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Abstract. Let I, J be ideals on ω, we say that a space X has (I,J)-BW property if every sequence in X
contains aJ-converging subsequence indexed by anI-positive set. This is a common generalization of BW-
like properties types. By modifying some classic notions, we obtain some characterizations of (I,J)-BW
property.

1. Introduction

We need to recall first some necessary notions in order to formulate problems we will consider in this
paper. The letter ω denote the set of all natural numbers, an ideal on ω is a family of subsets of ω closed
under taking finite unions and subsets of its elements. By Fin we denote the ideal of all finite subsets of ω.
If not explicitly said we assume that all considered ideals are proper and contain Fin.

Let I be an ideal on ω, and X being a topological space. For sequence 〈xn : n ∈ ω〉 in X, we say that
〈xn : n ∈ ω〉 is I-convergent to l if for each open neighborhood U of l,

{n : xn < U} ∈ I.

The notion of I-convergence is a generalization of the classical one. It was first considered by Steinhaus
and Fast [3] in the case of the ideal of sets of statistical density 0:

Id = {A ⊂ ω : lim supn→∞
|A∩n|

n = 0}.

By an I-subsequence of 〈xn : n ∈ ω〉 we means 〈xn : n ∈ A〉 for some A < I. Filipów, Mrożek, Recław and
Szuca introduced the following notions ([5], Subsection 2.3):

Definition 1.1. Let I be an ideal on ω, X being a topological space.

• (X,I) satisfies BW if every sequence in X has I-convergent I-subsequence;

• (X,I) satisfies FinBW if every sequence in X has convergent I-subsequence;

If ([0, 1],I) satisfies BW (FinBW), we will omit the underlying space [0, 1] and say I is satisfying BW
(FinBW).

These notions involve two ideals: I and Fin. We are interested in the question how about if we replace
Fin by another ideal J? Here is the key definition, which is a common generalization of these types.
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Definition 1.2. Let I,J be ideals on ω, X being a topological space. We say that X has (I,J)-BW property
if every sequence in X has J-convergent I-subsequence.

Remark 1.3. It is worthy to point out that if I * J , then for arbitrary space X, it has (J ,I)-BW property.
Indeed, picking A ∈ I \ J , A can deal with any sequence in X.

Our considerations are based on the works of Filipów-Mrożek- Recław-Szuca in [4], [5]. In particular,
we are motivated by the following results:

∗ : I satisfies BW if, and only if there is no countable I-splitting family.

∗∗ : If I is a weak Q-point, then the following conditions are equivalent:

(1) I is Ramsey;

(2) I is Mon;

(3) I is FinBW.

In Section 2, some basic notions will be introduced. In Section 3, we generalize the term ∗. In particular,
we show that if there is no countable (I,J)-splitting family, then [0, 1] satisfies (I,J)-BW, and this implies
that there is no countable (J ,I)-splitting family. In Section 4, we introduce Ramsey∗-property, Mon∗-
property for pairs (I,J) and use them to characterize the (I,J)-BW property. In addition, a slightly
general ω-diagonalizable property is introduced, and we check its relation among density, Ramsey∗ and
(I,J)-BW property in this section.

2. Preliminaries

Let I be an ideal on ω. If A < I, we say that A is I-positive. In the next, we will use the following
notations:

• I
+ = {A ⊆ ω : A < I};

• I
∗ = {A ⊆ ω : ω \ A ∈ I};

• I|A = {I ∩ A : I ∈ I}, for each A ∈ I+,

2.1. Orderings

Let I, J be ideals on ω. For a map ϕ : ω→ ω, the image of J is defined by

ϕ(J) = {A ⊆ ω : ϕ−1(A) ∈ J}.

Clearly, ϕ(J) is closed under subsets and finite unions and ω < ϕ(J). Moreover, if ϕ is finite-to-one then
ϕ(J) is an ideal. Let’s recall the following notions:

Definition 2.1. Let I, J be ideals on ω,

• I ≤K J if there is a function ϕ : ω→ ω such that I ⊆ ϕ(J), i.e, ϕ−1(A) ∈ J for any A ∈ I [11];

• I ≤KB J if there is a finite-to-one function ϕ : ω→ ω such that I ≤K J [11];

• I ≤RB J if there is a finite-to-one function ϕ : ω → ω such that A ∈ I if, and only if ϕ−1(A) ∈ J for
every A ⊂ ω [9];

• I � J if there is a bijection ϕ : ω→ ω such that A ∈ I if, and only if ϕ−1(A) ∈ J for every A ⊂ ω.

