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Abstract. This paper is concerned with the oscillatory and asymptotic behavior for solutions of the
following second-order mixed nonlinear integro-dynamic equations with maxima on time scales

(r(t)(z∆(t))γ)∆ +

t∫
0

a(t, s) f (s, x(s))∆s +

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s) = 0,

where

z(t) = x(t) + p1(t)x(η1(t)) + p2(t)x(η2(t)), t ∈ [0,+∞)T.

The oscillatory behavior of this equation hasn’t been discussed before, also our results improve and extend
some results established by Grace et al. [2] and [8].

1. Introduction.

In recent years, there have been many activities concerning the oscillation and nonoscillation of dynamic
equations on time scales, since Hilger introduced the theory of time scales to unify continuous and discrete
calculus. We refer the reader to the books [6, 7], also the papers [2-5, 8] and the references cited therein.

The qualitative theory of differential equations with "maxima" received very little attention, respect, for
instance, the problems connected to minimizers of variational functionals ( see e.g.[11] ), even though such
equations often arise in the problem of automatic regulation of various real systems, see for example [9,
10], also the research on oscillation theory for integro-dynamic equations is limited due to lack of available
techniques.
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In this paper we deal with the oscillatory and asymptotic behavior of solutions for the second-order mixed
nonlinear integro-dynamic equations with maxima of the form:

(r(t)(z∆(t))γ)∆ +

t∫
0

a(t, s) f (s, x(s))∆s +

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s) = 0, (1.1)

where

z(t) = x(t) + p1(t)x(η1(t)) + p2(t)x(η2(t)). (1.2)

We take T ⊆ R to be an arbitrary time scale with 0 ∈ T and supT = +∞.
Subject to the following hypotheses:
(H1) T is an unbounded above time scale. We define the time scale interval [t0,+∞)T
by [t0,+∞)T = [t0,+∞)

⋂
T.

(H2) η1, η1, τi, ξi : T→ T are rd-continuous functions such that η1(t) ≤ t ≤ η2(t),
τi(t) ≤ t ≤ ξi(t),i = 1, 2, ...,n and limt→+∞η1(t) = +∞ = limt→+∞τi(t).
(H3) p1, p2, qi and r are non-negative rd-continuous functions on an arbitrary time scale T such that r(t) > 0,
i = 1, 2, ...,n considering, when either

limt→+∞L(t, t0) := limt→+∞

t∫
t0

∆s

r
1
γ (s)

= +∞, (1.3)

or

limt→+∞L(t, t0) < +∞. (1.4)

(H4) a(t, s) : T ×R→ R is a rd-continuous function such that

a(t, s) > 0, a∆t (t, s) < 0 and supt≥t0

t0∫
0

a(t, s)∆s := k1 < +∞.

(H5) f ∈ C(T × R,R) such that, f ∆t (t, x(t)) > 0 and x(t) f (t, x(t)) ≥ m(t)|x(t)|β+1 > 0 , x , 0 for non trivial
solutions x, where m(t) : T→ (0,+∞) is a positive rd-continuous
function and β is a quotient of odd positive integers.
(H6) α and γ are quotients of odd positive integers.
Throughout this paper, we assume that:

1−(t) =
β − 1

β
β
β−1

t∫
t4

a(t, s)N
β
β−1 (s)m

1
1−β (s)∆s − cα3

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

Qα(s), (1.5)

1+(t) =
β − 1

β
β
β−1

t∫
t4

a(t, s)N
β
β−1 (s)m

1
1−β (s)∆s − cα3

n∑
i=1

qi(t) min
s∈[τi(t),ξi(t)]

Qα(s), (1.6)

h−(t) =
c4

r(t)
−

cα3
r(t)

t∫
t4

n∑
i=1

qi(s) max
s∈[τi(t),ξi(t)]

Qα(s)∆s,
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h+(t) =
c4

r(t)
−

cα3
r(t)

t∫
t4

n∑
i=1

qi(s) min
s∈[τi(t),ξi(t)]

Qα(s)∆s,

h∗(t) = max{0, h+(t), h−(t)}, 1∗(t) = max{1−(t), 1+(t), 0},

where

Q(t) := 1 − p1(t) − p2(t)
R(η2(t))

R(t)
> 0, (1.7)

and R(t) is a positive rd- continuous function.

By a solution of (1.1), we mean a nontrivial real valued ∆- differentiable function x(t) satisfying (1.1) for
t ∈ T.

Definition 1.1. A solution x(t) of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative.
i.e.
for every t0 > 0, we have

inf
t≥t0

x(t) < 0 < sup
t≥t0

x(t),

otherwise, it is called nonoscillatory.

Eq. (1.1) is said to be oscillatory if all of its solutions are oscillatory. We concentrate our study on those
solutions of E.q. (1.1) which are not identically vanishing eventually.
In what follows, we provide some previous studies which are special cases of our equation. In 2013 S. R.
Grace et al.[8] studied the asymptotic behavior of non-oscillatory solutions of the following second order
integro-dynamic equation

(r(t)x∆(t))∆ +

t∫
0

a(t, s) f (s, x(s))∆s = 0, (1.8)

then, In 2014 S. R. Grace et al.[2] studied the oscillatory and asymptotic behavior of the following second
order integro-dynamic equation

(r(t)(x∆(t))γ)∆ +

t∫
0

a(t, s) f (s, x(s))∆s = 0. (1.9)

Noting that Eqs.(1.8) and (1.9) are special cases of our Eq. (1.1) when taking qi(t) = 0 = p1(t) = p2(t), and so
the results of [2] and [8] can’t be applied to Eq. (1.1). Also to the best of our knowledge, there are no papers
in the literature dealing with neutral integro dynamic equations with "maxima"on time scales. To fill this
gap, we initiate in this paper the study of neutral integro dynamic equations with "maxima"on time scales.
New results are established and an example is presented.

2. Basic Lemmas.

In this section, we give some lemmas that play an important role in the proofs of our results.

Lemma 2.1. [1] If X and Y are nonnegative real numbers, then
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Xλ + (λ − 1)Yλ
− λXYλ−1

≥ 0 for λ > 1,

and

Xλ
− (1 − λ)Yλ

− λXYλ−1
≤ 0 for λ < 1,

with equality holding if and only if X = Y or λ = 1.

Lemma 2.2. If f (s) and a(u, s) are rd-continuous functions, then

t∫
t0

u∫
t0

a(u, s) f (s)∆s∆u =

t∫
t0

(ta(t, s) − σ(s)a(σ(s), s)) f (s)∆s −

t∫
t0

σ(u)

u∫
t0

a∆u (u, s) f (s)∆s∆u. (2.1)

Proof.

