *Fin* we denote the ideal of all finite subsets of ω . If not explicitly said we assume that all considered ideals are proper and contain *Fin*.

Let I be an ideal on ω , and X being a topological space. For sequence $\langle x_n : n \in \omega \rangle$ in X, we say that $\langle x_n : n \in \omega \rangle$ is I-convergent to l if for each open neighborhood U of l,

$$\{n: x_n \notin U\} \in I$$

The notion of I-convergence is a generalization of the classical one. It was first considered by Steinhaus and Fast [3] in the case of the ideal of sets of statistical density 0:

$$I_d = \{A \subset \omega : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}.$$

By an *I*-subsequence of $\langle x_n : n \in \omega \rangle$ we means $\langle x_n : n \in A \rangle$ for some $A \notin I$. Filipów, Mrożek, Recław and Szuca introduced the following notions ([5], Subsection 2.3):

Definition 1.1. Let *I* be an ideal on ω , *X* being a topological space.

- (*X*, *I*) satisfies *BW* if every sequence in *X* has *I*-convergent *I*-subsequence;
- (*X*, *I*) satisfies *FinBW* if every sequence in *X* has convergent *I*-subsequence;

If ([0,1], I) satisfies *BW* (*FinBW*), we will omit the underlying space [0,1] and say *I* is satisfying *BW* (*FinBW*).

These notions involve two ideals: I and *Fin*. We are interested in the question how about if we replace *Fin* by another ideal \mathcal{J} ? Here is the key definition, which is a common generalization of these types.

2010 Mathematics Subject Classification. Primary 05D10; Secondary 40A35, 54A20

Keywords. (I, \mathcal{J}) -BW, Ramsey^{*}, Splitting family

Received: 14 October 2018; Revised: 18 March 2019; Accepted: 21 March 2019

Communicated by Ljubiša D.R. Kočinac Research supported by NSFC #11771311

Research supported by NSFC #11//1511

Email addresses: 770186166@qq.com (Jiakui Yu), zhangsg@scu.edu.cn (Shuguo Zhang)

Definition 1.2. Let I, \mathcal{J} be ideals on ω , X being a topological space. We say that X has (I, \mathcal{J}) -BW property if every sequence in X has \mathcal{J} -convergent I-subsequence.

Remark 1.3. It is worthy to point out that if $I \not\subseteq \mathcal{J}$, then for arbitrary space *X*, it has (\mathcal{J}, I) -*BW* property. Indeed, picking $A \in I \setminus \mathcal{J}$, *A* can deal with any sequence in *X*.

Our considerations are based on the works of Filipów-Mrożek- Recław-Szuca in [4], [5]. In particular, we are motivated by the following results:

- * : *I* satisfies *BW* if, and only if there is no countable *I*-splitting family.
- ** : If *I* is a weak *Q*-point, then the following conditions are equivalent:
 - (1) I is Ramsey;
 - (2) *I* is Mon;
 - (3) I is FinBW.

In Section 2, some basic notions will be introduced. In Section 3, we generalize the term *. In particular, we show that if there is no countable (I, \mathcal{J}) -splitting family, then [0, 1] satisfies (I, \mathcal{J}) -BW, and this implies that there is no countable (\mathcal{J}, I) -splitting family. In Section 4, we introduce *Ramsey**-property, *Mon**-property for pairs (I, \mathcal{J}) and use them to characterize the (I, \mathcal{J}) -BW property. In addition, a slightly general ω -diagonalizable property is introduced, and we check its relation among density, *Ramsey** and (I, \mathcal{J}) -BW property in this section.

2. Preliminaries

Let *I* be an ideal on ω . If $A \notin I$, we say that *A* is *I*-positive. In the next, we will use the following notations:

- $I^+ = \{A \subseteq \omega : A \notin I\};$
- $I^* = \{A \subseteq \omega : \omega \setminus A \in I\};$
- $I|A = \{I \cap A : I \in I\}$, for each $A \in I^+$,

2.1. Orderings

Let I, \mathcal{J} be ideals on ω . For a map $\varphi : \omega \to \omega$, the image of \mathcal{J} is defined by

$$\varphi(\mathcal{J}) = \{A \subseteq \omega : \varphi^{-1}(A) \in \mathcal{J}\}.$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal. Let's recall the following notions:

Definition 2.1. Let I, \mathcal{J} be ideals on ω ,

- $I \leq_K \mathcal{J}$ if there is a function $\varphi : \omega \to \omega$ such that $I \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in I$ [11];
- $I \leq_{KB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $I \leq_K \mathcal{J}$ [11];
- $I \leq_{RB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $A \in I$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$ [9];
- $I \cong \mathcal{J}$ if there is a bijection $\varphi : \omega \to \omega$ such that $A \in I$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$.

The (pre)orderings on ideals, in some sense, are significant in describing some properties of ideals.

2.2. A-dense

Let I be an ideal on ω . Recall that I is dense (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to I.

Definition 2.2. Let \mathcal{A} , \mathcal{B} be sets of subsets of ω . We say that \mathcal{B} is \mathcal{A} -dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, I being $[\omega]^{\omega}$ -dense coincides with I being dense. In addition, for any ideal I, I^+ is $[\omega]^{\omega}$ -dense if, and only if I = Fin.

Lots of combinatorial properties of ideals are related to the general density above, we present here some examples.