The (pre)orderings on ideals, in some sense, are significant in describing some properties of ideals.
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2.2. A-dense

Let I be an ideal on ω. Recall that I is dense (or tall) if every infinite set A ⊆ ω contains an infinite
subset B that belongs to I.

Definition 2.2. LetA, B be sets of subsets of ω. We say that B isA-dense if for each A ∈ A, there exists an
infinite B ⊆ A such that B ∈ B.

Evidently,I being [ω]ω-dense coincides withI being dense. In addition, for any idealI,I+ is [ω]ω-dense
if, and only if I = Fin.

Lots of combinatorial properties of ideals are related to the general density above, we present here some
examples.

Example 2.3. Let I be an ideal on ω with I � Fin. If I � Fin ⊕ P(ω), then I is I∗-dense, where Fin ⊕ P(ω)
is an ideal on {0, 1} × ω defined by

Fin ⊕ P(ω) = {A ⊂ {0, 1} × ω : {n ∈ ω : (0,n) ∈ A} ∈ Fin}.

Example 2.4. The following notions are introduced and studied in [12]: For any ideal I, put

H(I) = {A ⊆ ω : I|A � I}.

It is called the homo1eneous f amily o f the idealI. An idealI is homo1eneous ifI+ = H(I);I is anti-homo1eneous
if H(I) = I∗. These notions can be reformulated in terms of density as follows:

(1) I is homogeneous if, and only if H(I) is I+-dense.

(2) If I � Fin ⊕ P(ω), then I is anti-homogeneous if, and only if I∗ is H(I)-dense

The assertion (1) is Corollary 2.2 in [12]. Both proofs rely on the simple fact that if A is B-dense and A is
closed under supersets (i.e, if A ⊆ B and A ∈ A, then B ∈ A), then B ⊆ A.

Remark 2.5. Let I be an ideal on ω,

(1) I isA-dense if and only if ∀A ∈ A, I|A , Fin(A), where Fin(A) denotes the set of all finite subsets of
A.

(2) If I is dense and I ≤K J , then J is dense.

(3) H(I) is closed under supersets ([12], Theorem 2.1).

2.3. Q-Ideal and Selectivity

Let’s recall some combinatorial properties of ideals. Let I be an ideal on ω,

• I is local Q if for every partition {An : n ∈ ω} ⊂ Fin of ω, there exists A ∈ I+ such that |A ∩ An| ≤ 1 for
each n ∈ ω;

• I is locally selective if for every partition {An : n ∈ ω} ⊂ I ofω, there exists A ∈ I+ such that |A∩An| ≤ 1
for each n ∈ ω.

• I is weak Q if for every A ∈ I+, I|A is local Q.

• I is weakly selective if for every A ∈ I+, I|A is locally selective.
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3. (I ,J )-Splitting Family and (I ,J )-BW

Let S ⊆ [ω]ω, and I being an ideal on ω. Recall that a family S is I-splitting if for every A ∈ I+ there
exists S ∈ S such that A ∩ S ∈ I+ and A \ S ∈ I+ [5].

Definition 3.1. Let I, J be ideals on ω, and S ⊂ [ω]ω. We say that S is an (I,J)-splitting family if for
every A ∈ I+ there exists X ∈ S such that both of A ∩ X and A \ X belong to J+.

Evidently, when I is equal to J , the (I,J)-splitting family coincides with the I-splitting family men-
tioned above.

Let s(I,J) be the smallest cardinality of an (I,J)-splitting family. It is easy to see that the s(Fin,Fin) is
just the splittin1 number s introduced in [1], and s(I,I) is just s(I) defined in [4].

In terms of cardinality, the assertion ∗ mentioned in Section 1 can be reformulated as the follows: I
satisfies BW if, and only if s(I) > ω.

Proposition 3.2. Let I, J be ideals on ω with I ⊆ J . Then s(I,J) ≥ s(J ,I).

Let r ∈ ω, s ∈ rn and i ∈ {0, · · · , r − 1}, by s _ i we mean the sequence of length n + 1 (write lh(s) = n + 1)
which extends s by i. If x ∈ rω and n ∈ ω, x|n denotes the initial segment x|n = 〈x(0), x(1), · · · , x(n − 1)〉.

