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On Operators with Complex Gaussian Kernels over Lp Spaces
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aDepartamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna (ULL). Campus de Anchieta. ES-38271 La Laguna
(Tenerife), España

Abstract. In this paper we study new Lp-boundedness properties and Parseval-type relations concerning
the operators with complex Gaussian kernels over the spaces Lp(R,w(x)dx), 1 ≤ p ≤ ∞, where w represents
any function greater than or equal to one almost everywhere onR. Here, the Gauss-Weierstrass semigroup
is considered as a particular case of this analysis.

1. Introduction

In this paper we consider the integral operator with complex Gaussian kernel of a suitable complex-
valued function f defined on R by

(Fβ,ε,δ,ξ,γ f )(y) =

∫ +∞

−∞

exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]

f (x)dx, (1)

where y ∈ R and β, ε, δ, ξ, γ ∈ C.
This type of integral operators are present in analysis, probability theory, and mathematical physics in

numerous contexts. There are several types of examples as the Fourier transform, the Poisson formula for
a solution of the heat equation, and the Mehler formula for the time evolution of a harmonic oscillator (cf.
[2], [3], [8], [11], [12] and [13], amongst others).

Our main goal in this paper is to establish new Lp-boundedness properties and Parseval-type relations
for the operators given by (1) over the spaces Lp (R,w(x)dx), 1 ≤ p ≤ ∞, where w is any function greater
than or equal to one a.e. on R. For this purpose we make use of previous results obtained in [4].

Moreover, under suitable conditions, for f , 1 ∈ L1 (R,w(x)dx), w ≥ 1 a.e. onR, then one has the following
Parseval-type relation∫ +∞

−∞

(
Fβ,ε,δ,ξ,γ f

)
(x) 1 (x) dx =

∫ +∞

−∞

f (x)
(
Fε,β,δ,γ,ξ1

)
(x) dx. (2)

Let F′ε,β,δ,γ,ξ be the adjoint of the operator Fε,β,δ,γ,ξ, i.e.,〈
F′ε,β,δ,γ,ξ f , 1

〉
=

〈
f ,Fε,β,δ,γ,ξ1

〉
.
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According to the results of [6], the previously mentioned Parseval-type relation (2) allows us to obtain
an interesting connection between the operator F′ε,β,δ,γ,ξ and the operator Fβ,ε,δ,ξ,γ. Indeed, we conclude that
the operator F′ε,β,δ,γ,ξ is the natural extension of the integral operator Fβ,ε,δ,ξ,γ, i.e.,

F′ε,β,δ,γ,ξT f = TFβ,ε,δ,ξ,γ f

where T f is given by

< T f , 1 >=

∫ +∞

−∞

f (x)1(x)dx.

In section 3 we consider the Gauss-Weierstrass semigroup as a particular case of this analysis.
We also point out relevant connections of our work with various earlier related results (see [5], [7], [9],

[10] and [14]).

2. The operator Fβ,ε,δ,ξ,γ over the spaces Lp(R,w(x)dx) into L∞(R,w(x)dx), 1 ≤ p ≤ ∞

In this section we study the behaviour of the operator Fβ,ε,δ,ξ,γ on the spaces Lp(R,w(x)dx), 1 ≤ p ≤ ∞,
w ≥ 1 a.e. on R.

Indeed, by following [4, Proposition 2.1, Proposition 3.1 and Proposition 4.1], we draw Theorem 2.1
below.

Theorem 2.1. Assume that w is a function greater than or equal to one almost everywhere on R. We get

(i) For<ε > 0, (<δ)2
≤ <ε<β and<ε<ξ+<δ<γ = 0, then the operator Fβ,ε,δ,ξ,γ is bounded from the spaces

Lp(R,w(x)dx) into L∞(R,w(x)dx), 1 < p < ∞.
(ii) For <β ≥ |<δ|, <ε ≥ |<δ| and <ξ = <γ = 0, then the operator Fβ,ε,δ,ξ,γ is bounded from the spaces

L1(R,w(x)dx) into L∞(R,w(x)dx).
(iii) For <ε > 0, (<δ)2

≤ <ε<β and <ε<ξ +<δ<γ = 0 the operator Fβ,ε,δ,ξ,γ is bounded from the spaces
L∞(R,w(x)dx) into L∞(R,w(x)dx).