Example 2.3. Let I be an ideal on ω with $I \not\cong Fin$. If $I \not\cong Fin \oplus \mathcal{P}(\omega)$, then I is I^* -dense, where $Fin \oplus \mathcal{P}(\omega)$ is an ideal on $\{0, 1\} \times \omega$ defined by

$$Fin \oplus \mathcal{P}(\omega) = \{A \subset \{0, 1\} \times \omega : \{n \in \omega : (0, n) \in A\} \in Fin\}.$$

Example 2.4. The following notions are introduced and studied in [12]: For any ideal *I*, put

$$H(I) = \{A \subseteq \omega : I | A \cong I\}.$$

It is called the *homogeneous family of the ideal* I. An ideal I is *homogeneous* if $I^+ = H(I)$; I is *anti-homogeneous* if $H(I) = I^*$. These notions can be reformulated in terms of density as follows:

- (1) I is homogeneous if, and only if H(I) is I^+ -dense.
- (2) If $I \ncong Fin \oplus \mathcal{P}(\omega)$, then I is anti-homogeneous if, and only if I^* is H(I)-dense

The assertion (1) is Corollary 2.2 in [12]. Both proofs rely on the simple fact that if \mathcal{A} is \mathcal{B} -dense and \mathcal{A} is closed under supersets (i.e, if $A \subseteq B$ and $A \in \mathcal{A}$, then $B \in \mathcal{A}$), then $\mathcal{B} \subseteq \mathcal{A}$.

Remark 2.5. Let I be an ideal on ω ,

- (1) *I* is \mathcal{A} -dense if and only if $\forall A \in \mathcal{A}$, $I | A \neq Fin(A)$, where Fin(A) denotes the set of all finite subsets of *A*.
- (2) If I is dense and $I \leq_K \mathcal{J}$, then \mathcal{J} is dense.
- (3) H(I) is closed under supersets ([12], Theorem 2.1).
- 2.3. *Q-Ideal and Selectivity*

Let's recall some combinatorial properties of ideals. Let I be an ideal on ω ,

- *I* is local *Q* if for every partition {*A_n* : *n* ∈ ω} ⊂ *Fin* of ω, there exists *A* ∈ *I*⁺ such that |*A* ∩ *A_n*| ≤ 1 for each *n* ∈ ω;
- *I* is locally selective if for every partition $\{A_n : n \in \omega\} \subset I$ of ω , there exists $A \in I^+$ such that $|A \cap A_n| \leq 1$ for each $n \in \omega$.
- I is weak Q if for every $A \in I^+$, I | A is local Q.
- I is weakly selective if for every $A \in I^+$, I|A is locally selective.

3. (I, \mathcal{J}) -Splitting Family and (I, \mathcal{J}) -BW

Let $S \subseteq [\omega]^{\omega}$, and I being an ideal on ω . Recall that a family S is I-splitting if for every $A \in I^+$ there exists $S \in S$ such that $A \cap S \in I^+$ and $A \setminus S \in I^+$ [5].

Definition 3.1. Let I, \mathcal{J} be ideals on ω , and $\mathcal{S} \subset [\omega]^{\omega}$. We say that \mathcal{S} is an (I, \mathcal{J}) -splitting family if for every $A \in I^+$ there exists $X \in \mathcal{S}$ such that both of $A \cap X$ and $A \setminus X$ belong to \mathcal{J}^+ .

Evidently, when I is equal to \mathcal{J} , the (I, \mathcal{J}) -splitting family coincides with the I-splitting family mentioned above.

Let $\mathfrak{s}(\mathcal{I}, \mathcal{J})$ be the smallest cardinality of an $(\mathcal{I}, \mathcal{J})$ -splitting family. It is easy to see that the $\mathfrak{s}(Fin, Fin)$ is just the *splitting number* \mathfrak{s} introduced in [1], and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$ defined in [4].

In terms of cardinality, the assertion * mentioned in Section 1 can be reformulated as the follows: I satisfies *BW* if, and only if $\mathfrak{s}(I) > \omega$.

Proposition 3.2. Let I, \mathcal{J} be ideals on ω with $I \subseteq \mathcal{J}$. Then $\mathfrak{s}(I, \mathcal{J}) \geq \mathfrak{s}(\mathcal{J}, I)$.

Let $r \in \omega$, $s \in r^n$ and $i \in \{0, \dots, r-1\}$, by $s \frown i$ we mean the sequence of length n + 1 (write lh(s) = n + 1) which extends s by i. If $x \in r^{\omega}$ and $n \in \omega$, x|n denotes the initial segment $x|n = \langle x(0), x(1), \dots, x(n-1) \rangle$.

Now, we are in the position to introduce the main tool, which is a generalization of *I*-small set used in [5]:

Definition 3.3. Let I, \mathcal{J} be ideals on ω . $A \subset \omega$ is called an (I, \mathcal{J}) -small set if there exists $r \in \omega$, and exists a family $\{A_s : s \in r^{<\omega}\}$ such that for all $s \in r^{<\omega}$, we have

- $S_1 A_{\emptyset} = A,$
- $S_2 A_s = A_{s \frown 0} \cup \cdots \cup A_{s \frown (r-1)},$
- $S_3 A_{s \frown i} \cap A_{s \frown j} = \emptyset$ for every $i \neq j$,

 S_4 for every $b \in r^{\omega}$, every $X \subset \omega$, if $X \setminus A_{b|n} \in I$ for each $n \in \omega$, then $X \in \mathcal{J}$.

Let $S_{(I,\mathcal{J})}$ denote all (I, \mathcal{J}) -small sets in $\mathcal{P}(\omega)$. Note that $S_{(I,\mathcal{J})} \neq \emptyset$ if, and only if $I \subseteq \mathcal{J} \subseteq S_{(I,\mathcal{J})}$. The following result can be viewed as a generalization of Proposition 2.9 in [4].

Theorem 3.4. $\omega \notin S_{(I,\mathcal{J})}$ *if, and only if* [0, 1] *satisfies* (\mathcal{J}, I) -BW.

Proof. Thanks to the simple fact that (\mathcal{J}, I) -BW property is preserved for closed subsets and continuous images, [0,1] has (\mathcal{J}, I) -BW property if, and only if 2^{ω} has (\mathcal{J}, I) -BW property. Thus, we consider the Cantor space 2^{ω} instead of [0,1].