Now, we are in the position to introduce the main tool, which is a generalization of I-small set used in
[5]:

Definition 3.3. Let I,J be ideals on ω. A ⊂ ω is called an (I,J)-small set if there exists r ∈ ω, and exists a
family {As : s ∈ r<ω} such that for all s ∈ r<ω, we have

S1 A∅ = A,

S2 As = As_0 ∪ · · · ∪ As_(r−1),

S3 As_i ∩ As_ j = ∅ for every i , j,

S4 for every b ∈ rω, every X ⊂ ω, if X \ Ab|n ∈ I for each n ∈ ω, then X ∈ J .

Let S(I,J) denote all (I,J)-small sets in P(ω). Note that S(I,J) , ∅ if, and only if I ⊆ J ⊆ S(I,J).
The following result can be viewed as a generalization of Proposition 2.9 in [4].

Theorem 3.4. ω < S(I,J) if, and only if [0, 1] satisfies (J ,I)-BW.

Proof. Thanks to the simple fact that (J ,I)-BW property is preserved for closed subsets and continuous
images, [0, 1] has (J ,I)-BW property if, and only if 2ω has (J ,I)-BW property. Thus, we consider the
Cantor space 2ω instead of [0, 1].
⇒ Assume that ω < S(I,J). For every sequence 〈xn : n ∈ ω〉 in 2ω, every s ∈ 2<ω, put

As = {n : s ⊂ xn}.

Then {As : s ∈ 2<ω} satisfies S1 − S3. Since ω < S(I,J), by the condition S4, there exists X < J and b ∈ 2ω such
that X \ Ab|n ∈ I for each n ∈ ω. Then 〈xn : n ∈ X〉 is I-convergent to b.
⇐ For the sake of contradiction, we may suppose that ω ∈ S(I,J). So there exists r ∈ ω, {As : s ∈ r<ω}

such that the conditions S1-S4 are fulfilled. Note that for each n ∈ ω, there is exactly one xn ∈ 2ω such that
n ∈ Axn |l for each l ∈ ω. Then we obtain a sequence 〈xn : n ∈ ω〉 in 2ω. Since 2ω satisfies (J ,I)-BW, the
sequence has an I-convergent J-subsequence, namely, there is a x ∈ 2ω and X ⊆ ω with X ∈ J+ such that
〈xn : n ∈ X〉 is I-convergent to x. Since for each l ∈ ω

X \ Ax|l ⊆ {n ∈ X : |x − xn| ≥
1
2l } ∈ I.

By the condition S4, X ∈ J , but this contradicts the fact that X ∈ J+. Therefore, we complete the proof.
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Theorem 3.5. Let I, J be ideals on ω with J ⊆ I. In the following list of conditions each implies the next:

(1) s(I,J) > ω.

(2) [0, 1] satisfies (I,J)-BW.

(3) s(J ,I) > ω.

Proof. (1) ⇒ (2) Suppose that [0, 1] does not have (I,J)-BW. By Theorem 3.4, ω is a (J ,I)-small set. We
may assume that there exists a r ∈ ω, and a family {As : s ∈ r<ω} such that the conditions S1 −S3 are fulfilled.
In what follows we will show that {As : s ∈ r<ω} is an (I,J)-splitting family. For the sake of contradiction,
suppose that there is X ∈ I+ such that for every s ∈ r<ω either X ∩ As ∈ J or X \ As ∈ J . Put

T = {s ∈ r<ω : X \ As ∈ J}.

Then T is a tree on {0, · · · , r− 1}with finite branches for every level. In order to see that T is an infinite tree,
we need the following Claim:

Claim 3.6. For any n ∈ ω, there is s ∈ rn such that X \ As ∈ J .

Proof. Suppose that there exists n ∈ ω such that for every s ∈ rn, X \ As ∈ J
+, that is, X ∩ As ∈ J for all

s ∈ rn. Note that ω =
⋃

s∈rn
As, so

X =
⋃

s∈rn
(X ∩ As) ∈ J .

This contradicts the assumption that for every s ∈ rn, X \ As ∈ J
+.

Since T is an infinite tree with finite branches, by König’s lemma, there exists b ∈ rω such that X \ Ab|n ∈ J

for every n ∈ ω. According to the fact that ω is an (J ,I)-small set we have that X ∈ I. Contradiction.
(2) ⇒ (3) Suppose that s(J ,I) = ω, and {Sn : n ∈ ω} be a (J ,I)-splitting family. We will construct a

family {As : s ∈ 2<ω}which verifies ω ∈ S(J ,I)( this implies that [0, 1] does not have (I,J)-BW property).
First, take A∅ = ω, and let n∅ be the smallest n such that Sn splits ω. Put

A0 = A∅ ∩ An∅ ; A1 = A∅ \ An∅ .

