Ideal Versions of the Bolzano-Weierstrass Property

Jiakui Yu ${ }^{\text {a }}$, Shuguo Zhang ${ }^{\text {a }}$
${ }^{a}$ College of Mathematics, Si Chuan University, Chengdu, 610064 China

Abstract

Let I, \mathcal{J} be ideals on ω, we say that a space X has $(\mathcal{I}, \mathcal{J})$-BW property if every sequence in X contains a \mathcal{J}-converging subsequence indexed by an \mathcal{I}-positive set. This is a common generalization of BWlike properties types. By modifying some classic notions, we obtain some characterizations of $(\mathcal{I}, \mathcal{J})$-BW property.

1. Introduction

We need to recall first some necessary notions in order to formulate problems we will consider in this paper. The letter ω denote the set of all natural numbers, an ideal on ω is a family of subsets of ω closed under taking finite unions and subsets of its elements. By Fin we denote the ideal of all finite subsets of ω. If not explicitly said we assume that all considered ideals are proper and contain Fin.

Let \mathcal{I} be an ideal on ω, and X being a topological space. For sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in X, we say that $\left\langle x_{n}: n \in \omega\right\rangle$ is \mathcal{I}-convergent to l if for each open neighborhood U of l,

$$
\left\{n: x_{n} \notin U\right\} \in \mathcal{I} .
$$

The notion of I-convergence is a generalization of the classical one. It was first considered by Steinhaus and Fast [3] in the case of the ideal of sets of statistical density 0 :

$$
\mathcal{I}_{d}=\left\{A \subset \omega: \lim \sup _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\}
$$

By an \mathcal{I}-subsequence of $\left\langle x_{n}: n \in \omega\right\rangle$ we means $\left\langle x_{n}: n \in A\right\rangle$ for some $A \notin \mathcal{I}$. Filipów, Mrożek, Recław and Szuca introduced the following notions ([5], Subsection 2.3):

Definition 1.1. Let I be an ideal on ω, X being a topological space.

- (X, I) satisfies $B W$ if every sequence in X has I-convergent I-subsequence;
- (X, I) satisfies FinBW if every sequence in X has convergent I-subsequence;

If $([0,1], \mathcal{I})$ satisfies $B W(F i n B W)$, we will omit the underlying space $[0,1]$ and say \mathcal{I} is satisfying $B W$ (FinBW).

These notions involve two ideals: \mathcal{I} and Fin. We are interested in the question how about if we replace Fin by another ideal \mathcal{J} ? Here is the key definition, which is a common generalization of these types.

[^0]Definition 1.2. Let \mathcal{I}, \mathcal{J} be ideals on ω, X being a topological space. We say that X has (I, \mathcal{J}) - $B W$ property if every sequence in X has \mathcal{J}-convergent I-subsequence.

Remark 1.3. It is worthy to point out that if $\mathcal{I} \nsubseteq \mathcal{J}$, then for arbitrary space X, it has $(\mathcal{J}, \mathcal{I})$ - $B W$ property. Indeed, picking $A \in \mathcal{I} \backslash \mathcal{J}, A$ can deal with any sequence in X.

Our considerations are based on the works of Filipów-Mrożek- Recław-Szuca in [4], [5]. In particular, we are motivated by the following results:

* : I satisfies BW if, and only if there is no countable I-splitting family.
** : If I is a weak Q-point, then the following conditions are equivalent:
(1) \mathcal{I} is Ramsey;
(2) I is Mon;
(3) I is FinBW.

In Section 2, some basic notions will be introduced. In Section 3, we generalize the term $*$. In particular, we show that if there is no countable $(\mathcal{I}, \mathcal{J})$-splitting family, then $[0,1]$ satisfies $(\mathcal{I}, \mathcal{J})$-BW, and this implies that there is no countable $(\mathcal{J}, \mathcal{I})$-splitting family. In Section 4, we introduce Ramsey*-property, Mon*property for pairs $(\mathcal{I}, \mathcal{J})$ and use them to characterize the $(\mathcal{I}, \mathcal{J})$-BW property. In addition, a slightly general ω-diagonalizable property is introduced, and we check its relation among density, Ramsey* and $(\mathcal{I}, \mathcal{J})$-BW property in this section.

2. Preliminaries

Let I be an ideal on ω. If $A \notin I$, we say that A is I-positive. In the next, we will use the following notations:

- $\mathcal{I}^{+}=\{A \subseteq \omega: A \notin \mathcal{I}\} ;$
- $I^{*}=\{A \subseteq \omega: \omega \backslash A \in I\}$;
- $I \mid A=\{I \cap A: I \in \mathcal{I}\}$, for each $A \in I^{+}$,

2.1. Orderings

Let \mathcal{I}, \mathcal{J} be ideals on ω. For a map $\varphi: \omega \rightarrow \omega$, the image of \mathcal{J} is defined by

$$
\varphi(\mathcal{J})=\left\{A \subseteq \omega: \varphi^{-1}(A) \in \mathcal{J}\right\}
$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{T})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal. Let's recall the following notions:

Definition 2.1. Let I, \mathcal{J} be ideals on ω,

- $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $\varphi: \omega \rightarrow \omega$ such that $\mathcal{I} \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in \mathcal{I}$ [11];
- $\mathcal{I} \leq_{K B} \mathcal{J}$ if there is a finite-to-one function $\varphi: \omega \rightarrow \omega$ such that $\mathcal{I} \leq_{K} \mathcal{J}$ [11];
- $\mathcal{I} \leq_{R B} \mathcal{J}$ if there is a finite-to-one function $\varphi: \omega \rightarrow \omega$ such that $A \in \mathcal{I}$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$ [9];
- $\mathcal{I} \cong \mathcal{J}$ if there is a bijection $\varphi: \omega \rightarrow \omega$ such that $A \in \mathcal{I}$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$.

The (pre)orderings on ideals, in some sense, are significant in describing some properties of ideals.

2.2. \mathcal{A}-dense

Let \mathcal{I} be an ideal on ω. Recall that \mathcal{I} is dense (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to I.

Definition 2.2. Let \mathcal{A}, \mathcal{B} be sets of subsets of ω. We say that \mathcal{B} is \mathcal{A}-dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, \mathcal{I} being $[\omega]^{\omega}$-dense coincides with \mathcal{I} being dense. In addition, for any ideal $\mathcal{I}, \mathcal{I}^{+}$is $[\omega]^{\omega}$-dense if, and only if $\mathcal{I}=$ Fin.

Lots of combinatorial properties of ideals are related to the general density above, we present here some examples.