 \Rightarrow Assume that $\omega \notin S_{(I_n \mathcal{T})}$. For every sequence $\langle x_n : n \in \omega \rangle$ in 2^{ω} , every $s \in 2^{<\omega}$, put

$$A_s = \{n : s \subset x_n\}.$$

Then $\{A_s : s \in 2^{<\omega}\}$ satisfies $S_1 - S_3$. Since $\omega \notin S_{(\mathcal{I},\mathcal{J})}$, by the condition S_4 , there exists $X \notin \mathcal{J}$ and $b \in 2^{\omega}$ such that $X \setminus A_{b|n} \in \mathcal{I}$ for each $n \in \omega$. Then $\langle x_n : n \in X \rangle$ is \mathcal{I} -convergent to b.

← For the sake of contradiction, we may suppose that $ω \in S_{(I,\mathcal{J})}$. So there exists $r \in ω$, $\{A_s : s \in r^{<\omega}\}$ such that the conditions S_1 - S_4 are fulfilled. Note that for each $n \in ω$, there is exactly one $x_n \in 2^{\omega}$ such that $n \in A_{x_n|l}$ for each $l \in ω$. Then we obtain a sequence $\langle x_n : n \in \omega \rangle$ in 2^{ω} . Since 2^{ω} satisfies $(\mathcal{J}, \mathcal{I})$ -BW, the sequence has an \mathcal{I} -convergent \mathcal{J} -subsequence, namely, there is a $x \in 2^{\omega}$ and $X \subseteq \omega$ with $X \in \mathcal{J}^+$ such that $\langle x_n : n \in X \rangle$ is \mathcal{I} -convergent to x. Since for each $l \in \omega$

$$X \setminus A_{x|l} \subseteq \{n \in X : |x - x_n| \ge \frac{1}{2l}\} \in I.$$

By the condition S_4 , $X \in \mathcal{J}$, but this contradicts the fact that $X \in \mathcal{J}^+$. Therefore, we complete the proof. \Box

Theorem 3.5. Let I, \mathcal{J} be ideals on ω with $\mathcal{J} \subseteq I$. In the following list of conditions each implies the next:

- (1) $\mathfrak{s}(\mathcal{I},\mathcal{J}) > \omega$.
- (2) [0,1] satisfies (I, \mathcal{J}) -BW.
- (3) $\mathfrak{s}(\mathcal{J}, I) > \omega$.

Proof. (1) \Rightarrow (2) Suppose that [0,1] does not have (I, \mathcal{J}) -*BW*. By Theorem 3.4, ω is a (\mathcal{J}, I) -small set. We may assume that there exists a $r \in \omega$, and a family $\{A_s : s \in r^{<\omega}\}$ such that the conditions $S_1 - S_3$ are fulfilled. In what follows we will show that $\{A_s : s \in r^{<\omega}\}$ is an (I, \mathcal{J}) -splitting family. For the sake of contradiction, suppose that there is $X \in I^+$ such that for every $s \in r^{<\omega}$ either $X \cap A_s \in \mathcal{J}$ or $X \setminus A_s \in \mathcal{J}$. Put

$$T = \{ s \in r^{<\omega} : X \setminus A_s \in \mathcal{J} \}$$

Then *T* is a tree on $\{0, \dots, r-1\}$ with finite branches for every level. In order to see that *T* is an infinite tree, we need the following Claim:

Claim 3.6. For any $n \in \omega$, there is $s \in r^n$ such that $X \setminus A_s \in \mathcal{J}$.

Proof. Suppose that there exists $n \in \omega$ such that for every $s \in r^n$, $X \setminus A_s \in \mathcal{J}^+$, that is, $X \cap A_s \in \mathcal{J}$ for all $s \in r^n$. Note that $\omega = \bigcup_{n \in \mathcal{A}_s} A_s$, so

$$X = \bigcup_{s \in T^{n}} (X \cap A_{s}) \in \mathcal{J}.$$

This contradicts the assumption that for every $s \in r^n$, $X \setminus A_s \in \mathcal{J}^+$. \Box

Since *T* is an infinite tree with finite branches, by König's lemma, there exists $b \in r^{\omega}$ such that $X \setminus A_{b|n} \in \mathcal{J}$ for every $n \in \omega$. According to the fact that ω is an $(\mathcal{J}, \mathcal{I})$ -small set we have that $X \in \mathcal{I}$. Contradiction.

(2) \Rightarrow (3) Suppose that $\mathfrak{s}(\mathcal{J}, \mathcal{I}) = \omega$, and $\{S_n : n \in \omega\}$ be a $(\mathcal{J}, \mathcal{I})$ -splitting family. We will construct a family $\{A_s : s \in 2^{<\omega}\}$ which verifies $\omega \in \mathcal{S}_{(\mathcal{J}, \mathcal{I})}$ (this implies that [0, 1] does not have $(\mathcal{I}, \mathcal{J})$ -BW property).

First, take $A_{\emptyset} = \omega$, and let n_{\emptyset} be the smallest *n* such that S_n splits ω . Put

$$A_0 = A_\emptyset \cap A_{n_\emptyset}; A_1 = A_\emptyset \setminus A_{n_\emptyset}.$$

Then $A_0 \in \mathcal{I}^+$ and $A_1 \in \mathcal{I}^+$.