Then A0 ∈ I
+ and A1 ∈ I

+.
Suppose that we have already constructed As for all s ∈ 2n. Then for each s ∈ 2n, As ∈ I

+. Let ns be the
smallest n such that Sn splits As. Put

As_0 = As ∩ Sns , As_1 = As \ Sns .

According to the definition of (J ,I)-splitting family, both of As_0 and As_1 are in I+. This allows us to
keep this proceed going and then we finish our construction. Clearly, the family {As : s ∈ 2<ω} satisfies
S1 − S3, it is enough to show that this family also satisfies the condition S4. For every b ∈ 2ω, every X ⊂ ω
with X \Ab|n ∈ J for every n ∈ ω. Suppose that X ∈ I+. Let nX be the smallest n such that Sn splits X. Since
X \ Ab|n ∈ J for every n ∈ ω, so SnX splits Ab|n for every n ∈ ω. Hence, there is k ≤ nX such that Snb|k = SnX .
Then either Ab|k+1 = Ab|k ∩ SnX or Ab|k+1 = Ab|k \ SnX . This implies that SnX does not split Ab|k+1, which is a
contradiction. Therefore, the family {As : s ∈ 2<ω} also satisfies S4.

Remark 3.7. We should point out that the assumption of J ⊆ I in the premise is used in the implication
(2)⇒ (3).

4. Ramsey-Like and (I ,J )-BW

In this section, we give some characterizations of (I,J)-BW in terms of Ramsey∗ property and Mon∗

property introduced below.
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4.1. Ramsey∗ and Mon∗ Properties Defined via Pair of Ideals
Let I be an ideal on ω, r ∈ ω, and c : [ω]2

→ {0, · · · , r − 1} being a coloring. Recall that A ⊂ ω is
I-homogeneous for c if there is k ∈ {0, · · · , r − 1} such that for every a ∈ A,

{b ∈ A : c({a, b}) , k} ∈ I.

Definition 4.1. ([4]) Let I be an ideal on ω. I is Ramsey∗ if for every finite coloring of [ω]2 there exists an
I-homogeneous A ∈ I+.

Definition 4.2. Let I,J be ideals on ω. We say that the pair (I,J) is Ramsey∗ if for every finite coloring of
[ω]2 there exists A ∈ I+ that is J-homogeneous.

When I = J we say that I has Ramsey∗ instead of (I,I) having Ramsey∗. It is not hard to see that for
any ideals I,J on ω, if I 1 J , then the pair (J ,I) is Ramsey∗. Indeed, picking A ∈ I \J , we have that for
every finite coloring c of [ω]2, A is I-homogeneous for c.

Let I be an ideal on ω. Recall that a sequence 〈xn : n ∈ A〉 in [0, 1] is I-increasing if for every N ∈ A

{n ∈ A : xN ≥ xn} ∈ I.

Analogously, we can define I-decreasing, I-nonincreasing and I-nondecreasing sequences. A sequence
〈xn : n ∈ ω〉 in [0, 1] is I-monotone if it is I-nonincreasing or I-nondecreasing.

Definition 4.3. ([4]) Let I be an ideal on ω, we say that I is Mon∗ if for every sequence 〈xn : n ∈ ω〉 in [0, 1]
there exists A ∈ I+ such that 〈xn : n ∈ A〉 is I-monotone.

Remark 4.4. The Mon∗ property of I is a generalization of the Mon property which says that for every
infinite sequence of real numbers there exists a monotone subsequence which is indexed by some member
of I+. It has been showed that Mon implies local selectivity ([4], Lemma 3.9), but we point out that Mon∗

does not necessary imply local selectivity, and the ideal ED is a counterexample, where

ED = {A ⊆ ω × ω : (∃m,n ∈ ω)(∀k ≥ n)(|A(k)| ≤ m)}.

To see this, note first that ED ≤K I if and only if I is not local selective (p. 51, [10]). On the other hand,
ED is an Fσ-ideal, and every Fσ-ideal satisfies FinBW ([5], Proposition 3.4), then ED satisfies FinBW, which
implies Mon∗ ([4], Theorem 4.3).