Let F(u) :=
u∫

t0

a(u, s) f (s)∆s, and 1(u) := u, then Theorem 5.37 in [7], leads to

F∆(u) = a(σ(u),u) f (u) +
u∫

t0

a∆u (u, s) f (s)∆s.

Now by using, F1∆ = [F1]∆
− F∆1σ, then (2.1) holds.

Lemma 2.3. [6] (Gronwall’s Inequality) Let p ∈ <+. Also, assume that y and f ∈ Crd. If

y∆(t) ≤ p(t)y(t) + f (t)for all t ∈ T,

then

y(t) ≤ y(t0)ep(t, t0) +
t∫

t0

ep(t, σ(τ)) f (τ)∆τfor all t, t0 ∈ T.

3. Main Results.

Theorem 3.1. Let conditions (1.3) and H1 − H6 hold with β > 1, γ ≥ 1. Also, suppose that there exist positive rd-
continuous functions N(t) and R(t) such that for all t4 sufficiently large such that t4 ≥ t3 > t0, we have

R(t)

r
1
γ (t)

∫ t

t3

1

r
1
γ (s)

∆s
− R∆(t) ≤ 0, (3.1)

lim sup
t→+∞

t∫
t4

(
1

r(u)

u∫
t4

1+(s)∆s)
1
γ ∆u] < +∞, (3.2)

then every nonoscillatory solution x(t) of Eq. (1.1) satisfies

| x(t) |= O[A1ep(t)(t, t4) +
t∫

t4

ep(t)(t, σ(v)) f (v)∆v],

where

p(t) =
1

γr(t)

t∫
t4

a(σ(s), s)σ(s)N(s)∆s,

and

f (t) =
c4

r(t)
1
γ

+ (1 −
1
γ

).
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Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Then, we may assume that there exists t1 ≥ t0

such that x(t) > 0 for all t ≥ t1 and there exists t2 ≥ t1 + max{η1, τi, i = 1, 2, ...,n}, such that x(η1(t)) > 0 and
x(τi(t)) > 0 for all t ≥ t2. Now from (1.1), we have

(r(t)(z∆(t))γ)∆ = −

t∫
0

a(t, s) f (s, x(s))∆s −
n∑

i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s),

= −

t2∫
0

a(t, s) f (s, x(s))∆s −

t∫
t2

a(t, s) f (s, x(s))∆s −
n∑

i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s), (3.3)

choosing t3 > t2 sufficiently large, then from H5, we can find k ≥ 0 such that

t2∫
0

a(t, s) f (s, x(s))∆s +

t3∫
t2

a(t, s) f (s, x(s))∆s := k,

so (3.3) can be written as

(r(t)(z∆(t))γ)∆ = −k −

t∫
t3

a(t, s) f (s, x(s))∆s −
n∑

i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s),

< −

t∫
t3

a(t, s) f (s, x(s))∆s −
n∑

i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s) < 0. (3.4)

Then, r(t)(z∆(t))γ is strictly decreasing on [t3,+∞)T. Now we claim that r(t)(z∆(t))γ > 0 on [t3,+∞)T.
Therefore assume that this is not true. Then there is t∗3 ∈ [t3,+∞)T, such that G1 := r(t∗3)(z∆(t∗3))γ < 0, by
using the fact that r(t)(z∆(t))γ is decreasing, we have

z∆(t) ≤
G

1
γ

1

r
1
γ (t)

,

integrating from t∗3 to t and using condition (1.3), we get

z(t) ≤ z(t∗3) + G
1
γ

1

t∫
t∗3

∆s

r
1
γ (s)
→ −∞ as t→∞.

Hence, z(t) is eventually negative. This is a contradiction. Then,

z(t) > 0, z∆(t) > 0 and (r(t)(z∆(t))γ)∆ < 0 for t ∈ [t3,+∞)T. (3.5)

Using the fact that z(t) is increasing, then

z(t) > z(t3) := c3. (3.6)

Now integrating z∆(t) from t3 to t and using (3.5), we obtain

z(t) = z(t3) +

∫ t

t3

[r(s)(z∆(s))γ]
1
γ

r
1
γ (s)

∆s

≥ r
1
γ (t)z∆(t)L(t, t3),
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where L(t, t3) :=
∫ t

t3

∆s

r
1
γ (s)

, hence by condition (3.1), we have

( z(t)
R(t)

)∆
=

z∆(t)R(t) − z(t)R∆(t)
R(t)Rσ(t)

≤
z(t)

R(t)Rσ(t)

[ R(t)

r
1
γ (t)L(t, t3)

− R∆(t)
]
≤ 0, (3.7)

then z/R is a non-increasing function. From the definition of z(t) (see(1.2)), (3.5), (3.6) and (3.7), we see that

x(t) = z(t) − p1(t)x(η1(t)) − p2(t)x(η2(t))

≥ z(t) − p1(t)z(η1(t)) − p2(t)z(η2(t))

= (1 − p1(t)
z(η1(t))

z(t)
− p2(t)

z(η2(t))
z(t)

)z(t)

≥ (1 − p1(t) − p2(t)
R(η2(t))

R(t)
)z(t) = Q(t)z(t) ≥ c3Q(t) for all t ≥ t3,

where Q(t) := (1 − p1(t) − p2(t) R(η2(t))
R(t) ). Then

max
s∈[τi(t),ξi(t)]

xα(s) ≥ max
s∈[τi(t),ξi(t)]

cα3 Qα(s) = cα3 max
s∈[τi(t),ξi(t)]

Qα(s). (3.8)

Choosing t4 sufficiently large such that t4 ≥ t3 and using H5 in (3.4), we can write that

(r(t)(z∆(t))γ)∆
≤ −

t∫
t4

a(t, s)m(s)xβ(s)∆s −
n∑

i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s), (3.9)

substituting from (3.8) in the previous inequality, we get

(r(t)(z∆(t))γ)∆
≤ −

t∫
t4

a(t, s)m(s)xβ(s)∆s − cα3

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

Qα(s). (3.10)

Letting N(t) be a positive rd-continuous function, hence (3.10) can be written as

(r(t)(z∆(t))γ)∆
≤

t∫
t4

a(t, s)[N(s)x(s) −m(s)xβ(s)]∆s −

t∫
t4

a(t, s)N(s)x(s)∆s

−cα3

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

Qα(s). (3.11)

Applying Lemma 2.1, with λ = β,X = m
1
β (s)x(s) and Y = [ N(s)

βm
1
β (s)

]
1
β−1 , we have

N(s)x(s) −m(s)xβ(s) ≤
β − 1

β
β
β−1

N
β
β−1 (s)m

1
1−β (s). (3.12)

Substituting from (3.12) into (3.11), gives

(r(t)(z∆(t))γ)∆
≤ 1−(t) −

t∫
t4

a(t, s)N(s)x(s)∆s, (3.13)
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where

1−(t) =
β − 1

β
β
β−1

t∫
t4

a(t, s)N
β
β−1 (s)m

1
1−β (s)∆s − cα3

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

Qα(s).