Suppose that we have already constructed A_s for all $s \in 2^n$. Then for each $s \in 2^n$, $A_s \in I^+$. Let n_s be the smallest n such that S_n splits A_s . Put

$$A_{s \frown 0} = A_s \cap S_{n_s}, A_{s \frown 1} = A_s \setminus S_{n_s}$$

According to the definition of $(\mathcal{J}, \mathcal{I})$ -splitting family, both of $A_{s \frown 0}$ and $A_{s \frown 1}$ are in \mathcal{I}^+ . This allows us to keep this proceed going and then we finish our construction. Clearly, the family $\{A_s : s \in 2^{<\omega}\}$ satisfies $S_1 - S_3$, it is enough to show that this family also satisfies the condition S_4 . For every $b \in 2^{\omega}$, every $X \subset \omega$ with $X \setminus A_{b|n} \in \mathcal{J}$ for every $n \in \omega$. Suppose that $X \in \mathcal{I}^+$. Let n_X be the smallest n such that S_n splits X. Since $X \setminus A_{b|n} \in \mathcal{J}$ for every $n \in \omega$, so S_{n_X} splits $A_{b|n}$ for every $n \in \omega$. Hence, there is $k \leq n_X$ such that $S_{n_{b|k}} = S_{n_X}$. Then either $A_{b|k+1} = A_{b|k} \cap S_{n_X}$ or $A_{b|k+1} = A_{b|k} \setminus S_{n_X}$. This implies that S_{n_X} does not split $A_{b|k+1}$, which is a contradiction. Therefore, the family $\{A_s : s \in 2^{<\omega}\}$ also satisfies S_4 . \Box

Remark 3.7. We should point out that the assumption of $\mathcal{J} \subseteq I$ in the premise is used in the implication (2) \Rightarrow (3).

4. Ramsey-Like and (I, \mathcal{J}) -BW

In this section, we give some characterizations of $(\mathcal{I}, \mathcal{J})$ -BW in terms of *Ramsey*^{*} property and *Mon*^{*} property introduced below.

4.1. Ramsey* and Mon* Properties Defined via Pair of Ideals

Let I be an ideal on ω , $r \in \omega$, and $c : [\omega]^2 \to \{0, \dots, r-1\}$ being a coloring. Recall that $A \subset \omega$ is I-homogeneous for c if there is $k \in \{0, \dots, r-1\}$ such that for every $a \in A$,

$$\{b \in A : c(\{a, b\}) \neq k\} \in I$$

Definition 4.1. ([4]) Let I be an ideal on ω . I is *Ramsey*^{*} if for every finite coloring of $[\omega]^2$ there exists an I-homogeneous $A \in I^+$.

Definition 4.2. Let I, \mathcal{J} be ideals on ω . We say that the pair (I, \mathcal{J}) is *Ramsey*^{*} if for every finite coloring of $[\omega]^2$ there exists $A \in I^+$ that is \mathcal{J} -homogeneous.

When $I = \mathcal{J}$ we say that I has *Ramsey*^{*} instead of (I, I) having *Ramsey*^{*}. It is not hard to see that for any ideals I, \mathcal{J} on ω , if $I \notin \mathcal{J}$, then the pair (\mathcal{J}, I) is *Ramsey*^{*}. Indeed, picking $A \in I \setminus \mathcal{J}$, we have that for every finite coloring c of $[\omega]^2$, A is I-homogeneous for c.

Let I be an ideal on ω . Recall that a sequence $\langle x_n : n \in A \rangle$ in [0, 1] is I-increasing if for every $N \in A$

$$n \in A : x_N \ge x_n\} \in \mathcal{I}.$$

Analogously, we can define *I*-decreasing, *I*-nonincreasing and *I*-nondecreasing sequences. A sequence $\langle x_n : n \in \omega \rangle$ in [0, 1] is *I*-monotone if it is *I*-nonincreasing or *I*-nondecreasing.

Definition 4.3. ([4]) Let I be an ideal on ω , we say that I is Mon^* if for every sequence $\langle x_n : n \in \omega \rangle$ in [0,1] there exists $A \in I^+$ such that $\langle x_n : n \in A \rangle$ is I-monotone.

Remark 4.4. The *Mon*^{*} property of I is a generalization of the *Mon* property which says that for every infinite sequence of real numbers there exists a monotone subsequence which is indexed by some member of I^+ . It has been showed that *Mon* implies *local selectivity* ([4], Lemma 3.9), but we point out that *Mon*^{*} does not necessary imply *local selectivity*, and the ideal \mathcal{ED} is a counterexample, where

$$\mathcal{ED} = \{ A \subseteq \omega \times \omega : (\exists m, n \in \omega) (\forall k \ge n) (|A_{(k)}| \le m) \}.$$

To see this, note first that $\mathcal{ED} \leq_K I$ if and only if I is not *local selective* (p. 51, [10]). On the other hand, \mathcal{ED} is an F_{σ} -ideal, and every F_{σ} -ideal satisfies *FinBW* ([5], Proposition 3.4), then \mathcal{ED} satisfies *FinBW*, which implies Mon^* ([4], Theorem 4.3).

Definition 4.5. Let I, \mathcal{J} be ideals on ω . We say that the pair (I, \mathcal{J}) is Mon^* if every sequence in [0,1] contains a \mathcal{J} -monotone I-subsequence. That is, for every sequence $\langle x_n : n \in \omega \rangle$ in [0,1], there exists $A \in I^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone.

By modifying the proof of Theorem 4.3 in [4], we get the following characterization of (I, \mathcal{J}) -BW.

Theorem 4.6. Let I, J be ideals on ω , then the following conditions are equivalent:

- (1) (I, \mathcal{J}) is Ramsey^{*},
- (2) (I, \mathcal{J}) is Mon^{*},
- (3) [0, 1] has (I, \mathcal{J}) -BW.

Proof. (1) \Rightarrow (2) Let $\langle x_n : n \in \omega \rangle$ be a sequence in [0, 1], define a coloring *c*: $[\omega]^2 \rightarrow \{0, 1\}$ by

 $c(\{n, m\}) = 0$ if n < m and $x_n \le x_m$; $c(\{n, m\}) = 1$, otherwise.