Definition 4.5. Let I, J be ideals on ω. We say that the pair (I,J) is Mon∗ if every sequence in [0, 1]
contains aJ-monotone I-subsequence. That is, for every sequence 〈xn : n ∈ ω〉 in [0, 1], there exists A ∈ I+

such that 〈xn : n ∈ A〉 is J-monotone.

By modifying the proof of Theorem 4.3 in [4], we get the following characterization of (I,J)-BW.

Theorem 4.6. Let I, J be ideals on ω, then the following conditions are equivalent:

(1) (I,J) is Ramsey∗,

(2) (I,J) is Mon∗,

(3) [0, 1] has (I,J)-BW.

Proof. (1)⇒ (2) Let 〈xn : n ∈ ω〉 be a sequence in [0, 1], define a coloring c: [ω]2
→ {0, 1} by

c({n,m}) = 0 if n < m and xn ≤ xm; c({n,m}) = 1, otherwise.

Since (I,J) is Ramsey∗, there exists A ∈ I+ such that A is J-homogeneous for c. So we may assume that
for every n ∈ A,

{m : c({n,m}) = 1} ∈ J .
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Therefore, 〈xn : n ∈ A〉 is J-increasing.
(2)⇒ (3) Assume that (I,J) is Mon∗. For a given sequence 〈xn : n ∈ ω〉 in [0, 1], there exists A ∈ I+ such

that 〈xn : n ∈ A〉 is J-monotone. We may assume that 〈xn : n ∈ A〉 is J-nondecreasing. Let

x = supn∈Axn.

For any ε > 0, there is xN ∈ A such that xN > x − ε. Then

{n ∈ A : |xn − x| ≥ ε} ⊆ {n ∈ A : xN > xn} ∈ J .

Thus, 〈xn : n ∈ A〉 is J-convergent to x.
(3) ⇒ (1) Let r ∈ ω, and c: [ω]2

→ {0, · · · , r − 1} being a coloring of [ω]2. We shall define a family
{As : s ∈ r<ω} that satisfies S1-S3 as follows

• A∅ = ω,

• As_i = {n ∈ As : c(lh(s _ i),n) = i}, i ∈ {0, · · · , r − 1}.

Note that [0, 1] has (I,J)-BW, so ω is not a (J ,I)-small set, this implies that there are x ∈ rω and B ∈ I+

such that B \ Ax|n ∈ J for all n ∈ ω. Then there exists i ∈ {0, · · · , r − 1}, and C ⊆ B with C ∈ I+ such that
x(k − 1) = i for every k ∈ C. It is not hard to see that for every n ∈ C,

{k ∈ C : c({n, k}) , i} ⊆ C \ Ax|n ∈ J .

This implies that C is J-homogeneous as desired.

Recall that an ideal I is called a P-ideal if for every countableA ⊆ I, there exists B ∈ I such that A ⊆∗ B
for each A ∈ A. The following results are showed in [4].

Corollary 4.7. Let I be an ideal on ω. Then the following statements hold:

(1) [0, 1] has (I,Fin)-BW if, and only if (I,Fin) has Ramsy∗.

(2) If I is a P-ideal, then (I,I) has Ramsey∗ if, and only if (I,Fin) has Ramsey∗.

Proof. Assertion (1) follows by replacing J by Fin. As for assertion (2), it is enough to notice that for every
P-ideal I, (I,Fin)-BW is equal to (I,I)-BW.

4.2. Q-Property and Selectivity Defined via Pair of Ideals
As mentioned previously, our aim is to seek for characterizations of (I,J)-BW, so it becomes natural to

extend the notions of Q-ideal and selectivity to some general ones. In order to do so, we need the following
notations:

- Q(I) = {A ⊆ ω : I|A is a local Q-ideal};

- Se(I) = {A ⊆ ω : I|A is locally selective}.

Using these notations, I is weak Q if and only if Q(I) = I+; I is weakly selective if and only if Se(I) = I+.
Now, we introduce the following definitions.

Definition 4.8. Let I, J be ideals on ω, then

• (I,J) is weak Q if Q(J) = I+;

• (I,J) is weakly selective if Se(J) = I+.

Clearly, (I,J) is weak selective⇒ (I,J) is weak Q⇒J ⊆ I. Moreover, we observe the following simple
facts.

Proposition 4.9. Let I be an ideal on ω with I � Fin ⊕ P(ω).
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(1) If it is locally selective, then I∗ ⊆ Se(I).

(2) If it is local Q, then I∗ ⊆ Q(I).