Example 2.3. Let I be an ideal on ω with $I \not \approx$ Fin. If $I \nRightarrow \operatorname{Fin} \oplus \mathcal{P}(\omega)$, then I is I^{*}-dense, where $\operatorname{Fin} \oplus \mathcal{P}(\omega)$ is an ideal on $\{0,1\} \times \omega$ defined by

$$
\operatorname{Fin} \oplus \mathcal{P}(\omega)=\{A \subset\{0,1\} \times \omega:\{n \in \omega:(0, n) \in A\} \in \text { Fin }\}
$$

Example 2.4. The following notions are introduced and studied in [12]: For any ideal I, put

$$
H(\mathcal{I})=\{A \subseteq \omega: \mathcal{I} \mid A \cong \mathcal{I}\}
$$

It is called the homogeneous family of the ideal I. An ideal \mathcal{I} is homogeneous if $\mathcal{I}^{+}=H(\mathcal{I}) ; \mathcal{I}$ is anti-homogeneous if $H(\mathcal{I})=I^{*}$. These notions can be reformulated in terms of density as follows:
(1) \mathcal{I} is homogeneous if, and only if $H(\mathcal{I})$ is \mathcal{I}^{+}-dense.
(2) If $\mathcal{I} \nRightarrow \operatorname{Fin} \oplus \mathcal{P}(\omega)$, then \mathcal{I} is anti-homogeneous if, and only if \mathcal{I}^{*} is $H(\mathcal{I})$-dense

The assertion (1) is Corollary 2.2 in [12]. Both proofs rely on the simple fact that if \mathcal{A} is \mathcal{B}-dense and \mathcal{A} is closed under supersets (i.e, if $A \subseteq B$ and $A \in \mathcal{A}$, then $B \in \mathcal{A}$), then $\mathcal{B} \subseteq \mathcal{A}$.

Remark 2.5. Let \mathcal{I} be an ideal on ω,
(1) \mathcal{I} is \mathcal{A}-dense if and only if $\forall A \in \mathcal{A}, \mathcal{I} \mid A \neq \operatorname{Fin}(A)$, where $\operatorname{Fin}(A)$ denotes the set of all finite subsets of A.
(2) If \mathcal{I} is dense and $\mathcal{I} \leq_{K} \mathcal{J}$, then \mathcal{J} is dense.
(3) $H(\mathcal{I})$ is closed under supersets ([12], Theorem 2.1).

2.3. Q-Ideal and Selectivity

Let's recall some combinatorial properties of ideals. Let \mathcal{I} be an ideal on ω,

- I is local Q if for every partition $\left\{A_{n}: n \in \omega\right\} \subset$ Fin of ω, there exists $A \in \mathcal{I}^{+}$such that $\left|A \cap A_{n}\right| \leq 1$ for each $n \in \omega$;
- I is locally selective if for every partition $\left\{A_{n}: n \in \omega\right\} \subset \mathcal{I}$ of ω, there exists $A \in \mathcal{I}^{+}$such that $\left|A \cap A_{n}\right| \leq 1$ for each $n \in \omega$.
- \mathcal{I} is weak Q if for every $A \in \mathcal{I}^{+}, \mathcal{I} \mid A$ is local Q.
- I is weakly selective if for every $A \in I^{+}, I \mid A$ is locally selective.

3. (I, \mathcal{J})-Splitting Family and (I, \mathcal{J})-BW

Let $\mathcal{S} \subseteq[\omega]^{\omega}$, and \mathcal{I} being an ideal on ω. Recall that a family \mathcal{S} is \mathcal{I}-splitting if for every $A \in \mathcal{I}^{+}$there exists $S \in \mathcal{S}$ such that $A \cap S \in \mathcal{I}^{+}$and $A \backslash S \in \mathcal{I}^{+}$[5].

Definition 3.1. Let \mathcal{I}, \mathcal{J} be ideals on ω, and $\mathcal{S} \subset[\omega]^{\omega}$. We say that \mathcal{S} is an $(\mathcal{I}, \mathcal{J})$-splitting family if for every $A \in \mathcal{I}^{+}$there exists $X \in \mathcal{S}$ such that both of $A \cap X$ and $A \backslash X$ belong to \mathcal{J}^{+}.

Evidently, when I is equal to \mathcal{J}, the $(\mathcal{I}, \mathcal{J})$-splitting family coincides with the I-splitting family mentioned above.

Let $\mathfrak{s}(\mathcal{I}, \mathcal{J})$ be the smallest cardinality of an $(\mathcal{I}, \mathcal{J})$-splitting family. It is easy to see that the $\mathfrak{s}($ Fin, Fin $)$ is just the splitting number \mathfrak{s} introduced in [1], and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$ defined in [4].

In terms of cardinality, the assertion $*$ mentioned in Section 1 can be reformulated as the follows: \mathcal{I} satisfies $B W$ if, and only if $\mathfrak{s}(\mathcal{I})>\omega$.

Proposition 3.2. Let \mathcal{I}, \mathcal{J} be ideals on ω with $\mathcal{I} \subseteq \mathcal{J}$. Then $\mathfrak{s}(\mathcal{I}, \mathcal{J}) \geq \mathfrak{s}(\mathcal{J}, \mathcal{I})$.
Let $r \in \omega, s \in r^{n}$ and $i \in\{0, \cdots, r-1\}$, by $s \frown i$ we mean the sequence of length $n+1$ (write $\operatorname{lh}(s)=n+1$) which extends s by i. If $x \in r^{\omega}$ and $n \in \omega, x \mid n$ denotes the initial segment $x \mid n=\langle x(0), x(1), \cdots, x(n-1)\rangle$.

Now, we are in the position to introduce the main tool, which is a generalization of I-small set used in [5]:

Definition 3.3. Let \mathcal{I}, \mathcal{J} be ideals on $\omega . A \subset \omega$ is called an $(\mathcal{I}, \mathcal{J})$-small set if there exists $r \in \omega$, and exists a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ such that for all $s \in r^{<\omega}$, we have
$S_{1} A_{\emptyset}=A$,
$S_{2} A_{s}=A_{s \frown 0} \cup \cdots \cup A_{s \frown(r-1)}$,
$S_{3} A_{s \frown i} \cap A_{s \frown j}=\emptyset$ for every $i \neq j$,
S_{4} for every $b \in r^{\omega}$, every $X \subset \omega$, if $X \backslash A_{b \mid n} \in I$ for each $n \in \omega$, then $X \in \mathcal{J}$.
Let $\mathcal{S}_{(\mathcal{I}, \mathcal{J})}$ denote all $(\mathcal{I}, \mathcal{J})$-small sets in $\mathcal{P}(\omega)$. Note that $\mathcal{S}_{(I, \mathcal{J})} \neq \emptyset$ if, and only if $\mathcal{I} \subseteq \mathcal{J} \subseteq \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$. The following result can be viewed as a generalization of Proposition 2.9 in [4].