Since (I, \mathcal{J}) is *Ramsey*^{*}, there exists $A \in I^+$ such that A is \mathcal{J} -homogeneous for c. So we may assume that for every $n \in A$,

$$\{m: c(\{n,m\})=1\} \in \mathcal{J}.$$

Therefore, $\langle x_n : n \in A \rangle$ is \mathcal{J} -increasing.

(2) \Rightarrow (3) Assume that (I, \mathcal{J}) is Mon^* . For a given sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in I^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone. We may assume that $\langle x_n : n \in A \rangle$ is \mathcal{J} -nondecreasing. Let

$$x = sup_{n \in A} x_n$$
.

For any $\varepsilon > 0$, there is $x_N \in A$ such that $x_N > x - \varepsilon$. Then

$$\{n \in A : |x_n - x| \ge \varepsilon\} \subseteq \{n \in A : x_N > x_n\} \in \mathcal{J}.$$

Thus, $\langle x_n : n \in A \rangle$ is \mathcal{J} -convergent to x.

(3) \Rightarrow (1) Let $r \in \omega$, and $c: [\omega]^2 \rightarrow \{0, \dots, r-1\}$ being a coloring of $[\omega]^2$. We shall define a family $\{A_s: s \in r^{<\omega}\}$ that satisfies S_1 - S_3 as follows

- $A_{\emptyset} = \omega$,
- $A_{s \frown i} = \{n \in A_s : c(lh(s \frown i), n) = i\}, i \in \{0, \dots, r-1\}.$

Note that [0,1] has $(\mathcal{I},\mathcal{J})$ -BW, so ω is not a $(\mathcal{J},\mathcal{I})$ -small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in \{0, \dots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^+$ such that x(k-1) = i for every $k \in C$. It is not hard to see that for every $n \in C$,

$$\{k \in C : c(\{n,k\}) \neq i\} \subseteq C \setminus A_{x|n} \in \mathcal{J}.$$

This implies that *C* is \mathcal{J} -homogeneous as desired. \Box

Recall that an ideal I is called a P-ideal if for every countable $\mathcal{A} \subseteq I$, there exists $B \in I$ such that $A \subseteq^* B$ for each $A \in \mathcal{A}$. The following results are showed in [4].

Corollary 4.7. Let *I* be an ideal on ω . Then the following statements hold:

- (1) [0,1] has (I, Fin)-BW if, and only if (I, Fin) has Ramsy^{*}.
- (2) If I is a P-ideal, then (I, I) has Ramsey^{*} if, and only if (I, Fin) has Ramsey^{*}.

Proof. Assertion (1) follows by replacing \mathcal{J} by *Fin*. As for assertion (2), it is enough to notice that for every *P*-ideal I, (I, *Fin*)-BW is equal to (I, I)-BW. \Box

4.2. Q-Property and Selectivity Defined via Pair of Ideals

As mentioned previously, our aim is to seek for characterizations of (I, \mathcal{J}) -BW, so it becomes natural to extend the notions of Q-ideal and selectivity to some general ones. In order to do so, we need the following notations:

- $Q(I) = \{A \subseteq \omega : I | A \text{ is a local } Q \text{-ideal} \};$
- $Se(I) = \{A \subseteq \omega : I | A \text{ is locally selective} \}.$

Using these notations, I is *weak* Q if and only if $Q(I) = I^+$; I is *weakly selective* if and only if $Se(I) = I^+$. Now, we introduce the following definitions.

Definition 4.8. Let I, \mathcal{J} be ideals on ω , then

- (I, \mathcal{J}) is weak Q if $Q(\mathcal{J}) = I^+$;
- (I, \mathcal{J}) is weakly selective if $Se(\mathcal{J}) = I^+$.

Clearly, (I, \mathcal{J}) is *weak selective* \Rightarrow (I, \mathcal{J}) is weak $Q \Rightarrow \mathcal{J} \subseteq I$. Moreover, we observe the following simple facts.

Proposition 4.9. Let I be an ideal on ω with $I \ncong Fin \oplus \mathcal{P}(\omega)$.

- (1) If it is locally selective, then $I^* \subseteq Se(I)$.
- (2) If it is local Q, then $I^* \subseteq Q(I)$.

Proof. Note that $I \not\cong Fin \oplus \mathcal{P}(\omega)$ implies $I^* \subseteq H(I)$, this is proved in Proposition 1.2 in [12]. In addition, $H(I) \subseteq Se(I)$ if I is locally selective and $H(I) \subseteq Q(I)$ if I is local Q. Therefore, both of (1) and (2) hold. \Box

Remark 4.10. If $I \cong Fin \oplus \mathcal{P}(\omega)$, then I^* does not necessary contained in H(I). But we also have that $I^* \subseteq Se(I)$ whenever I is locally selective: Let $A \in I^*$. For any separation $\{I_n : n \in \omega\}$ of A with sets from I, then $\{I_n : n \in \omega\} \cup \{\omega \setminus A\}$ is a partition of ω into sets from I. So there exists $S \in I^+$ such that $|S \cap (\omega \setminus A)| \le 1$ and $|S \cap I_n| \le 1$ for every $n \in \omega$. Note that $S \cap A \in I^+$ since $|S \cap (\omega \setminus A)| \le 1$, so $S \cap A$ is a desired selector for $\{I_n : n \in \omega\}$.

Note that both of Q(I) and Se(I) are closed under supersets, we observe the following:

Proposition 4.11. *The following are hold for any ideal* I *on* ω *:*

- (1) I is weak Q if, and only if Q(I) is I^+ -dense,
- (2) I is weak selective if, and only if Se(I) is I^+ -dense,

Theorem 4.12. Let I, J be ideals on ω such that (I, J) is weak selective. For the following conditions:

- (1) [0,1] has (I, \mathcal{J}) -BW;
- (2) For every $r \in \omega$, every family $\{A_s : s \in r^{<\omega}\}$ fulfilling conditions S_1 - S_3 , there are $x \in r^{\omega}$ and $C \in \mathcal{J}^+$ such that $C \subseteq^* A_{x|n}$ for each $n \in \omega$;
- (3) [0, 1] has (\mathcal{J}, I) -BW

it holds that $(1) \Rightarrow (2) \Rightarrow (3)$.