Proof. Note that I � Fin ⊕ P(ω) implies I∗ ⊆ H(I), this is proved in Proposition 1.2 in [12]. In addition,
H(I) ⊆ Se(I) if I is locally selective and H(I) ⊆ Q(I) if I is local Q. Therefore, both of (1) and (2) hold.

Remark 4.10. If I � Fin ⊕ P(ω), then I∗ does not necessary contained in H(I). But we also have that
I
∗
⊆ Se(I) whenever I is locally selective: Let A ∈ I∗. For any separation {In : n ∈ ω} of A with sets from I,

then {In : n ∈ ω} ∪ {ω \A} is a partition of ω into sets from I. So there exists S ∈ I+ such that |S∩ (ω \A)| ≤ 1
and |S∩ In| ≤ 1 for every n ∈ ω. Note that S∩A ∈ I+ since |S∩ (ω \A)| ≤ 1, so S∩A is a desired selector for
{In : n ∈ ω}.

Note that both of Q(I) and Se(I) are closed under supersets, we observe the following:

Proposition 4.11. The following are hold for any ideal I on ω:

(1) I is weak Q if, and only if Q(I) is I+-dense,

(2) I is weak selective if, and only if Se(I) is I+-dense,

Theorem 4.12. Let I, J be ideals on ω such that (I,J) is weak selective. For the following conditions:

(1) [0, 1] has (I,J)-BW;

(2) For every r ∈ ω, every family {As : s ∈ r<ω} fulfilling conditions S1-S3, there are x ∈ rω and C ∈ J+ such that
C ⊆∗ Ax|n for each n ∈ ω;

(3) [0, 1] has (J ,I)-BW

it holds that (1)⇒ (2)⇒ (3).

Proof. (1) ⇒ (2) Note that [0, 1] has (I,J)-BW implies that ω < S(J ,I). So for every r ∈ ω, every family
{As : s ∈ r<ω} fulfilling conditions S1-S3, there are x ∈ rω and B ∈ I+ such that B \Ax|n ∈ J for every n ∈ ω. It
is easy to see that

B \ Ax|1, B ∩ (Ax|2 \ Ax|1), · · · , B ∩ (Ax|n+1 \ Ax|n), · · ·

is a partition of B into sets fromJ . Note that (I,J) is weak selective, soJ|B is locally selective. Thus, there
exists C ⊂ B with C ∈ J+ such that |C ∩ B \ Ax|1| ≤ 1, |C ∩ B ∩ (Ax|2 \ Ax|n)| ≤ 1 for every n ∈ ω. It is easy to
check that the set C is desired.

(2) ⇒ (3) It is enough to show that ω is not an (I,J)-small set. To this end, for every r ∈ ω, for any
family {As : s ∈ 2<ω} satisfying S1-S3. By (2), there are x ∈ rω and C ∈ J+ such that for each n ∈ ω,
C \ Ax|n ∈ Fin ⊆ I.

Remark 4.13. Recall that an ideal I is selective, if for any decreasing sequence

F1 ⊃ F2 ⊃ F3 ⊃ · · ·

from I+, there exists a dia1onalization F (i.e, for all i, j ∈ F with i < j, j ∈ Fi). Evidently, if
⋂

n∈ω
Fn is nonempty,

then it is a diagonalization. If we replace ‘weak selective’ by ‘selective’ in the previous result, the set C
existing in (2) can be chosen as a diagonalization of 〈Ax|n : n ∈ ω〉.

Corollary 4.14. Let I be an ideal on ω which is weak selective. Then following conditions are equivalent:

(1) [0, 1] has (I,I)-BW;
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(2) For every r ∈ ω, every family {As : s ∈ r<ω} fulfilling conditions S1-S3, there are x ∈ rω and C ∈ I+ such that
C ⊆∗ Ax|n for each n ∈ ω.

Definition 4.15. ([10]) Let I be an ideal on ω. Recall that I satisfies ω → (ω,I+)2
2 if for every coloring c:

[ω]2
→ {0, 1} either there is an infinite 0-homogeneous set X or there is an I-positive 1-homogeneous.

Remark 4.16. It is easy to see that both ω → (ω,I+)2
2 and Ramsy∗ are weaker than Ramsey property, so it

is a natural question to ask what is the relation between ω → (ω,I+)2
2 and Ramsy∗. Unfortunately, there is

no directed relation between them. In fact, I being Ramsey∗ does not imply ω→ (ω,I+)2
2. To see this, let’s

consider the ideal ED f in, where

ED f in = {A ⊂ {〈n,m〉 ∈ ω × ω,m ≤ n} : (∃m,n ∈ ω)(∀k ≥ n)(|A(k)| ≤ m)}.