Theorem 3.4. $\omega \notin \mathcal{S}_{(I, \mathcal{J})}$ if, and only if $[0,1]$ satisfies $(\mathcal{J}, \mathcal{I})$-BW.
Proof. Thanks to the simple fact that $(\mathcal{J}, \mathcal{I})$-BW property is preserved for closed subsets and continuous images, $[0,1]$ has $(\mathcal{J}, \mathcal{I})$-BW property if, and only if 2^{ω} has $(\mathcal{J}, \mathcal{I})$-BW property. Thus, we consider the Cantor space 2^{ω} instead of $[0,1]$.
\Rightarrow Assume that $\omega \notin \mathcal{S}_{(I, \mathcal{J})}$. For every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in 2^{ω}, every $s \in 2^{<\omega}$, put

$$
A_{s}=\left\{n: s \subset x_{n}\right\} .
$$

Then $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfies $S_{1}-S_{3}$. Since $\omega \notin \mathcal{S}_{(I, \mathcal{J})}$, by the condition S_{4}, there exists $X \notin \mathcal{J}$ and $b \in 2^{\omega}$ such that $X \backslash A_{b \mid n} \in I$ for each $n \in \omega$. Then $\left\langle x_{n}: n \in X\right\rangle$ is I-convergent to b.
\Leftarrow For the sake of contradiction, we may suppose that $\omega \in \mathcal{S}_{(I, \mathcal{J})}$. So there exists $r \in \omega,\left\{A_{s}: s \in r^{<\omega}\right\}$ such that the conditions $S_{1}-S_{4}$ are fulfilled. Note that for each $n \in \omega$, there is exactly one $x_{n} \in 2^{\omega}$ such that $n \in A_{x_{n} \mid l}$ for each $l \in \omega$. Then we obtain a sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in 2^{ω}. Since 2^{ω} satisfies $(\mathcal{J}, \mathcal{I})$-BW, the sequence has an \mathcal{I}-convergent \mathcal{J}-subsequence, namely, there is a $x \in 2^{\omega}$ and $X \subseteq \omega$ with $X \in \mathcal{J}^{+}$such that $\left\langle x_{n}: n \in X\right\rangle$ is \mathcal{I}-convergent to x. Since for each $l \in \omega$

$$
X \backslash A_{x \mid l} \subseteq\left\{n \in X:\left|x-x_{n}\right| \geq \frac{1}{2^{2}}\right\} \in I .
$$

By the condition $S_{4}, X \in \mathcal{J}$, but this contradicts the fact that $X \in \mathcal{J}^{+}$. Therefore, we complete the proof.

Theorem 3.5. Let \mathcal{I}, \mathcal{J} be ideals on ω with $\mathcal{J} \subseteq \mathcal{I}$. In the following list of conditions each implies the next:
(1) $\mathfrak{s}(\mathcal{I}, \mathcal{J})>\omega$.
(2) $[0,1]$ satisfies $(\mathcal{I}, \mathcal{J})-B W$.
(3) $\mathfrak{s}(\mathcal{J}, \mathcal{I})>\omega$.

Proof. (1) $\Rightarrow(2)$ Suppose that $[0,1]$ does not have $(\mathcal{I}, \mathcal{J})$-BW. By Theorem 3.4, ω is a $(\mathcal{T}, \mathcal{I})$-small set. We may assume that there exists a $r \in \omega$, and a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ such that the conditions $S_{1}-S_{3}$ are fulfilled. In what follows we will show that $\left\{A_{s}: s \in r^{<\omega}\right\}$ is an $(\mathcal{I}, \mathcal{J})$-splitting family. For the sake of contradiction, suppose that there is $X \in \mathcal{I}^{+}$such that for every $s \in r^{<\omega}$ either $X \cap A_{s} \in \mathcal{J}$ or $X \backslash A_{s} \in \mathcal{J}$. Put

$$
T=\left\{s \in r^{<\omega}: X \backslash A_{s} \in \mathcal{J}\right\} .
$$

Then T is a tree on $\{0, \cdots, r-1\}$ with finite branches for every level. In order to see that T is an infinite tree, we need the following Claim:

Claim 3.6. For any $n \in \omega$, there is $s \in r^{n}$ such that $X \backslash A_{s} \in \mathcal{J}$.
Proof. Suppose that there exists $n \in \omega$ such that for every $s \in r^{n}, X \backslash A_{s} \in \mathcal{J}^{+}$, that is, $X \cap A_{s} \in \mathcal{J}$ for all $s \in r^{n}$. Note that $\omega=\bigcup_{s \in r^{n}} A_{s}$, so

$$
X=\bigcup_{s \in r^{n}}\left(X \cap A_{s}\right) \in \mathcal{J}
$$

This contradicts the assumption that for every $s \in r^{n}, X \backslash A_{s} \in \mathcal{J}^{+}$.
Since T is an infinite tree with finite branches, by König's lemma, there exists $b \in r^{\omega}$ such that $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$. According to the fact that ω is an $(\mathcal{J}, \mathcal{I})$-small set we have that $X \in \mathcal{I}$. Contradiction.
(2) \Rightarrow (3) Suppose that $\mathfrak{s}(\mathcal{J}, \mathcal{I})=\omega$, and $\left\{S_{n}: n \in \omega\right\}$ be a $(\mathcal{J}, \mathcal{I})$-splitting family. We will construct a family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ which verifies $\omega \in \mathcal{S}_{(\mathcal{J}, I)}$ (this implies that [0,1] does not have $(\mathcal{I}, \mathcal{J})$-BW property).