Proof. (1) \Rightarrow (2) Note that [0,1] has (I, \mathcal{J}) -BW implies that $\omega \notin S_{(\mathcal{J}, I)}$. So for every $r \in \omega$, every family $\{A_s : s \in r^{<\omega}\}$ fulfilling conditions S_1 - S_3 , there are $x \in r^{\omega}$ and $B \in I^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for every $n \in \omega$. It is easy to see that

$$B \setminus A_{x|1}, B \cap (A_{x|2} \setminus A_{x|1}), \cdots, B \cap (A_{x|n+1} \setminus A_{x|n}), \cdots$$

is a partition of *B* into sets from \mathcal{J} . Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J}|B$ is locally selective. Thus, there exists $C \subset B$ with $C \in \mathcal{J}^+$ such that $|C \cap B \setminus A_{x|1}| \leq 1$, $|C \cap B \cap (A_{x|2} \setminus A_{x|n})| \leq 1$ for every $n \in \omega$. It is easy to check that the set *C* is desired.

(2) \Rightarrow (3) It is enough to show that ω is not an (I, \mathcal{J}) -small set. To this end, for every $r \in \omega$, for any family $\{A_s : s \in 2^{<\omega}\}$ satisfying S_1 - S_3 . By (2), there are $x \in r^{\omega}$ and $C \in \mathcal{J}^+$ such that for each $n \in \omega$, $C \setminus A_{x|n} \in Fin \subseteq I$. \Box

Remark 4.13. Recall that an ideal *I* is *selective*, if for any decreasing sequence

$$F_1 \supset F_2 \supset F_3 \supset \cdots$$

from I^+ , there exists a *diagonalization* F (i.e, for all $i, j \in F$ with $i < j, j \in F_i$). Evidently, if $\bigcap_{n \in \omega} F_n$ is nonempty, then it is a diagonalization. If we replace 'weak selective' by 'selective' in the previous result, the set C existing in (2) can be chosen as a diagonalization of $\langle A_{x|n} : n \in \omega \rangle$.

Corollary 4.14. Let I be an ideal on ω which is weak selective. Then following conditions are equivalent:

(1) [0,1] has (I,I)-BW;

(2) For every $r \in \omega$, every family $\{A_s : s \in r^{<\omega}\}$ fulfilling conditions S_1 - S_3 , there are $x \in r^{\omega}$ and $C \in I^+$ such that $C \subseteq^* A_{x|n}$ for each $n \in \omega$.

Definition 4.15. ([10]) Let I be an ideal on ω . Recall that I satisfies $\omega \to (\omega, I^+)_2^2$ if for every coloring c: $[\omega]^2 \to \{0, 1\}$ either there is an infinite 0-homogeneous set X or there is an I-positive 1-homogeneous.

Remark 4.16. It is easy to see that both $\omega \to (\omega, \mathcal{I}^+)_2^2$ and $Ramsy^*$ are weaker than Ramsey property, so it is a natural question to ask what is the relation between $\omega \to (\omega, \mathcal{I}^+)_2^2$ and $Ramsy^*$. Unfortunately, there is no directed relation between them. In fact, \mathcal{I} being $Ramsey^*$ does not imply $\omega \to (\omega, \mathcal{I}^+)_2^2$. To see this, let's consider the ideal \mathcal{ED}_{fin} , where

$$\mathcal{ED}_{fin} = \{ A \subset \{ \langle n, m \rangle \in \omega \times \omega, m \le n \} : (\exists m, n \in \omega) (\forall k \ge n) (|A_{(k)}| \le m) \}.$$

It is easy to see that \mathcal{ED}_{fin} is defined as the restriction of \mathcal{ED} to $\Delta = \{\langle n, m \rangle \in \omega \times \omega : m \le n\}$. Note that [0,1] has $(\mathcal{ED}_{fin}, \mathcal{ED}_{fin})$ -BW property since \mathcal{ED}_{fin} is an F_{σ} -ideal, so \mathcal{ED}_{fin} is Ramsey^{*} by Theorem 5.6. But $\omega \twoheadrightarrow (\omega, \mathcal{ED}^+_{fin})^2_2$ ([10], Lemma 2.3.8).

4.3. \mathcal{A} -Dense and ω -Diagonalizable

Let I be an ideal on ω . For a certain $\mathcal{A} \subseteq [\omega]^{\omega}$, recall that I is ω -diagonalizable by elements of \mathcal{A} if there is a sequence $\{A_n : n \in \omega\} \subseteq \mathcal{A}$ such that for every $I \in I$, there exists $n \in \omega$ such that $I \cap A_n = \emptyset$. This notion was introduced in [8] and was useful in characterizing selectivity and density of ideals (see, [13]).

Definition 4.17. Let $\mathcal{A} \subseteq [\omega]^{\omega}$, and *I* being an ideal on ω ,

- $non^*(\mathcal{A}, I) = min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{A} \land (\forall I \in I)(\exists H \in \mathcal{H})(I \cap H \text{ is finite})\}$
- $non(\mathcal{A}, I) = min\{|\mathcal{H}| : \mathcal{H} \subseteq \mathcal{A} \land (\forall I \in I)(\exists H \in \mathcal{H})(I \cap H = \emptyset)\}.$

It is easy to see that $non(\mathcal{A}, I) = \omega$ is equal to saying that I is ω -diagonalizable by elements of \mathcal{A} , and $non^*([\omega]^{\omega}, I)$ coincides with $non^*(I)$ introduced in [6] whenever I is dense. In addition, if I is dense, then $non^*([\omega]^{\omega}, I)$ is equal to $non([\omega]^{\omega}, I)$ ([10], Remark 1.3.1).