It is easy to see that ED f in is defined as the restriction of ED to 4 = {〈n,m〉 ∈ ω × ω : m ≤ n}. Note that
[0, 1] has (ED f in,ED f in)-BW property since ED f in is an Fσ-ideal, so ED f in is Ramsey∗ by Theorem 5.6. But
ω9 (ω,ED+f in)2

2 ([10], Lemma 2.3.8).

4.3. A-Dense and ω-Diagonalizable
Let I be an ideal on ω. For a certainA ⊆ [ω]ω, recall that I is ω-diagonalizable by elements ofA if there

is a sequence {An : n ∈ ω} ⊆ A such that for every I ∈ I, there exists n ∈ ω such that I ∩ An = ∅. This notion
was introduced in [8] and was useful in characterizing selectivity and density of ideals (see, [13]).

Definition 4.17. LetA ⊆ [ω]ω, and I being an ideal on ω,

• non∗(A,I) = min{|H| : H ⊆ A∧ (∀I ∈ I)(∃H ∈ H)(I ∩H is f inite)}

• non(A,I) = min{|H| : H ⊆ A∧ (∀I ∈ I)(∃H ∈ H)(I ∩H = ∅)}.

It is easy to see that non(A,I) = ω is equal to saying that I is ω-diagonalizable by elements of A, and
non∗([ω]ω,I) coincides with non∗(I) introduced in [6] whenever I is dense. In addition, if I is dense, then
non∗([ω]ω,I) is equal to non([ω]ω,I) ([10], Remark 1.3.1).

The following examples show that non∗(A,I) and non(A,I) are not defined for all pairs (A,I). The
first one is a dense ideal, and the second is not dense.

Example 4.18. Let I be a dense P-ideal, andA ⊂ [ω]ω with |A| = ω. For anyH ⊆ A, since I is dense, there
exists for each H ∈ H an infinite AH ⊆ H such that AH ∈ I. Since I is a P-ideal, there is I ∈ I such that
AH ⊆

∗ I for all H ∈ H . Clearly, I intersects with each member ofH infinitely.

Example 4.19. Let A ⊂ ω be an infinite set such that ω \A is infinite. Put 〈A〉∗ = {B ⊂ ω : B ⊆∗ A}. Then 〈A〉∗

is a P-ideal that is not dense. It is easy to see that the notion of non(A,I) fails for the pair ({A}, 〈A〉∗).

Lemma 4.20. Let I be an ideal on ω, andA ⊆ [ω]ω. For the following conditions:

(1) I is notA-dense;

(2) non∗(A,I) = 1;

(3) non(A,I) = ω.

(1)⇔ (2)⇒ (3).

Proof. (1)⇔ (2) Since I is notA-dense, there exists A ∈ A such that [A]ω∩I = ∅. Therefore, non∗(A,I) = 1.
The converse is obvious.

(2)⇒ (3) Assume that non∗(A,I) = 1, there exists A ∈ A fulfilling this. For each n ∈ ω, let

An = A \ {0, 1, · · · ,n − 1}.
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Then the family {An : n ∈ ω} verifies non(A,I) = ω.

Corollary 4.21. ([13], Proposition 3.4) LetI be an ideal onω. Then non(I∗,I) = ω if and only ifI is notI∗-dense;

Let T be a tree, A ⊆ P(ω). For each s ∈ T, let succT(s) = {n > max(s) : s ∪ {n} ∈ T}. Recall that a tree T is
anA-tree if for every s ∈ T, succT(s) ∈ A, whereA ⊆ P(ω).

With the similar discussion of Remark 1.3.1 in [10], we observe that for any family A ⊆ [ω]ω closed
under finite modifications, if I is A-dense then non∗(A,I) = non(A,I). So, together with Proposition 3.1
in [13], we have the following.

Proposition 4.22. For any ideals I and J , if I is J+-dense, then non∗(J+,I) = ω if and only if there exists a
J
+-tree with all branches in I+.

Proposition 4.23. LetA ⊂ [ω]ω such thatA is dense. Then the following conditions are equivalent:

(1) non∗(I) = ω;

(2) non∗(A,I) = ω.