First, take $A_{\emptyset}=\omega$, and let n_{\emptyset} be the smallest n such that S_{n} splits ω. Put

$$
A_{0}=A_{\emptyset} \cap A_{n_{\emptyset}} ; A_{1}=A_{\emptyset} \backslash A_{n_{\emptyset}} .
$$

Then $A_{0} \in \mathcal{I}^{+}$and $A_{1} \in \mathcal{I}^{+}$.
Suppose that we have already constructed A_{s} for all $s \in 2^{n}$. Then for each $s \in 2^{n}, A_{s} \in \mathcal{I}^{+}$. Let n_{s} be the smallest n such that S_{n} splits A_{s}. Put

$$
A_{s \frown 0}=A_{s} \cap S_{n_{s}}, A_{s-1}=A_{s} \backslash S_{n_{s}} .
$$

According to the definition of $(\mathcal{T}, \mathcal{I})$-splitting family, both of $A_{s \sim 0}$ and $A_{s \sim 1}$ are in I^{+}. This allows us to keep this proceed going and then we finish our construction. Clearly, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfies $S_{1}-S_{3}$, it is enough to show that this family also satisfies the condition S_{4}. For every $b \in 2^{\omega}$, every $X \subset \omega$ with $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$. Suppose that $X \in \mathcal{I}^{+}$. Let n_{X} be the smallest n such that S_{n} splits X. Since $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$, so $S_{n_{X}}$ splits $A_{b \mid n}$ for every $n \in \omega$. Hence, there is $k \leq n_{X}$ such that $S_{n_{b k}}=S_{n_{X}}$. Then either $A_{b \mid k+1}=A_{b \mid k} \cap S_{n_{X}}$ or $A_{b \mid k+1}=A_{b \mid k} \backslash S_{n_{X}}$. This implies that $S_{n_{X}}$ does not split $A_{b \mid k+1}$, which is a contradiction. Therefore, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ also satisfies S_{4}.

Remark 3.7. We should point out that the assumption of $\mathcal{J} \subseteq \mathcal{I}$ in the premise is used in the implication $(2) \Rightarrow(3)$.

4. Ramsey-Like and (\mathcal{I}, \mathcal{J})-BW

In this section, we give some characterizations of $(\mathcal{I}, \mathcal{J})$-BW in terms of Ramsey* property and Mon* property introduced below.

4.1. Ramsey* and Mon* Properties Defined via Pair of Ideals

Let \mathcal{I} be an ideal on $\omega, r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring. Recall that $A \subset \omega$ is I-homogeneous for c if there is $k \in\{0, \cdots, r-1\}$ such that for every $a \in A$,

$$
\{b \in A: c(\{a, b\}) \neq k\} \in \mathcal{I} .
$$

Definition 4.1. ([4]) Let I be an ideal on ω. I is Ramsey ${ }^{*}$ if for every finite coloring of $[\omega]^{2}$ there exists an \mathcal{I}-homogeneous $A \in \mathcal{I}^{+}$.

Definition 4.2. Let \mathcal{I}, \mathcal{J} be ideals on ω. We say that the pair $(\mathcal{I}, \mathcal{J})$ is Ramsey* if for every finite coloring of [$\omega]^{2}$ there exists $A \in \mathcal{I}^{+}$that is \mathcal{J}-homogeneous.

When $\mathcal{I}=\mathcal{J}$ we say that \mathcal{I} has Ramsey* instead of $(\mathcal{I}, \mathcal{I})$ having Ramsey*. It is not hard to see that for any ideals \mathcal{I}, \mathcal{J} on ω, if $\mathcal{I} \not \subset \mathcal{J}$, then the pair $(\mathcal{J}, \mathcal{I})$ is Ramsey*. Indeed, picking $A \in \mathcal{I} \backslash \mathcal{J}$, we have that for every finite coloring c of $[\omega]^{2}, A$ is I-homogeneous for c.

Let I be an ideal on ω. Recall that a sequence $\left\langle x_{n}: n \in A\right\rangle$ in [0,1] is \mathcal{I}-increasing if for every $N \in A$

$$
\left\{n \in A: x_{N} \geq x_{n}\right\} \in \mathcal{I} .
$$

Analogously, we can define I-decreasing, I-nonincreasing and I-nondecreasing sequences. A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$ is \mathcal{I}-monotone if it is \mathcal{I}-nonincreasing or \mathcal{I}-nondecreasing.

Definition 4.3. ([4]) Let I be an ideal on ω, we say that I is $M o n^{*}$ if for every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in [0,1] there exists $A \in \mathcal{I}^{+}$such that $\left\langle x_{n}: n \in A\right\rangle$ is I-monotone.

Remark 4.4. The Mon* property of \mathcal{I} is a generalization of the Mon property which says that for every infinite sequence of real numbers there exists a monotone subsequence which is indexed by some member of I^{+}. It has been showed that Mon implies local selectivity ([4], Lemma 3.9), but we point out that Mon* does not necessary imply local selectivity, and the ideal $\mathcal{E D}$ is a counterexample, where

$$
\mathcal{E D}=\left\{A \subseteq \omega \times \omega:(\exists m, n \in \omega)(\forall k \geq n)\left(\left|A_{(k)}\right| \leq m\right)\right\} .
$$

To see this, note first that $\mathcal{E D} \leq_{K} \mathcal{I}$ if and only if \mathcal{I} is not local selective (p. 51, [10]). On the other hand, $\mathcal{E D}$ is an F_{σ}-ideal, and every F_{σ}-ideal satisfies FinBW ([5], Proposition 3.4), then $\mathcal{E D}$ satisfies FinBW, which implies Mon* ([4], Theorem 4.3).

Definition 4.5. Let \mathcal{I}, \mathcal{J} be ideals on ω. We say that the pair $(\mathcal{I}, \mathcal{J})$ is Mon * if every sequence in $[0,1]$ contains a \mathcal{J}-monotone \mathcal{I}-subsequence. That is, for every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$ such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.

By modifying the proof of Theorem 4.3 in [4], we get the following characterization of $(\mathcal{I}, \mathcal{J})$-BW.
Theorem 4.6. Let \mathcal{I}, \mathcal{J} be ideals on ω, then the following conditions are equivalent:
(1) $(\mathcal{I}, \mathcal{J})$ is Ramsey*,
(2) $(\mathcal{I}, \mathcal{J})$ is $M o n^{*}$,
(3) $[0,1]$ has $(\mathcal{I}, \mathcal{J})-B W$.

Proof. (1) $\Rightarrow(2)$ Let $\left\langle x_{n}: n \in \omega\right\rangle$ be a sequence in [0,1], define a coloring $c:[\omega]^{2} \rightarrow\{0,1\}$ by
$c(\{n, m\})=0$ if $n<m$ and $x_{n} \leq x_{m} ; c(\{n, m\})=1$, otherwise.
Since $(\mathcal{I}, \mathcal{J})$ is Ramsey ${ }^{*}$, there exists $A \in \mathcal{I}^{+}$such that A is \mathcal{J}-homogeneous for c. So we may assume that for every $n \in A$,

$$
\{m: c(\{n, m\})=1\} \in \mathcal{J} .
$$

Therefore, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-increasing.
(2) \Rightarrow (3) Assume that $(\mathcal{I}, \mathcal{J})$ is $M o n^{*}$. For a given sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone. We may assume that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-nondecreasing. Let

$$
x=\sup _{n \in A} x_{n} .
$$

For any $\varepsilon>0$, there is $x_{N} \in A$ such that $x_{N}>x-\varepsilon$. Then

$$
\left\{n \in A:\left|x_{n}-x\right| \geq \varepsilon\right\} \subseteq\left\{n \in A: x_{N}>x_{n}\right\} \in \mathcal{J}
$$

Thus, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent to x.
$(3) \Rightarrow(1)$ Let $r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring of $[\omega]^{2}$. We shall define a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that satisfies $S_{1}-S_{3}$ as follows

- $A_{\emptyset}=\omega$,
- $A_{s \sim i}=\left\{n \in A_{s}: c(l h(s \frown i), n)=i\right\}, i \in\{0, \cdots, r-1\}$.

Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW, so ω is not a $(\mathcal{J}, \mathcal{I})$-small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$ such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in\{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^{+}$such that $x(k-1)=i$ for every $k \in C$. It is not hard to see that for every $n \in C$,

$$
\{k \in C: c(\{n, k\}) \neq i\} \subseteq C \backslash A_{x \mid n} \in \mathcal{J}
$$

This implies that C is \mathcal{J}-homogeneous as desired.
Recall that an ideal \mathcal{I} is called a P-ideal if for every countable $\mathcal{A} \subseteq I$, there exists $B \in I$ such that $A \subseteq^{*} B$ for each $A \in \mathcal{A}$. The following results are showed in [4].

Corollary 4.7. Let I be an ideal on ω. Then the following statements hold:
(1) $[0,1]$ has (\mathcal{I}, Fin)-BW if, and only if (\mathcal{I}, Fin) has Ramsy*.
(2) If \mathcal{I} is a P-ideal, then $(\mathcal{I}, \mathcal{I})$ has Ramsey* if, and only if (\mathcal{I}, Fin) has Ramsey*.

Proof. Assertion (1) follows by replacing \mathcal{J} by Fin. As for assertion (2), it is enough to notice that for every P-ideal $\mathcal{I},(I, F i n)$-BW is equal to $(\mathcal{I}, \mathcal{I})$-BW.

4.2. Q-Property and Selectivity Defined via Pair of Ideals

As mentioned previously, our aim is to seek for characterizations of $(\mathcal{I}, \mathcal{J})$-BW, so it becomes natural to extend the notions of Q-ideal and selectivity to some general ones. In order to do so, we need the following notations:

- $Q(\mathcal{I})=\{A \subseteq \omega: \mathcal{I} \mid A$ is a local Q-ideal $\} ;$
- $\operatorname{Se}(\mathcal{I})=\{A \subseteq \omega: I \mid A$ is locally selective $\}$.

Using these notations, I is weak Q if and only if $Q(\mathcal{I})=I^{+} ; I$ is weakly selective if and only if $\operatorname{Se}(\mathcal{I})=I^{+}$. Now, we introduce the following definitions.

Definition 4.8. Let \mathcal{I}, \mathcal{J} be ideals on ω, then

- $(\mathcal{I}, \mathcal{J})$ is weak Q if $Q(\mathcal{J})=\mathcal{I}^{+}$;
- $(\mathcal{I}, \mathcal{J})$ is weakly selective if $\operatorname{Se}(\mathcal{J})=\mathcal{I}^{+}$.

Clearly, $(\mathcal{I}, \mathcal{J})$ is weak selective $\Rightarrow(\mathcal{I}, \mathcal{J})$ is weak $Q \Rightarrow \mathcal{J} \subseteq \mathcal{I}$. Moreover, we observe the following simple facts.

Proposition 4.9. Let \mathcal{I} be an ideal on ω with $\mathcal{I} \not \approx \operatorname{Fin} \oplus \mathcal{P}(\omega)$.
(1) If it is locally selective, then $I^{*} \subseteq \operatorname{Se}(\mathcal{I})$.
(2) If it is local Q, then $I^{*} \subseteq Q(\mathcal{I})$.

Proof. Note that $I \not \equiv \operatorname{Fin} \oplus \mathcal{P}(\omega)$ implies $I^{*} \subseteq H(\mathcal{I})$, this is proved in Proposition 1.2 in [12]. In addition, $H(\mathcal{I}) \subseteq \operatorname{Se}(\mathcal{I})$ if \mathcal{I} is locally selective and $H(\mathcal{I}) \subseteq Q(\mathcal{I})$ if \mathcal{I} is local Q. Therefore, both of (1) and (2) hold.

Remark 4.10. If $\mathcal{I} \cong \operatorname{Fin} \oplus \mathcal{P}(\omega)$, then \mathcal{I}^{*} does not necessary contained in $H(\mathcal{I})$. But we also have that $I^{*} \subseteq \operatorname{Se}(\mathcal{I})$ whenever \mathcal{I} is locally selective: Let $A \in I^{*}$. For any separation $\left\{I_{n}: n \in \omega\right\}$ of A with sets from I, then $\left\{I_{n}: n \in \omega\right\} \cup\{\omega \backslash A\}$ is a partition of ω into sets from \mathcal{I}. So there exists $S \in I^{+}$such that $|S \cap(\omega \backslash A)| \leq 1$ and $\left|S \cap I_{n}\right| \leq 1$ for every $n \in \omega$. Note that $S \cap A \in I^{+}$since $|S \cap(\omega \backslash A)| \leq 1$, so $S \cap A$ is a desired selector for $\left\{I_{n}: n \in \omega\right\}$.

Note that both of $Q(\mathcal{I})$ and $\operatorname{Se}(\mathcal{I})$ are closed under supersets, we observe the following:
Proposition 4.11. The following are hold for any ideal I on ω :
(1) I is weak Q if, and only if $Q(\mathcal{I})$ is \mathcal{I}^{+}-dense,
(2) I is weak selective if, and only if $\operatorname{Se}(\mathcal{I})$ is I^{+}-dense,