The following examples show that $non^*(\mathcal{A}, I)$ and $non(\mathcal{A}, I)$ are not defined for all pairs (\mathcal{A}, I) . The first one is a dense ideal, and the second is not dense.

Example 4.18. Let *I* be a dense *P*-ideal, and $\mathcal{A} \subset [\omega]^{\omega}$ with $|\mathcal{A}| = \omega$. For any $\mathcal{H} \subseteq \mathcal{A}$, since *I* is dense, there exists for each $H \in \mathcal{H}$ an infinite $A_H \subseteq H$ such that $A_H \in I$. Since *I* is a *P*-ideal, there is $I \in I$ such that $A_H \subseteq^* I$ for all $H \in \mathcal{H}$. Clearly, *I* intersects with each member of \mathcal{H} infinitely.

Example 4.19. Let $A \subset \omega$ be an infinite set such that $\omega \setminus A$ is infinite. Put $\langle A \rangle^* = \{B \subset \omega : B \subseteq^* A\}$. Then $\langle A \rangle^*$ is a *P*-ideal that is not dense. It is easy to see that the notion of *non*(\mathcal{A} , \mathcal{I}) fails for the pair ($\{A\}, \langle A \rangle^*$).

Lemma 4.20. Let I be an ideal on ω , and $\mathcal{A} \subseteq [\omega]^{\omega}$. For the following conditions:

- (1) I is not A-dense;
- (2) $non^*(\mathcal{A}, I) = 1;$
- (3) $non(\mathcal{A}, I) = \omega$.

 $(1) \Leftrightarrow (2) \Rightarrow (3).$

Proof. (1) \Leftrightarrow (2) Since I is not \mathcal{A} -dense, there exists $A \in \mathcal{A}$ such that $[A]^{\omega} \cap I = \emptyset$. Therefore, $non^*(\mathcal{A}, I) = 1$. The converse is obvious.

(2) \Rightarrow (3) Assume that $non^*(\mathcal{A}, I) = 1$, there exists $A \in \mathcal{A}$ fulfilling this. For each $n \in \omega$, let

 $A_n = A \setminus \{0, 1, \cdots, n-1\}.$

Then the family $\{A_n : n \in \omega\}$ verifies $non(\mathcal{A}, I) = \omega$. \Box

Corollary 4.21. ([13], Proposition 3.4) Let I be an ideal on ω . Then $non(I^*, I) = \omega$ if and only if I is not I^* -dense;

Let *T* be a tree, $\mathcal{A} \subseteq \mathcal{P}(\omega)$. For each $s \in T$, let $succ_T(s) = \{n > max(s) : s \cup \{n\} \in T\}$. Recall that a tree *T* is an \mathcal{A} -tree if for every $s \in T$, $succ_T(s) \in \mathcal{A}$, where $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

With the similar discussion of Remark 1.3.1 in [10], we observe that for any family $\mathcal{A} \subseteq [\omega]^{\omega}$ closed under finite modifications, if I is \mathcal{A} -dense then $non^*(\mathcal{A}, I) = non(\mathcal{A}, I)$. So, together with Proposition 3.1 in [13], we have the following.

Proposition 4.22. For any ideals I and \mathcal{J} , if I is \mathcal{J}^+ -dense, then $\operatorname{non}^*(\mathcal{J}^+, I) = \omega$ if and only if there exists a \mathcal{J}^+ -tree with all branches in I^+ .

Proposition 4.23. Let $\mathcal{A} \subset [\omega]^{\omega}$ such that \mathcal{A} is dense. Then the following conditions are equivalent:

- (1) $non^{*}(I) = \omega;$
- (2) $non^*(\mathcal{A}, I) = \omega$.

Proof. (2) \Rightarrow (1) Together with *I* being \mathcal{A} -dense and \mathcal{A} being dense, we have that *I* is dense. In addition, $non^*(\mathcal{A}, I) = \omega$ implies that *I* is \mathcal{A} -dense. So *I* is dense, and so $\omega \leq non^*(I) \leq non^*(\mathcal{A}, I)$.

(1) \Rightarrow (2) To check the converse, assume that $A_0, A_1, \dots, A_n, \dots$ be a countable family in $[\omega]^{\omega}$ which meet that $non^*(I) = \omega$. Since \mathcal{A} is dense, there are, for all $n \in \omega$, $B_n \subseteq A_n$ such that $B_n \in \mathcal{A}$. It is easy to verify that the sequence $B_n, n \in \omega$ meet that $non^*(\mathcal{A}, I) = \omega$. \Box

Recall that I is *h*-Ramsey (respectively, *h*-Ramsey^{*}) if for every $A \in I^+$, I|A is Ramsey (respectively, I|A is Ramsey^{*})[4]

Theorem 4.24. Let I, \mathcal{J} be ideals on ω and \mathcal{J} being a weak Q-ideals such that $I \leq_{RB} \mathcal{J}$,

- (1) If \mathcal{J} is h-Ramsey^{*}, then I is h-Ramsey^{*};
- (2) If \mathcal{J} is h-Ramsey, then I is h-Ramsey.

Proof. The assertion (1) follows from the facts that *h*-*Ramsey*^{*} is equal to *h*-BW property ([4], Theorem 4.3) and the *h*-BW property is preserved under the \leq_{RB} -order in the realm of *Q*-ideals ([5], Theorem 6.2).