Integrating the previous inequality from t4 to t, leads to

(z∆(t))γ ≤
r(t4)(z∆(t4))γ

r(t)
−

1
r(t)

t∫
t4

u∫
t4

a(u, s)N(s)x(s)∆s∆u +
1

r(t)

t∫
t4

1−(s)∆s, (3.14)

by using Lemma 2.2, H4, and taking 1∗(t) = max{1−(t), 1+(t), 0}, we have

z∆(t) ≤
[ c4

r(t)
+

1
r(t)

t∫
t4

1∗(s)∆s +
1

r(t)

t∫
t4

σ(s)a(σ(s), s)N(s)x(s)∆s
] 1
γ , (3.15)

where c4 = r(t4)[z∆(t4)]γ. By employing (a + b)λ ≤ aλ + bλ for a ≥ 0, b ≥ 0 and λ ≤ 1, thus (3.15) becomes

z∆(t) ≤ (
c4

r(t)
)

1
γ + (

1
r(t)

t∫
t4

1∗(s)∆s)
1
γ + (

1
r(t)

t∫
t4

σ(s)a(σ(s), s)N(s)x(s)∆s)
1
γ . (3.16)

Integrating the above inequality from t4 to t and taking A1 as upper bound for

z(t4) +

t∫
t4

(
1

r(u)

u∫
t4

1∗(s)∆s)
1
γ ∆u,

we have

x(t) ≤ z(t) ≤ A1 +

t∫
t4

(
c4

r(s)
)

1
γ ∆s +

t∫
t4

(
1

r(u)

u∫
t4

σ(s)a(σ(s), s)N(s)x(s)∆s)
1
γ ∆u.

Again using Lemma 2.1, with X = 1
r(u)

u∫
t4

σ(s)a(σ(s), s)N(s)x(s)∆s, λ = 1
γ , and Y = 1, then the previous

inequality can be written as

x(t) ≤ A1 +

t∫
t4

(
c4

r(s)
)

1
γ ∆s + (1 −

1
γ

)

t∫
t4

∆u +

t∫
t4

1
γr(u)

u∫
t4

σ(s)a(σ(s), s)N(s)x(s)∆s∆u,

≤ A1 +

t∫
t4

(
c4

r(s)
)

1
γ ∆s + (1 −

1
γ

)t +

t∫
t4

1
γr(u)

u∫
t4

σ(s)a(σ(s), s)N(s)x(s)∆s∆u.

Let u(t) equals the right hand side of the previous inequality, then we have

u∆(t) =(
c4

r(t)
)

1
γ + (1 −

1
γ

) +
1

γr(t)

t∫
t4

σ(s)a(σ(s), s)N(s)x(s)∆s,u(t4) = A1,
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hence u(t) is increasing and since x(t) ≤ u(t), then we have

u∆(t) ≤ f (t) + p(t)u(t),

where f (t) := ( c4
r(t) )

1
γ + (1 − 1

γ ) and p(t) = 1
γr(t)

t∫
t4

σ(s)a(σ(s), s)N(s)∆s. Using Lemma 2.3, leads to

x(t) ≤ u(t) ≤ A1ep(t)(t, t4) +

t∫
t4

ep(t)(t, σ(v)) f (v)∆v,

then, x(t) = O[A1ep(t)(t, t4) +
t∫

t4

ep(t)(t, σ(v)) f (v)∆v].

If x(t) is an eventually negative solution of Eq. (1.1), then we can see that the transformation y = −x, y > 0
transforms Eq. (1.1) into

(r(t)(v∆(t))γ)∆
−

t∫
0

a(t, s) f (s,−y(s))∆s +

n∑
i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s) = 0,

where

v(t) = y(t) + p1(t)y(η1(t)) + p2(t)y(η2(t)).

Thus,

(r(t)(v∆(t))γ)∆ =

t∫
0

a(t, s) f (s,−y(s))∆s −
n∑

i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s),

=

t2∫
0

a(t, s) f (s, x(s))∆s +

t∫
t2

a(t, s) f (s, x(s))∆s +

n∑
i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s), (3.17)

choosing t4 > t2 sufficiently large, then from H5, we can find k1 ≤ 0 such that

t2∫
0

a(t, s) f (s, x(s))∆s +

t4∫
t2

a(t, s) f (s, x(s))∆s := k1,

so (3.17) can be written as

(r(t)(v∆(t))γ)∆
≤ −

t∫
t4

a(t, s)m(s)yβ(s)∆s −
n∑

i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s).

It follows in a similar manner that −x(t) = O[A1ep(t)(t, t4) +
t∫

t4

ep(t)(t, σ(v)) f (v)∆v]. This completes the proof.

Corollary 3.1. Let all assumptions of Theorem 3.1 hold and

lim sup
t→+∞

1
ep(t)(t, t4)

t∫
t4

ep(t)(t, σ(v))[(
c4

r(v)
)

1
γ + (1 −

1
γ

)]∆v < +∞, (3.18)

then every non-oscillatory solution, satisfies

|x(t)| = O(ep(t)(t, t4)).
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Theorem 3.2. Let conditions (1.4), (3.18) hold and 0 ≤ p1(t) + p2(t) ≤ p∗ < 1. Also, let all assumptions of Theorem
3.1 hold except condition (1.3). If for sufficiently large t4, we have

lim sup
t→+∞

1
ep(t)(t, t4)

t∫
t4

(
1

r(v)

v∫
t4

a(σ(s), s)σ(s)m(s)Aβ(s)∆s)
1
γ ∆v < +∞, (3.19)

then every non-oscillatory solution, satisfies

lim sup
t→+∞

|x(t)|
ep(t)(t, t4)

< +∞ or lim
t→+∞

x(t) = 0.

Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Then proceeding similar to the proof of Theorem
3.1, we have r(t)(z∆(t))γ is strictly decreasing on [t3,+∞)T, and there exists t5 ∈ [t3,+∞)T such that:

z∆(t) > 0 or z∆(t) < 0 for t ∈ [t5,+∞)T.

We consider each of the following two cases separately.
Case 1. The proof is similar to that of Theorem 3.1, so it is omitted.
Case 2.

z(t) > 0, z∆(t) < 0 and (r(t)(z∆(t))γ)∆ < 0 for t ∈ [t5,+∞)T. (3.20)

In this case, we have

limt→+∞ z(t) = l, l ≥ 0.

Case 2.I
If l = 0, and since we have 0 < x(t) ≤ z(t), then limt→+∞ x(t) = 0.
Case 2.II
If l > 0, then for any ε > 0, we have l < z(t) < l + ε, eventually.
Take 0 < ε < l(1 − p∗)/p∗. Then

x(t) = z(t) − p1(t)x(η1(t)) − p2(t)x(η2(t)),

≥ l − p1(t)(l + ε) − p2(t)(l + ε),

≥ l − p∗(l + ε),

where p1 + p2 ≤ p∗ < 1. Hence

x(t) ≥ m1(l + ε) > m1z(t), (3.21)

where

m1 :=
l

l + ε
− p∗ =

l(1 − p∗) − εp∗
l + ε

> 0.

Since r(t)(z∆(t))γ is strictly decreasing, then

z∆(s) ≤ (
r(t)(z∆(t))γ

r(s)
)

1
γ , s ∈ [t,+∞)T.

Integrating for s from t to ζ and letting ζ→ +∞, we have

z(t) ≥ −r
1
γ (t)z∆(t)

+∞∫
t

∆u

r
1
γ (u)

≥ −r
1
γ (t5)z∆(t5)

+∞∫
t

∆u

r
1
γ (u)

for all t ≥ t5,



H. A. Agwa et al. / Filomat 33:10 (2019), 2907–2929 2916

hence,

z(t) ≥ c5A(t), (3.22)

where, c5 = −r
1
γ (t5)z∆(t5) > 0 and A(t) =

+∞∫
t

∆u

r
1
γ (u)

. Combining (3.21) and (3.22), we get

x(t) ≥ c6A(t), (3.23)

where c6 = m1c5. Substituting from (3.23) into (3.9), we obtain

(r(t)(−z∆(t))γ)∆
≥

t∫
t5

a(t, s)m(s)xβ(s)∆s +

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

xα(s),

≥ cβ6

t∫
t5

a(t, s)m(s)Aβ(s)∆s + cα6

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

Aα(s),

≥ B

t∫
t5

a(t, s)m(s)Aβ(s)∆s + B
n∑

i=1

qi(t) max
s∈[τi(t),ξi(t)]

Aα(s),

where B = min{cα6 , c
β
6}, now integrate the above inequality from t5 to t, we obtain

r(t)(−z∆(t))γ ≥ B

t∫
t5

u∫
t5

a(u, s)m(s)Aβ(s)∆s∆u + B

t∫
t5

n∑
i=1

qi(s) max
s∈[τi(t),ξi(t)]

Aα(u)∆s, (3.24)

by using lemma 2.2 and H4, we obtain

t∫
t5

u∫
t5

a(u, s)m(s)Aβ(s)∆s∆u =

t∫
t5

(ta(t, s) − σ(s)a(σ(s), s))m(s)Aβ(s)∆s

−

t∫
t5

σ(u)

u∫
t5

a∆u (u, s)m(s)Aβ(s)∆s∆u ≥ −

t∫
t5

σ(s)a(σ(s), s))m(s)Aβ(s)∆s,

thus (3.24), can be written in the form

z∆(t) ≤
[ B
r(t)

t∫
t5

[
σ(s)a(σ(s), s)m(s)Aβ(s)

]
∆s.

Integrating the latter inequality from t5 to t and using x(t) < z(t), we obtain

x(t) ≤ z(t5) +

t∫
t5

[ B
r(v)

v∫
t5

[
σ(s)a(σ(s), s)m(s)Aβ(s)

]
∆s

] 1
γ
∆v,

using condition (3.19), we see that

lim sup
t→+∞

x(t)
ep(t)(t, t5)

< +∞.
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If x(t) is an eventually negative solution of Eq. (1.1), then we can see that the transformation y = −x, y > 0
transforms Eq. (1.1) into

(r(t)(v∆(t))γ)∆
−

t∫
0

a(t, s) f (s,−y(s))∆s +

n∑
i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s) = 0,

where

v(t) = y(t) + p1(t)y(η1(t)) + p2(t)y(η2(t)).

Thus,

(r(t)(v∆(t))γ)∆ =

t∫
0

a(t, s) f (s,−y(s))∆s −
n∑

i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s),

=

t2∫
0

a(t, s) f (s, x(s))∆s +

t∫
t2

a(t, s) f (s, x(s))∆s +

n∑
i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s), (3.25)

choosing t3 > t2 sufficiently large, then from H5, we can find k1 ≤ 0 such that

t2∫
0

a(t, s) f (s, x(s))∆s +

t3∫
t2

a(t, s) f (s, x(s))∆s := k1,

so, (3.25) can be written as

(r(t)(v∆(t))γ)∆
≤ −

t∫
t3

a(t, s)m(s)yβ(s)∆s −
n∑

i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s).

It follows in a similar manner that lim supt→+∞
−x(t)

ep(t)(t,t5) < +∞. This completes the proof.

Corollary 3.2. Let condition (1.4) and 0 ≤ p1(t) + p2(t) ≤ p∗ < 1 hold. Let all assumptions of Theorem 3.1 hold
except condition (1.3). If for sufficiently large t4

lim sup
t→+∞

t∫
t4

1
γr(v)

t∫
t4

a(σ(s), s)σ(s)N(s)∆s∆v < +∞, (3.26)

lim sup
t→+∞

t∫
t3

ep(t)(t, σ(v))[(
c4

r(v)
)

1
γ + (1 −

1
γ

)]∆v < +∞, (3.27)

and

lim sup
t→+∞

t∫
t4

(
1

r(v)

v∫
t4

a(σ(s), s)σ(s)m(s)Aβ(s)∆s)
1
γ ∆v < +∞, (3.28)

then every non-oscillatory solution, satisfies

|x(t)| = O(1) or lim
t→+∞

x(t) = 0.
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Theorem 3.3. Assume that conditions (1.4), (3.1), (3.2), and (3.26) hold for β > 1 and γ = 1, also let 0 ≤
p1(t) + p2(t) ≤ p∗ < 1. And if

+∞∫
t4

1
r(u)

[ u∫
t4

σ(s)a(σ(s), s)m(s)Aβ(s) −
n∑

i=1

qi(s) max
s∈[τi(t),ξi(t)]

Aα(u)∆s
]
∆u < +∞, (3.29)

then every nonoscillatory solution x(t) of Eq. (1.1) satisfies

lim supt→+∞ |x(t)| < +∞ or limt→+∞ x(t) = 0.

Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Then proceeding similar to the proof of Theorem
3.1, we have r(t)z∆(t) is strictly decreasing on [t3,+∞)T, and there exists t5 ∈ [t3,+∞)T such that:

z∆(t) > 0 or z∆(t) < 0 for t ∈ [t5,+∞)T.

We consider each of the following two cases separately.
Case 1.

z(t) > 0, z∆(t) > 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T.

Proceeding similar to that of Theorem 3.1 with γ = 1, then (3.16), can be written as:

z∆(t) ≤
c4

r(t)
+

1
r(t)

t∫
t5

1−(s)∆s +
1

r(t)

t∫
t5

σ(s)a(σ(s), s)N(s)x(s)∆s. (3.30)

Integrating the above inequality from t5 to t, we get

x(t) ≤ z(t) ≤ z(t5) +

t∫
t5

1
r(u)

u∫
t5

1−(s)∆s∆u +

t∫
t5

c4

r(s)
∆s +

t∫
t5

1
r(u)

u∫
t5

σ(s)a(σ(s), s)N(s)x(s)∆s∆u. (3.31)

By using conditions (3.2) and (1.4), we can take A2 as an upper bound for

z(t5) +

t∫
t5

1
r(u)

u∫
t5

1−(s)∆s∆u +

t∫
t5

c4

r(s)
∆s,

hence, we obtain

x(t) ≤ z(t) ≤ A2 +

t∫
t5

1
r(u)

u∫
t5

σ(s)a(σ(s), s)N(s)x(s)∆s∆u.

Taking limsup as t→ +∞ to the above inequality and using condition (3.26), we have

lim sup
t→+∞

x(t) < +∞.

Case 2.

z(t) > 0, z∆(t) < 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T. (3.32)

In this case, we have
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limt→+∞ z(t) = l, l ≥ 0.

Case 2.I
If l = 0, and since we have 0 < x(t) ≤ z(t), then limt→+∞ x(t) = 0.
Case 2.II
If l > 0, then proceeding similar to the proof of Theorem 3.2 taking γ = 1, then (3.24) can be written as

r(t)(−z∆(t)) ≥ B

t∫
t5

u∫
t5

a(u, s)m(s)Aβ(s)∆s∆u + B

t∫
t5

n∑
i=1

qi(s) max
u∈[τi(s),ξi(s)]

Aα(u)∆s,

which implies

z∆(t) ≤
−B
r(t)

t∫
t5

u∫
t5

a(u, s)m(s)Aβ(s)∆s −
B

r(t)

t∫
t5

n∑
i=1

qi(s) max
u∈[τi(s),ξi(s)]

Aα(u)∆s,

by using lemma 2.2 and H4, we obtain

z∆(t) ≤
B

r(t)

t∫
t5

[
σ(s)a(σ(s), s)m(s)Aβ(s) −

n∑
i=1

qi(s) max
u∈[τi(s),ξi(s)]

Aα(u)
]
∆s.

Integrating the latter inequality from t5 to t and using x(t) < z(t), we obtain

x(t) ≤ z(t5) +

t∫
t5

B
r(v)

v∫
t5

[
σ(s)a(σ(s), s)m(s)Aβ(s)

−

n∑
i=1

qi(s) max
u∈[τi(s),ξi(s)]

Aα(u)
]
∆s∆v, (3.33)

hence, taking limsup as t→ +∞ and using condition (3.29), leads to

lim sup
t→+∞

x(t) < +∞.

If x(t) is an eventually negative solution of Eq. (1.1), then we can see that the transformation y = −x, y > 0
transforms Eq. (1.1) into

(r(t)(v∆(t))γ)∆
−

t∫
0

a(t, s) f (s,−y(s))∆s +

n∑
i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s) = 0,

where

v(t) = y(t) + p1(t)y(η1(t)) + p2(t)y(η2(t)).

Thus,

(r(t)(v∆(t))γ)∆ =

t∫
0

a(t, s) f (s,−y(s))∆s −
n∑

i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s),

=

t2∫
0

a(t, s) f (s, x(s))∆s +

t∫
t2

a(t, s) f (s, x(s))∆s +

n∑
i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s), (3.34)
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choosing t3 > t2 sufficiently large, then from H5, we can find k1 ≤ 0 such that

t2∫
0

a(t, s) f (s, x(s))∆s +

t3∫
t2

a(t, s) f (s, x(s))∆s := k1,

so (3.34) can be written as

(r(t)(v∆(t))γ)∆
≤ −

t∫
t3

a(t, s)m(s)yβ(s)∆s −
n∑

i=1

qi(t) min
s∈[τi(t),ξi(t)]

yα(s).

It follows in a similar manner that lim supt→+∞ −x(t) < +∞. This completes the proof.

Theorem 3.4. Let all assumptions of Theorem 3.3 hold, such that

lim inf
t→+∞

t∫
t4

1
r(u)

u∫
t4

1−(s)∆s∆u = −∞, (3.35)

and

lim inf
t→+∞

t∫
t4

1
r(µ)

[ µ∫
t4

σ(s)a(µ, s)m(s)Aβ(s) −
n∑

i=1

qi(t) max
s∈[τi(t),ξi(t)]

Aα(u)∆s
]
∆µ = −∞. (3.36)

Then every solution x(t) of Eq. (1.1) is oscillatory or limt→+∞ x(t) = 0.

Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Then proceeding similar to the proof of Theorem
3.1, we have r(t)z∆(t) is strictly decreasing on [t3,+∞)T, and there exists t5 ∈ [t3,+∞)T such that:

z∆(t) > 0 or z∆(t) < 0 for t ∈ [t5,+∞)T.

We consider each of the following two cases separately.
Case 1.

z(t) > 0, z∆(t) > 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T.