Theorem 4.12. Let \mathcal{I}, \mathcal{J} be ideals on ω such that $(\mathcal{I}, \mathcal{J})$ is weak selective. For the following conditions:
(1) $[0,1]$ has $(\mathcal{I}, \mathcal{J})-B W$;
(2) For every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions $S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $C \in \mathcal{J}^{+}$such that $C \subseteq^{*} A_{x \mid n}$ for each $n \in \omega$;
(3) $[0,1]$ has $(\mathcal{T}, \mathcal{I})-B W$
it holds that $(1) \Rightarrow(2) \Rightarrow(3)$.
Proof. (1) \Rightarrow (2) Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW implies that $\omega \notin \mathcal{S}_{(\mathcal{J}, I)}$. So for every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions $S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for every $n \in \omega$. It is easy to see that

$$
B \backslash A_{x \mid 1}, B \cap\left(A_{x \mid 2} \backslash A_{x \mid 1}\right), \cdots, B \cap\left(A_{x \mid n+1} \backslash A_{x \mid n}\right), \cdots
$$

is a partition of B into sets from \mathcal{J}. Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J} \mid B$ is locally selective. Thus, there exists $C \subset B$ with $C \in \mathcal{J}^{+}$such that $\left|C \cap B \backslash A_{x \mid 1}\right| \leq 1,\left|C \cap B \cap\left(A_{x \mid 2} \backslash A_{x \mid n}\right)\right| \leq 1$ for every $n \in \omega$. It is easy to check that the set C is desired.
(2) \Rightarrow (3) It is enough to show that ω is not an $(\mathcal{I}, \mathcal{J})$-small set. To this end, for every $r \in \omega$, for any family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfying $S_{1}-S_{3}$. By (2), there are $x \in r^{\omega}$ and $C \in \mathcal{J}^{+}$such that for each $n \in \omega$, $C \backslash A_{x \mid n} \in$ Fin $\subseteq I$.

Remark 4.13. Recall that an ideal I is selective, if for any decreasing sequence

$$
F_{1} \supset F_{2} \supset F_{3} \supset \cdots
$$

from \mathcal{I}^{+}, there exists a diagonalization F (i.e, for all $i, j \in F$ with $i<j, j \in F_{i}$). Evidently, if $\bigcap_{n \in \omega} F_{n}$ is nonempty, then it is a diagonalization. If we replace 'weak selective' by 'selective' in the previous result, the set C existing in (2) can be chosen as a diagonalization of $\left\langle A_{x \mid n}: n \in \omega\right\rangle$.

Corollary 4.14. Let I be an ideal on ω which is weak selective. Then following conditions are equivalent:
(1) $[0,1]$ has $(\mathcal{I}, \mathcal{I})-B W$;
(2) For every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions $S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $C \in \mathcal{I}^{+}$such that $C \subseteq^{*} A_{x \mid n}$ for each $n \in \omega$.

Definition 4.15. ([10]) Let \mathcal{I} be an ideal on ω. Recall that I satisfies $\omega \rightarrow\left(\omega, I^{+}\right)_{2}^{2}$ if for every coloring c : $[\omega]^{2} \rightarrow\{0,1\}$ either there is an infinite 0 -homogeneous set X or there is an I-positive 1-homogeneous.

Remark 4.16. It is easy to see that both $\omega \rightarrow\left(\omega, I^{+}\right)_{2}^{2}$ and Ramsy* are weaker than Ramsey property, so it is a natural question to ask what is the relation between $\omega \rightarrow\left(\omega, I^{+}\right)_{2}^{2}$ and Ramsy*. Unfortunately, there is no directed relation between them. In fact, \mathcal{I} being Ramsey ${ }^{*}$ does not imply $\omega \rightarrow\left(\omega, \mathcal{I}^{+}\right)_{2}^{2}$. To see this, let's consider the ideal $\mathcal{E} \mathcal{D}_{\text {fin }}$, where

$$
\mathcal{E} \mathcal{D}_{f i n}=\left\{A \subset\{\langle n, m\rangle \in \omega \times \omega, m \leq n\}:(\exists m, n \in \omega)(\forall k \geq n)\left(\left|A_{(k)}\right| \leq m\right)\right\} .
$$

It is easy to see that $\mathcal{E} \mathcal{D}_{\text {fin }}$ is defined as the restriction of $\mathcal{E D}$ to $\Delta=\{\langle n, m\rangle \in \omega \times \omega: m \leq n\}$. Note that $[0,1]$ has $\left(\mathcal{E} \mathcal{D}_{f i n}, \mathcal{E} \mathcal{D}_{f i n}\right)$-BW property since $\mathcal{E} \mathcal{D}_{f i n}$ is an F_{σ}-ideal, so $\mathcal{E} \mathcal{D}_{f i n}$ is Ramsey* by Theorem 5.6. But $\omega \rightarrow\left(\omega, \mathcal{E} \mathcal{D}_{\text {fin }}^{+}\right)_{2}^{2}$ ([10], Lemma 2.3.8).

4.3. \mathcal{A}-Dense and ω-Diagonalizable

Let \mathcal{I} be an ideal on ω. For a certain $\mathcal{A} \subseteq[\omega]^{\omega}$, recall that \mathcal{I} is ω-diagonalizable by elements of \mathcal{A} if there is a sequence $\left\{A_{n}: n \in \omega\right\} \subseteq \mathcal{A}$ such that for every $I \in I$, there exists $n \in \omega$ such that $I \cap A_{n}=\emptyset$. This notion was introduced in [8] and was useful in characterizing selectivity and density of ideals (see, [13]).

Definition 4.17. Let $\mathcal{A} \subseteq[\omega]^{\omega}$, and \mathcal{I} being an ideal on ω,

- $\operatorname{non}^{*}(\mathcal{A}, \mathcal{I})=\min \{|\mathcal{H}|: \mathcal{H} \subseteq \mathcal{A} \wedge(\forall I \in \mathcal{I})(\exists H \in \mathcal{H})(I \cap H$ is finite $)\}$
- $\operatorname{non}(\mathcal{A}, \mathcal{I})=\min \{|\mathcal{H}|: \mathcal{H} \subseteq \mathcal{A} \wedge(\forall I \in \mathcal{I})(\exists H \in \mathcal{H})(I \cap H=\emptyset)\}$.

It is easy to see that $\operatorname{non}(\mathcal{A}, \mathcal{I})=\omega$ is equal to saying that I is ω-diagonalizable by elements of \mathcal{A}, and non ${ }^{*}\left([\omega]^{\omega}, \mathcal{I}\right)$ coincides with non ${ }^{*}(\mathcal{I})$ introduced in [6] whenever I is dense. In addition, if \mathcal{I} is dense, then non $^{*}\left([\omega]^{\omega}, \mathcal{I}\right)$ is equal to non $\left([\omega]^{\omega}, \mathcal{I}\right)$ ([10], Remark 1.3.1).

The following examples show that $n o n^{*}(\mathcal{A}, \mathcal{I})$ and $\operatorname{non}(\mathcal{A}, \mathcal{I})$ are not defined for all pairs $(\mathcal{A}, \mathcal{I})$. The first one is a dense ideal, and the second is not dense.