The key in the proof of the assertion (2) is that *I* is *h*-Ramsey if, and only if *I* is *h*-Fin-BW and being a weak *Q*-ideal ([4], Theorem 3.16). So we need the following Claims:

Claim 4.25. Let I, J be ideals on ω , and J being a Q-ideal. If $I \leq_{KB} J$ then I is also a Q-ideal.

Proof. Let $f: \omega \to \omega$ be a finite to one function meeting $I \leq_{KB} \mathcal{J}$. Let $\{I_n : n \in \omega\}$ be a partition of ω into finite sets. Put $A_n = \{f^{-1}(m) : m \in I_n\}$. Then $\{A_n : n \in \omega\}$ is also a partition of ω into finite sets. It is easy to check that if *S* is a selector for $\{A_n : n \in \omega\}$, then f(S) is a selector for $\{I_n : n \in \omega\}$, this end the proof. \Box

Claim 4.26. Let I, \mathcal{J} be ideals on ω , and \mathcal{J} being a weak Q-point. If $I \leq_{RB} \mathcal{J}$ then I is also a weak Q-ideal.

Proof. Assume $f: \omega \to \omega$ witness $I \leq_{RB} \mathcal{J}$, so for $A \in I^+$, $f^{-1}(A) \in \mathcal{J}^+$. It is easy to see that $I|A \leq_{KB} \mathcal{J}|f^{-1}(A)$. Note that $\mathcal{J} \leq_{KB} \mathcal{J}|f^{-1}(A)$ and \mathcal{J} is a weak Q-ideal, so is $\mathcal{J}|f^{-1}(A)$. By Claim 2 above we have that I|A is a Q-ideal as well. \Box

Therefore, *I* is a weak *Q*-ideal. In addition, *I* is *h*-Fin-BW by Theorem 6.1 and Theorem 6.2 in [5]. \Box

Remark 4.27. In Claim 2, if we replaced $I \leq_{KB} \mathcal{J}$ by $I \leq_{K} \mathcal{J}$, and I, \mathcal{J} are Borel ideals, then \mathcal{J} being a Q-ideal also implies that I is a Q-ideal. To see this, note first that for any Borel ideal I, $non(I) = \omega$ if, and only if I is a Q-ideal ([13], Proposition 3.2), so it is enough to show that $non(I) = \omega$. There are two possible cases: **Case 1**, if I is not dense, then $non(I) = \omega$; **Case 2**, if I is dense, then $non^*(I) \geq \omega$, and \mathcal{J} is also dense since $I \leq_{K} \mathcal{J}$. Since \mathcal{J} being a Q-ideal, we have that $non^*(\mathcal{J}) = \omega$. Moreover, $I \leq_{K} \mathcal{J}$ implies that $non^*(I) \leq non^*(\mathcal{J})([10], \text{Theorem 1.4.2})$. Thus, $non^*(I) = \omega$.

Definition 4.28. ([6]) Let I be a dense ideal on ω , $cov^*(I) = min\{|\mathcal{A}| : \mathcal{A} \subseteq I \land (\forall X \in [\omega]^{\omega})(\exists A \in \mathcal{A})(|A \cap X| = \omega)\}$.

We end this section with the following result related to (I, Fin)-BW property, which tells us that in the realm of dense ideals, $cov^*(I) \ge \omega_1$ hold whenever [0, 1] satisfying (I, Fin)-BW.

Proposition 4.29. Let I be a dense ideal on ω . If $cov^*(I) = \omega$, then [0, 1] does not satisfy (I, Fin)-BW.

Proof. Assume that $\{A_n : n \in \omega\} \subseteq I$ is a countable family meeting $cov^*(I) = \omega$. Without loss of generality, we may assume that they are pairwise disjoint. Define a sequence $\langle x_k : k \in \omega \rangle$ by

$$x_k = \frac{1}{n+1}$$
 for $k \in A_n$.

Then $\langle x_k : k \in \omega \rangle$ is *I*-convergent to 0. But for any $A \in I^+$, there exists $n \in \omega$ such that $|A \cap A_n| = \omega$, so $\langle x_k : k \in A \rangle$ cannot be convergent to 0. \Box

Acknowledgement

We are grateful to the referee for pointing out several errors in the preliminary version of this paper and for valuable suggestions which improved the presentation of the paper.

References

- A. Blass, Combinatorial Cardinal Characteristics of the Continuum, In: M. Foreman, A. Kanamori (eds), Handbook of Set Theory, Springer, Dordrecht, 2010. pp. 395–489.
- [2] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [3] H. Fast, Sur la convergence statistique, Coll. Math. 2 (1951) 241-244.
- [4] R. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal version of Ramsey Theorem, Czech. Math. J. 136 (2011) 289–308.
- [5] R. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal convergence of bounded sequences, J. Symbolic Logic 72 (2007) 501–512.
- [6] F. Hernández-Hernández, M. Hrušák, Cardinal invariants of analytic P-ideals, Canadian. J. Math. 59 (2007) 575–595.
- [7] M. Hrusak, Combinatorics of filters and ideals, In: Set Theory and its Applications, vol. 533 of Contemp. Math., 2011, pp. 29-69.
- [8] C. Laflamme, Filter games and combinatorial properties of winning strategies, Contemp. Math. 192 (1996) 51-67.
- [9] C. Laflamme, J. Zhu, The Rudin-Blass ordering of ultrafilters, J. Symbolic Logic 63 (1998) 584-592.
- [10] D. Meza-Alcántara, Ideals and filters on countable sets, Ph.D thesis, UNAM México, 2009.
- [11] M. Katětov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968) 173-189.
- [12] A. Kwela, J. Tryba, Homogeneous ideals on countable sets, Acta. Math. Hungarica 151 (2017) 139-161.
- [13] A. Kwela, P. Zakrzewski, Combinatorics of ideals selectivity versus density, Comment. Math. Univ. Carolinae 58 (2017) 261–266.