Proceeding similar to that of Theorem 3.3, till we reach (3.31), hence

x(t) ≤ z(t) ≤ z(t5) +

t∫
t5

1
r(u)

u∫
t5

1−(s)∆s∆u +

t∫
t5

c4

r(s)
∆s +

t∫
t5

1
r(u)

u∫
t5

σ(s)a(u, s)N(s)x(s)∆s∆u.

Since all the assumptions of Theorem 3.3 hold, then we have the last two integrals of the above inequality
are bounded. Finally take limin f as t→ +∞ and using (3.35), we get a contradiction with x(t) is positive.
Case 2.

z(t) > 0, z∆(t) < 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T.

In this case, we have

limt→+∞ z(t) = l, l ≥ 0.
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Case 2.I
If l = 0, and since we have 0 < x(t) ≤ z(t), then limt→+∞ x(t) = 0.
Case 2.II
If l > 0, then proceeding similar to that case in Theorem 3.3, till we reach (3.33), we get

x(t) ≤ z(t5) +

t∫
t5

B
r(v)

v∫
t5

[
σ(s)a(v, s)m(s)Aβ(s) − q(s) max

u∈[s,τ(s)]
Aα(u)

]
∆s∆v,

then taking liminf as t → +∞ and using (3.36), we get a contradiction with x(t) is positive. If x(t) is an
eventually negative solution of Eq. (1.1), the proof is similar. So it is omitted. This completes the proof.

Theorem 3.5. Let condition (1.3), (3.1) and H1 − H6 hold with β < 1, γ ≥ 1. Also, suppose that there exists a
positive rd- continuous function R(t) such that for sufficiently large t4 > t0, then every nonoscillatory solution x(t) of
Eq. (1.1) satisfies

| x(t) |= O[A3ed(t)(t, t4) +
t∫

t4

ed(t)(t, σ(v))E(v)∆v],

where

d(t) =
1

r(t)

t∫
t4

[a(σ(s), s)σ(s)m(s)]
1
β ∆s,

and

E(t) = h
1
γ

∗ (t) + (1 −
1
γ

) +
1 − β
γ

t
r(t)

.

Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Proceeding similar to the proof of Theorem 3.1,
till we reach (3.10), then we have

(r(t)(z∆(t))γ)∆
≤ −

t∫
t3

a(t, s)m(s)xβ(s)∆s − cα3

n∑
i=1

qi(t) max
s∈[τi(t),ξi(t)]

Qα(s).

Integrating the previous inequality from t3 to t, leads to

(z∆(t))γ ≤
r(t3)(z∆(t3))γ

r(t)
−

1
r(t)

t∫
t3

u∫
t3

a(u, s)m(s)xβ(s)∆s∆u

−
cα3

r(t)

t∫
t3

n∑
i=1

qi(s) max
s∈[τi(s),ξi(s)]

Qα(s)∆s,

≤ h−(t) −
1

r(t)

t∫
t3

u∫
t3

a(u, s)m(s)xβ(s)∆s∆u,

where

h−(t) =
c4

r(t)
−

cα3
r(t)

t∫
t3

n∑
i=1

qi(s) max
s∈[τi(t),ξi(t)]

Qα(s)∆s,
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and c4 is as defined in Theorem 3.1. Using Lemma 2.2 and H4, implies

z∆(t) ≤
[
h−(t) +

1
r(t)

t∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s
] 1
γ . (3.37)

Taking h∗(t) = max{0, h+(t), h−(t)}, then

z∆(t) ≤
[
h∗(t) +

1
r(t)

t∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s
] 1
γ .

Applying (a + b)λ ≤ aλ + bλ for a ≥ 0, b ≥ 0 and λ ≤ 1, thus the previous inequality can be written as

z∆(t) ≤ h
1
γ

∗ (t) +
[ 1
r(t)

t∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s
] 1
γ .

Integrating the above inequality from t3 to t, leads to

x(t) ≤ z(t) ≤ z(t3) +

t∫
t3

h
1
γ

∗ (s)∆s +

t∫
t3

[ 1
r(u)

u∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s
] 1
γ
∆u. (3.38)

Using Lemma 2.1, with X = 1
r(u)

u∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s, λ = 1
γ , and Y = 1, then we have

[ 1
r(u)

u∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s
] 1
γ
≤ (1 −

1
γ

) +
1

γr(u)

u∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s,

substituting from the previous inequality into (3.38), we obtain

x(t) ≤ z(t3) +

t∫
t3

h
1
γ

∗ (s)∆s + (1 −
1
γ

)

t∫
t3

∆v +

t∫
t3

1
γr(u)

u∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s∆u,

≤ z(t3) +

t∫
t3

h
1
γ

∗ (s)∆s + (1 −
1
γ

)t +

t∫
t3

1
γr(u)

u∫
t3

σ(s)a(σ(s), s)m(s)xβ(s)∆s∆u. (3.39)

Again using Lemma 2.2, with X = [σ(s)a(σ(s), s)m(s)]
1
β x(s), λ = β, and Y = 1, we obtain

σ(s)a(σ(s), s)m(s)xβ(s) ≤ (1 − β) + β[σ(s)a(σ(s), s)m(s)]
1
β x(s),
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substituting from the above inequality into (3.39), we get

x(t) ≤ z(t) ≤ z(t3) +

t∫
t3

h
1
γ

∗ (s)∆s + (1 −
1
γ

)t +
(1 − β)
γ

t∫
t3

1
r(u)

u∫
t3

∆s∆u

+

t∫
t3

β

γr(u)

u∫
t3

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s∆u,

≤ z(t3) +

t∫
t3

h
1
γ

∗ (s)∆s + (1 −
1
γ

)t +
(1 − β)
γ

t∫
t3

u
r(u)

∆u

+

t∫
t3

β

γr(u)

u∫
t3

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s∆u. (3.40)

Let u(t) equals the right hand side of inequality (3.40), thus

u∆(t) =h
1
γ

∗ (t) + (1 −
1
γ

) +
(1 − β)
γ

t
r(t)

+
β

γr(t)

t∫
t3

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s,

hence u(t) is increasing and since x(t) ≤ u(t), then we have

u∆(t) < E(t) + d(t)u(t),

where E(t) := h
1
γ

∗ (t) + (1 − 1
γ ) +

(1−β)
γ

t
r(t) and d(t) =

β
γr(t)

t∫
t3

[σ(s)a(σ(s), s)m(s)]
1
β . Using Lemma 2.3, we get

x(t) ≤ u(t) ≤ A3ed(t)(t, t3) +

t∫
t3

ed(t)(t, σ(v))E(v)∆v,

then, x(t) = O[A3ed(t)(t, t3) +
t∫

t3

ed(t)(t, σ(v))E(v)∆v].