Example 4.18. Let \mathcal{I} be a dense P-ideal, and $\mathcal{A} \subset[\omega]^{\omega}$ with $|\mathcal{A}|=\omega$. For any $\mathcal{H} \subseteq \mathcal{A}$, since \mathcal{I} is dense, there exists for each $H \in \mathcal{H}$ an infinite $A_{H} \subseteq H$ such that $A_{H} \in \mathcal{I}$. Since I is a P-ideal, there is $I \in I$ such that $A_{H} \subseteq^{*} I$ for all $H \in \mathcal{H}$. Clearly, I intersects with each member of \mathcal{H} infinitely.

Example 4.19. Let $A \subset \omega$ be an infinite set such that $\omega \backslash A$ is infinite. Put $\langle A\rangle^{*}=\left\{B \subset \omega: B \subseteq^{*} A\right\}$. Then $\langle A\rangle^{*}$ is a P-ideal that is not dense. It is easy to see that the notion of non $(\mathcal{A}, \mathcal{I})$ fails for the pair $\left(\{A\},\langle A\rangle^{*}\right)$.

Lemma 4.20. Let I be an ideal on ω, and $\mathcal{A} \subseteq[\omega]^{\omega}$. For the following conditions:
(1) I is not \mathcal{A}-dense;
(2) $\operatorname{non}^{*}(\mathcal{A}, \mathcal{I})=1$;
(3) $\operatorname{non}(\mathcal{A}, \mathcal{I})=\omega$.
$(1) \Leftrightarrow(2) \Rightarrow(3)$.
Proof. (1) \Leftrightarrow (2) Since \mathcal{I} is not \mathcal{A}-dense, there exists $A \in \mathcal{A}$ such that $[A]^{\omega} \cap \mathcal{I}=\emptyset$. Therefore, non $(\mathcal{A}, \mathcal{I})=1$. The converse is obvious.
$(2) \Rightarrow(3)$ Assume that $n^{*} n^{*}(\mathcal{A}, \mathcal{I})=1$, there exists $A \in \mathcal{A}$ fulfilling this. For each $n \in \omega$, let

$$
A_{n}=A \backslash\{0,1, \cdots, n-1\} .
$$

Then the family $\left\{A_{n}: n \in \omega\right\}$ verifies $\operatorname{non}(\mathcal{A}, \mathcal{I})=\omega$.
Corollary 4.21. ([13], Proposition 3.4) Let \mathcal{I} be an ideal on ω. Then non $\left(\mathcal{I}^{*}, \mathcal{I}\right)=\omega$ if and only if \mathcal{I} is not \mathcal{I}^{*}-dense;
Let T be a tree, $\mathcal{A} \subseteq \mathcal{P}(\omega)$. For each $s \in T$, let $\operatorname{succ}_{T}(s)=\{n>\max (s): s \cup\{n\} \in T\}$. Recall that a tree T is an \mathcal{A}-tree if for every $s \in T$, $\operatorname{succ}_{T}(s) \in \mathcal{A}$, where $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

With the similar discussion of Remark 1.3.1 in [10], we observe that for any family $\mathcal{A} \subseteq[\omega]^{\omega}$ closed under finite modifications, if \mathcal{I} is \mathcal{A}-dense then $\operatorname{non}^{*}(\mathcal{A}, \mathcal{I})=\operatorname{non}(\mathcal{A}, \mathcal{I})$. So, together with Proposition 3.1 in [13], we have the following.

Proposition 4.22. For any ideals \mathcal{I} and \mathcal{J}, if \mathcal{I} is \mathcal{J}^{+}-dense, then $\operatorname{non}^{*}\left(\mathcal{J}^{+}, \mathcal{I}\right)=\omega$ if and only if there exists a \mathcal{J}^{+}-tree with all branches in \mathcal{I}^{+}.

Proposition 4.23. Let $\mathcal{A} \subset[\omega]^{\omega}$ such that \mathcal{A} is dense. Then the following conditions are equivalent:
(1) $\operatorname{non}^{*}(\mathcal{I})=\omega$;
(2) $n o n^{*}(\mathcal{A}, \mathcal{I})=\omega$.

Proof. (2) \Rightarrow (1) Together with \mathcal{I} being \mathcal{A}-dense and \mathcal{A} being dense, we have that \mathcal{I} is dense. In addition, $\operatorname{non}^{*}(\mathcal{A}, \mathcal{I})=\omega$ implies that \mathcal{I} is \mathcal{A}-dense. So \mathcal{I} is dense, and so $\omega \leq \operatorname{non}^{*}(\mathcal{I}) \leq \operatorname{non}^{*}(\mathcal{A}, \mathcal{I})$.
$(1) \Rightarrow(2)$ To check the converse, assume that $A_{0}, A_{1}, \cdots, A_{n}, \cdots$ be a countable family in $[\omega]^{\omega}$ which meet that $n o n^{*}(\mathcal{I})=\omega$. Since \mathcal{A} is dense, there are, for all $n \in \omega, B_{n} \subseteq A_{n}$ such that $B_{n} \in \mathcal{A}$. It is easy to verify that the sequence $B_{n}, n \in \omega$ meet that $\operatorname{non}^{*}(\mathcal{A}, \mathcal{I})=\omega$.

Recall that \mathcal{I} is h-Ramsey (respectively, h-Ramsey*) if for every $A \in \mathcal{I}^{+}, \mathcal{I} \mid A$ is Ramsey (respectively, $\mathcal{I} \mid A$ is Ramsey*)[4]

Theorem 4.24. Let \mathcal{I}, \mathcal{J} be ideals on ω and \mathcal{J} being a weak Q-ideals such that $I \leq_{R B} \mathcal{J}$,
(1) If \mathcal{J} is h-Ramsey*, then I is h-Ramsey*;
(2) If \mathcal{J} is h-Ramsey, then I is h-Ramsey.

Proof. The assertion (1) follows from the facts that h-Ramsey* is equal to h-BW property ([4], Theorem 4.3) and the h-BW property is preserved under the $\leq_{R B}$-order in the realm of Q-ideals ([5], Theorem 6.2).

The key in the proof of the assertion (2) is that I is h-Ramsey if, and only if I is h-Fin-BW and being a weak Q-ideal ([4], Theorem 3.16). So we need the following Claims:
Claim 4.25. Let \mathcal{I}, \mathcal{J} be ideals on ω, and \mathcal{J} being a Q-ideal. If $I \leq_{K В} \mathcal{J}$ then \mathcal{I} is also a Q-ideal.
Proof. Let $f: \omega \rightarrow \omega$ be a finite to one function meeting $I \leq_{K B} \mathcal{J}$. Let $\left\{I_{n}: n \in \omega\right\}$ be a partition of ω into finite sets. Put $A_{n}=\left\{f^{-1}(m): m \in I_{n}\right\}$. Then $\left\{A_{n}: n \in \omega\right\}$ is also a partition of ω into finite sets. It is easy to check that if S is a selector for $\left\{A_{n}: n \in \omega\right\}$, then $f(S)$ is a selector for $\left\{I_{n}: n \in \omega\right\}$, this end the proof.