Proof. (2) ⇒ (1) Together with I being A-dense andA being dense, we have that I is dense. In addition,
non∗(A,I) = ω implies that I isA-dense. So I is dense, and so ω ≤ non∗(I) ≤ non∗(A,I).

(1) ⇒ (2) To check the converse, assume that A0, A1, · · · , An, · · · be a countable family in [ω]ω which
meet that non∗(I) = ω. Since A is dense, there are, for all n ∈ ω, Bn ⊆ An such that Bn ∈ A. It is easy to
verify that the sequence Bn, n ∈ ω meet that non∗(A,I) = ω.

Recall that I is h-Ramsey (respectively, h-Ramsey∗) if for every A ∈ I+, I|A is Ramsey (respectively, I|A
is Ramsey∗)[4]

Theorem 4.24. Let I, J be ideals on ω and J being a weak Q-ideals such that I ≤RB J ,

(1) If J is h-Ramsey∗, then I is h-Ramsey∗;

(2) If J is h-Ramsey, then I is h-Ramsey.

Proof. The assertion (1) follows from the facts that h-Ramsey∗ is equal to h-BW property ([4], Theorem 4.3)
and the h-BW property is preserved under the ≤RB-order in the realm of Q-ideals ([5], Theorem 6.2).

The key in the proof of the assertion (2) is that I is h-Ramsey if, and only if I is h-Fin-BW and being a
weak Q-ideal ([4], Theorem 3.16). So we need the following Claims:

Claim 4.25. Let I, J be ideals on ω, and J being a Q-ideal. If I ≤KB J then I is also a Q-ideal.

Proof. Let f : ω → ω be a finite to one function meeting I ≤KB J . Let {In : n ∈ ω} be a partition of ω into
finite sets. Put An = { f−1(m) : m ∈ In}. Then {An : n ∈ ω} is also a partition of ω into finite sets. It is easy to
check that if S is a selector for {An : n ∈ ω}, then f (S) is a selector for {In : n ∈ ω}, this end the proof.

Claim 4.26. Let I, J be ideals on ω, and J being a weak Q-point. If I ≤RB J then I is also a weak Q-ideal.

Proof. Assume f : ω→ ωwitnessI ≤RB J , so for A ∈ I+, f−1(A) ∈ J+. It is easy to see thatI|A ≤KB J| f−1(A).
Note that J ≤KB J| f−1(A) and J is a weak Q-ideal, so is J| f−1(A). By Claim 2 above we have that I|A is a
Q-ideal as well.

Therefore, I is a weak Q-ideal. In addition, I is h-Fin-BW by Theorem 6.1 and Theorem 6.2 in [5].

Remark 4.27. In Claim 2, if we replaced I ≤KB J by I ≤K J , and I, J are Borel ideals, then J being a
Q-ideal also implies that I is a Q-ideal. To see this, note first that for any Borel ideal I, non(I) = ω if, and
only if I is a Q-ideal ([13], Proposition 3.2), so it is enough to show that non(I) = ω. There are two possible
cases: Case 1, if I is not dense, then non(I) = ω; Case 2, if I is dense, then non∗(I) ≥ ω, and J is also
dense since I ≤K J . Since J being a Q-ideal, we have that non∗(J) = ω. Moreover, I ≤K J implies that
non∗(I) ≤ non∗(J)([10], Theorem 1.4.2). Thus, non∗(I) = ω.
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Definition 4.28. ([6]) LetI be a dense ideal onω, cov∗(I) = min{|A| : A ⊆ I∧ (∀X ∈ [ω]ω)(∃A ∈ A)(|A∩X| =
ω)}.

We end this section with the following result related to (I,Fin)-BW property, which tells us that in the
realm of dense ideals, cov∗(I) ≥ ω1 hold whenever [0, 1] satisfying (I,Fin)-BW.

Proposition 4.29. Let I be a dense ideal on ω. If cov∗(I) = ω, then [0, 1] does not satisfy (I,Fin)-BW.

Proof. Assume that {An : n ∈ ω} ⊆ I is a countable family meeting cov∗(I) = ω. Without loss of generality,
we may assume that they are pairwise disjoint. Define a sequence 〈xk : k ∈ ω〉 by

xk =
1

n+1 for k ∈ An.

Then 〈xk : k ∈ ω〉 is I-convergent to 0. But for any A ∈ I+, there exists n ∈ ω such that |A ∩ An| = ω, so
〈xk : k ∈ A〉 cannot be convergent to 0.
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