Corollary 3.3. Let all assumptions of Theorem 3.5 hold and

lim sup
t→+∞

1
ed(t)(t, t4)

t∫
t4

ed(t)(t, σ(v))[h
1
γ

∗ (v) + (1 −
1
γ

) +
(1 − β)
γ

v
r(v)

]∆v < +∞, (3.41)

then every non-oscillatory solution, satisfies

|x(t)| = O(ed(t)(t, t4)).

Theorem 3.6. Let conditions (1.4), (3.19) and (3.41) hold, also let all assumptions of Theorem (3.5) hold except
condition (1.3), then every non-oscillatory solution, satisfies

lim sup
t→+∞

|x(t)|
ed(t)(t, t4)

< +∞ or lim
t→+∞

x(t) = 0.
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Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Then proceeding similar to the proof of Theorem
3.1, we have r(t)(z∆(t))γ is strictly decreasing on [t3,+∞)T, and there exists t5 ∈ [t3,+∞)T such that:

z∆(t) > 0 or z∆(t) < 0 for t ∈ [t5,+∞)T.

We consider each of the following two cases separately.
Case 1. The proof is similar to that of Theorem 3.5, so it is omitted.
Case 2.

z(t) > 0, z∆(t) < 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T. (3.42)

In this case, the proof is similar to that of Theorem 3.2, so it is omitted. This completes the proof.

Corollary 3.4. Let conditions (1.4) and (3.28) hold. Let all assumptions of Theorem 3.5 hold except condition (1.3).
If for all sufficiently large t4

lim sup
t→+∞

t∫
t4

β

γr(v)

v∫
t4

[σ(s)a(σ(s), s)m(s)]
1
β ∆v < +∞, (3.43)

and

lim sup
t→+∞

t∫
t3

ed(t)(t, σ(v))[h
1
γ

∗ (v) + (1 −
1
γ

) +
(1 − β)
γ

v
r(v)

]∆v < +∞, (3.44)

then every non-oscillatory solution, satisfies

|x(t)| = O(1) or lim
t→+∞

x(t) = 0.

Theorem 3.7. Assume that conditions (1.4), (3.1), (3.43) and (3.29) hold for β > 1 and γ = 1, also let 0 ≤
p1(t) + p2(t) ≤ p∗ < 1. And if

lim sup
t→+∞

t∫
t4

h+(s)∆s < +∞, (3.45)

then every nonoscillatory solution x(t) of Eq. (1.1) satisfies

lim supt→+∞ |x(t)| < +∞ or limt→+∞ x(t) = 0.

Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Then proceeding similar to the proof of Theorem
3.1, we have r(t)z∆(t) is strictly decreasing on [t3,+∞)T, and there exists t5 ∈ [t3,+∞)T such that:

z∆(t) > 0 or z∆(t) < 0 for t ∈ [t5,+∞)T.

We consider each of the following two cases separately.
Case 1.

z(t) > 0, z∆(t) > 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T.

Proceeding similar to that of Theorem 3.5 with γ = 1, then (3.37), can be written as:

z∆(t) ≤ h−(t) +
1

r(t)

t∫
t5

σ(s)a(σ(s), s)m(s)xβ(s)∆s. (3.46)
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Using Lemma 2.2, with X = [σ(s)a(σ(s), s)m(s)]
1
β x(s), λ = β, and Y = 1, then we obtain

σ(s)a(σ(s), s)m(s)xβ(s) ≤ (1 − β) + β[σ(s)a(σ(s), s)m(s)]
1
β x(s),

substituting from the above inequality into (3.46), we get

z∆(t) ≤ h−(t) +
(1 − β)

r(t)

t∫
t5

∆s +
β

r(t)

t∫
t5

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s,

≤ h−(t) +
(1 − β)t

r(t)
+

β

r(t)

t∫
t5

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s, (3.47)

integrating the above inequality from t5 to t, we obtain

x(t) ≤ z(t) ≤ z(t5) +

t∫
t5

h−(s)∆s + (1 − β)

t∫
t5

s
r(s)

∆s +

t∫
t5

β

r(v)

v∫
t5

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s∆v, (3.48)

from (3.29) and (3.45), we can take A4 an upper bound for

z(t5) +

t∫
t5

h−(s)∆s + (1 − β)

t∫
t5

s
r(s)

∆s,

thus (3.48), can be written as:

z(t) ≤ A4 +

t∫
t5

β

r(v)

v∫
t5

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s∆v.

Let u(t) equals the right hand side of the above inequality , thus

u∆(t) =
β

r(t)

t∫
t5

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s,u(t5) = A4,

hence u(t) is increasing and since x(t) ≤ u(t), then we have

u∆(t) <
β

r(t)

t∫
t5

[σ(s)a(σ(s), s)m(s)]
1
β ∆su(t).

Using Lemma 2.3, we get

x(t) ≤ A4ed(t)(t, t5),

taking limsup as t→ +∞ and using condition (3.43), we have

lim sup
t→+∞

x(t) < +∞.

Case 2.

z(t) > 0, z∆(t) < 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T. (3.49)

In this case, we have
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limt→+∞ z(t) = l, l ≥ 0.

Case 2.I
If l = 0, and since we have 0 < x(t) ≤ z(t), then limt→+∞ x(t) = 0.
Case 2.II
The proof is similar to that of Theorem 3.3, so it is omitted. This completes the proof.

Theorem 3.8. Let all assumptions of Theorem 3.7 hold, such that (3.36) and

lim inf
t→+∞

t∫
t4

h−(s)∆s = −∞, (3.50)

hold, then every solution x(t) of Eq. (1.1) is oscillatory or limt→+∞ x(t) = 0.

Proof. Let x(t) be a non-oscillatory solution of Eq. (1.1). Then proceeding similar to the proof of Theorem
3.1, we have r(t)z∆(t) is strictly decreasing on [t3,+∞)T, and there exists t5 ∈ [t3,+∞)T such that:

z∆(t) > 0 or z∆(t) < 0 for t ∈ [t5,+∞)T.

We consider each of the following two cases separately.
Case 1.

z(t) > 0, z∆(t) > 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T.