Claim 4.26. Let \mathcal{I}, \mathcal{J} be ideals on ω, and \mathcal{J} being a weak Q-point. If $I \leq_{R B} \mathcal{J}$ then \mathcal{I} is also a weak Q-ideal.
Proof. Assume $f: \omega \rightarrow \omega$ witness $I \leq_{R B} \mathcal{J}$, so for $A \in \mathcal{I}^{+}, f^{-1}(A) \in \mathcal{J}^{+}$. It is easy to see that $\mathcal{I}\left|A \leq_{K B} \mathcal{J}\right| f^{-1}(A)$. Note that $\mathcal{J} \leq_{K B} \mathcal{J} \mid f^{-1}(A)$ and \mathcal{J} is a weak Q-ideal, so is $\mathcal{J} \mid f^{-1}(A)$. By Claim 2 above we have that $\mathcal{I} \mid A$ is a Q-ideal as well.

Therefore, \mathcal{I} is a weak Q-ideal. In addition, \mathcal{I} is h-Fin-BW by Theorem 6.1 and Theorem 6.2 in [5].
Remark 4.27. In Claim 2, if we replaced $I \leq_{K B} \mathcal{J}$ by $\mathcal{I} \leq_{K} \mathcal{J}$, and \mathcal{I}, \mathcal{J} are Borel ideals, then \mathcal{J} being a Q-ideal also implies that \mathcal{I} is a Q-ideal. To see this, note first that for any Borel ideal $I, n o n(I)=\omega$ if, and only if \mathcal{I} is a Q-ideal ([13], Proposition 3.2), so it is enough to show that non $(\mathcal{I})=\omega$. There are two possible cases: Case 1, if \mathcal{I} is not dense, then $n o n(\mathcal{I})=\omega$; Case 2, if \mathcal{I} is dense, then $n o n^{*}(\mathcal{I}) \geq \omega$, and \mathcal{J} is also dense since $\mathcal{I} \leq_{K} \mathcal{J}$. Since \mathcal{J} being a Q-ideal, we have that non $(\mathcal{J})=\omega$. Moreover, $\mathcal{I} \leq_{K} \mathcal{J}$ implies that non $^{*}(\mathcal{I}) \leq$ non $^{*}(\mathcal{J})\left([10]\right.$, Theorem 1.4.2). Thus, non $^{*}(\mathcal{I})=\omega$.

Definition 4.28. ([6]) Let \mathcal{I} be a dense ideal on $\omega, \operatorname{cov}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge\left(\forall X \in[\omega]^{\omega}\right)(\exists A \in \mathcal{A})(|A \cap X|=\right.$ $\omega)$ \}.

We end this section with the following result related to (I, Fin)-BW property, which tells us that in the realm of dense ideals, $\operatorname{cov}^{*}(\mathcal{I}) \geq \omega_{1}$ hold whenever $[0,1]$ satisfying (\mathcal{I}, Fin)-BW.

Proposition 4.29. Let I be a dense ideal on ω. If $\operatorname{cov}^{*}(\mathcal{I})=\omega$, then $[0,1]$ does not satisfy $(\mathcal{I}$, Fin $)$-BW.
Proof. Assume that $\left\{A_{n}: n \in \omega\right\} \subseteq I$ is a countable family meeting $\operatorname{cov}^{*}(\mathcal{I})=\omega$. Without loss of generality, we may assume that they are pairwise disjoint. Define a sequence $\left\langle x_{k}: k \in \omega\right\rangle$ by

$$
x_{k}=\frac{1}{n+1} \text { for } k \in A_{n} .
$$

Then $\left\langle x_{k}: k \in \omega\right\rangle$ is I-convergent to 0 . But for any $A \in I^{+}$, there exists $n \in \omega$ such that $\left|A \cap A_{n}\right|=\omega$, so $\left\langle x_{k}: k \in A\right\rangle$ cannot be convergent to 0 .

Acknowledgement

We are grateful to the referee for pointing out several errors in the preliminary version of this paper and for valuable suggestions which improved the presentation of the paper.

References

[1] A. Blass, Combinatorial Cardinal Characteristics of the Continuum, In: M. Foreman, A. Kanamori (eds), Handbook of Set Theory, Springer, Dordrecht, 2010. pp. 395-489.
[2] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
[3] H. Fast, Sur la convergence statistique, Coll. Math. 2 (1951) 241-244.
[4] R. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal version of Ramsey Theorem, Czech. Math. J. 136 (2011) 289-308.
[5] R. Filipów, N. Mrożek, I. Recław, P. Szuca, Ideal convergence of bounded sequences, J. Symbolic Logic 72 (2007) $501-512$.
[6] F. Hernández-Hernández, M. Hrušák, Cardinal invariants of analytic P-ideals, Canadian. J. Math. 59 (2007) 575-595.
[7] M. Hrusak, Combinatorics of filters and ideals, In: Set Theory and its Applications, vol. 533 of Contemp. Math., 2011, pp. 29-69.
[8] C. Laflamme, Filter games and combinatorial properties of winning strategies, Contemp. Math. 192 (1996) 51-67.
[9] C. Laflamme, J. Zhu, The Rudin-Blass ordering of ultrafilters, J. Symbolic Logic 63 (1998) 584-592.
[10] D. Meza-Alcántara, Ideals and filters on countable sets, Ph.D thesis, UNAM México, 2009.
[11] M. Katĕtov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968) 173-189.
[12] A. Kwela, J. Tryba, Homogeneous ideals on countable sets, Acta. Math. Hungarica 151 (2017) 139-161.
[13] A. Kwela, P. Zakrzewski, Combinatorics of ideals - selectivity versus density, Comment. Math. Univ. Carolinae 58 (2017) $261-266$.

[^0]: 2010 Mathematics Subject Classification. Primary 05D10; Secondary 40A35, 54A20
 Keywords. $(\mathcal{I}, \mathcal{J})$-BW, Ramsey*, Splitting family
 Received: 14 October 2018; Revised: 18 March 2019; Accepted: 21 March 2019
 Communicated by Ljubiša D.R. Kočinac
 Research supported by NSFC \#11771311
 Email addresses: 770186166@qq.com (Jiakui Yu), zhangsg@scu.edu.cn (Shuguo Zhang)