Proceeding similar to that of Theorem 3.7, till we reach (3.48), hence

x(t) ≤ z(t5) +

t∫
t5

h−(s)∆s + (1 − β)

t∫
t5

s
r(s)

∆s +

t∫
t5

β

r(v)

v∫
t5

[σ(s)a(σ(s), s)m(s)]
1
β x(s)∆s∆v,

since all the assumptions of Theorem 3.7 hold, then we have the last two integrals of the above inequality
are bounded. Finally take lim inf as t→ +∞ and using (3.50), we get a contradiction with x(t) is positive.
Case 2.

z(t) > 0, z∆(t) < 0 and (r(t)z∆(t))∆ < 0for t ∈ [t5,+∞)T.

In this case, we have

limt→+∞ z(t) = l, l ≥ 0.

Case 2.I
If l = 0, and since we have 0 < x(t) ≤ z(t), then limt→+∞ x(t) = 0.
Case 2.II
If l > 0. Then proceeding similar to that case in Theorem 3.3, till we reach (3.33)

x(t) ≤ z(t3) + k

t∫
t3

s
r(s)

∆s +

t∫
t3

B
r(v)

v∫
t3

[
σ(s)a(v, s)m(s)Aβ(s) − q(s) max

u∈[s,τ(s)]
Aα(u)

]
∆s∆v,

then taking limin f as t → +∞ and using (3.36), we get a contradiction with x(t) is positive. If x(t) is an
eventually negative solution of Eq. (1.1), the proof is similar. So it is omitted. This completes the proof.



H. A. Agwa et al. / Filomat 33:10 (2019), 2907–2929 2927

4. Example.

In this section, we give an example of second order neutral integro-dynamic equation with maxima
which cannot be studied by the previous published results to illustrate our results.

Example 4.1. For t ∈ [t0,+∞)T with t3 = 2, t4 = 4, and taking T = R. Consider the following neutral integro
dynamic equation with maxima

[
t3[x(t) +

t − 4
t

x(η1(t)) +
1
2t

x(2t)]∆
]∆

+

t∫
0

1
t2s3 f (s, x(s))∆s + t3 max

s∈[t,t+1]
xα(s) = 0. (4.1)

Here we take n = 1, ξ1(t) = t + 1, τ1(t) = t, η1(t) ≤ t, p1(t) = t−4
t , p2(t) = 1

2t , α = 1, β = 2, γ = 1, a(t, s) = 1
t2s3 , q1(t) =

t3 and m(t) = t, hence we have

0 < p1(t) + p2(t) =
2t − 7

2t
< 1 for all t ≥ 4.

Taking R(t) = t and since η2(t) = 2t, then

Q(t) = 1 − p1(t) − p2(t)
R(η2(t))

R(t)
=

3
t
> 0.

Since r(t) = t3, then

A(u) =

+∞∫
u

ds
r(s)

=

+∞∫
u

ds
s3 =

1
2u2 . (4.2)

By taking N(t) = 1, we obtain

1−(t) =
β − 1

β
β
β−1

t∫
t4

a(t, s)N
β
β−1 (s)m

1
1−β (s)∆s − cα3

n∑
i=1

qi(t) max
u∈[τi(t),ξi(t)]

Qα(u),

=
1
22

t∫
4

1
t2s3 s−1ds − c3t3 max

u∈[t,t+1]

3
u
,

=
1

768t2 −
1

12t5 − 3c3t2, (4.3)

also,

1+(t) =
β − 1

β
β
β−1

t∫
t4

a(t, s)N
β
β−1 (s)m

1
1−β (s)∆s − cα3

n∑
i=1

qi(t) min
u∈[τi(t),ξi(t)]

Qα(u),

=
1

768t2 −
1

12t5 −
3c3t3

(t + 1)
<

1
768t2 . (4.4)

Now, since we have

R(t)

r(t)
∫ t

t3

1
r(s) ∆s

− R∆(t) =
12 − t2

t2 − 4
< 0 for all t ≥ 4,
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then, condition (3.1) holds. Also as

lim sup
t→+∞

t∫
t4

(
1

r(u)

u∫
t4

1+(s)∆s)
1
γ ∆u] < lim sup

t→+∞

t∫
4

1
u3

u∫
4

1
768s2 dsdu,

≤
1

768
lim sup

t→+∞

t∫
4

1
u3 [
−1
s

]u
4du < +∞,

hence, condition (3.2) holds, also

lim sup
t→+∞

t∫
t4

1
γr(v)

v∫
t4

a(σ(s), s)σ(s)N(s)∆s∆v = lim sup
t→+∞

t∫
4

1
u3

u∫
4

1
s4 dsdu < +∞,

then, condition (3.26) holds, besides to

+∞∫
t4

1
r(v)

[

v∫
t4

σ(s)a(σ(s), s)m(s)Aβ(s) − q(s) max
u∈[s,s+1]

Aα(u)∆s∆v,

<

+∞∫
t4

1
r(v)

[

v∫
t4

σ(s)a(σ(s), s)m(s)Aβ(s)∆s]∆v,

<

+∞∫
4

1
v3

v∫
4

1
4s7 dsdv < +∞.

Also, we have

lim inf
t→+∞

t∫
t4

(
1

r(u)

u∫
t4

1−(s)∆s)
1
γ ∆u, = lim inf

t→+∞

t∫
4

1
u3

u∫
4

[ 1
768s2 −

1
12s5 − 3c3t2

]
dsdu,

= lim inf
t→+∞

t∫
4

[ 1
u3 [
−1

768s
+

1
48s4 ]u

4 +
64c3

u3 − c3

]
du→ −∞ as t→ +∞,

and

lim inf
t→+∞

t∫
t4

1
r(µ)

[

µ∫
t4

σ(s)a(σ(s), s)m(s)Aβ(s) −
n∑

i=1

qi(s) max
s∈[τi(s),ξi(s)]

Aα(u)∆s]∆µ,

= lim inf
t→+∞

t∫
4

1
v3

v∫
4

1
4s7 dsdv − lim inf

t→+∞

t∫
4

1
v3

v∫
4

s
2

dsdv,

= lim inf
t→+∞

t∫
4

1
4v3 [

−1
6s6 ]v

4dv − lim inf
t→+∞

t∫
4

1
4v3 [s2]v

4dv = −∞.

So conditions (3.29), (3.35) and (3.36) hold. Now using Theorem 3.4, we obtain that every solution of Eq. (4.1) is
oscillatory or tends to zero.
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5. Conclusions.

The results of [8] and [2] can’t be applied to (4.1) as p2(t) , 0 , p1(t), q(t) , 0 . But according to Theorem
3.4, we obtain that every solution of (4.1) is oscillatory or converges to zero as t→ +∞.
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