Proof. (i) From Hölder’s inequality it follows that∣∣∣(Fβ,ε,δ,ξ,γ f )(y)
∣∣∣

≤

∫ +∞

−∞

| f (x)|
∣∣∣∣exp

[
−βy2

− εx2 + 2δxy + ξy + γx
]∣∣∣∣ dx

=

∫ +∞

−∞

| f (x)|
∣∣∣∣exp

[
−βy2

− εx2 + 2δxy + ξy + γx
]∣∣∣∣ w(x)1/pw(x)−1/pdx

≤

(∫ +∞

−∞

| f (x)|pw(x)dx
)1/p

×

(∫ +∞

−∞

∣∣∣∣exp
[
(−βy2

− εx2 + 2δxy + ξy + γx)
]∣∣∣∣p′ w(x)−p′/pdx

)1/p′

=
∥∥∥ f

∥∥∥
p ·

(∫ +∞

−∞

∣∣∣∣exp
[
(−βy2

− εx2 + 2δxy + ξy + γx)
]∣∣∣∣p′ w(x)−p′/pdx

)1/p′

.

Thus

sup
y∈R

∣∣∣(Fβ,ε,δ,ξ,γ f )(y)
∣∣∣

≤

∥∥∥ f
∥∥∥

p sup
y∈R


(∫ +∞

−∞

∣∣∣∣exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]∣∣∣∣p′ w(x)−p′/pdx

)1/p′
 .
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Now, since w ≥ 1 a.e. on R, one has

sup
y∈R


(∫ +∞

−∞

∣∣∣∣exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]∣∣∣∣p′ w(x)−p′/pdx

)1/p′


= sup
y∈R


(∫ +∞

−∞

exp
[
(−<βy2

−<εx2 + 2<δxy +<ξy +<γx)p′
]

w(x)−p′/pdx
)1/p′


≤ sup

y∈R


(∫ +∞

−∞

exp
[
(−<βy2

−<εx2 + 2<δxy +<ξy +<γx)p′
]

dx
)1/p′

 .
Now, by making use of the well-known fact that

(2πc)(−1/2)
·

∫ +∞

−∞

exp
[
νx − (x2/2c)

]
dx = exp(cν2/2), ν ∈ C, c > 0, (3)

and since<ε > 0, one has

sup
y∈R


(∫ +∞

−∞

exp
[
(−<βy2

−<εx2 + 2<δxy +<ξy +<γx)p′
]

dx
)1/p′


= sup

y∈R


(
π

p′<ε

)1/2p′

exp
[
−<βy2 +

(<δ)2

<ε
y2 +<ξy +

<δ<γ

<ε
y +

(<γ)2

4<ε

] ,
which is bounded under the hypothesis considered.

Hence, we have

‖Fβ,ε,δ,ξ,γ f ‖∞ ≤ C
∥∥∥ f

∥∥∥
∞

for a certain real constant C.
Therefore, the operator Fβ,ε,δ,ξ,γ is bounded from the spaces Lp(R,w(x)dx) into L∞(R,w(x)dx), 1 < p < ∞,

w ≥ 1 a.e. on R.
(ii) Observe that ∣∣∣(Fβ,ε,δ,ξ,γ f )(y)

∣∣∣
≤

∫ +∞

−∞

| f (x)||exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]
|w(x)w(x)−1dx

≤ ess sup
x∈R

 |exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]
|

w(x)


∫ +∞

−∞

| f (x)|w(x)dx,

and so

‖Fβ,ε,δ,ξ,γ f ‖∞

≤

∥∥∥ f
∥∥∥

1
sup
y∈R

ess sup
x∈R

exp
[
−<βy2

−<εx2 + 2<δxy +<ξy +<γx
]

w(x)

 .
Since w ≥ 1 a.e. on R and 2<δxy ≤ |<δ|x2 + |<δ|y2, one has

‖Fβ,ε,δ,ξ,γ f ‖∞

≤

∥∥∥ f
∥∥∥

1

×sup
y∈R

{
exp

[
−(<β − |<δ|)y2 +<ξy

]}
sup
x∈R

{
exp

[
−(<ε − |<δ|)x2 +<γx

]}
,
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which, from the hypothesis considered, yields to

‖Fβ,ε,δ,ξ,γ f ‖∞ ≤ C
∥∥∥ f

∥∥∥
1

for a certain real constant C.
Therefore, the operator Fβ,ε,δ,ξ,γ is bounded from the spaces L1(R,w(x)dx) into L∞(R,w(x)dx), w ≥ 1 a.e.

on R.
(iii) Observe that

|(Fβ,ε,δ,ξ,γ f )(y)|

≤ ess sup
x∈R

{| f (x)|} ·
∫ +∞

−∞

|exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]
|dx,

and so

‖Fβ,ε,δ,ξ,γ f ‖∞

≤

∥∥∥ f
∥∥∥
∞
· sup

y∈R

{∫ +∞

−∞

|exp
[
−βy2

− εx2 + 2δxy + ξy + γx
]
|dx

}

=
∥∥∥ f

∥∥∥
∞
· sup

y∈R

{∫ +∞

−∞

exp
[
−<βy2

−<εx2 + 2<δxy +<ξy +<γx
]

dx
}
.

By virtue of (3) and since<ε > 0, this expression is equal to∥∥∥ f
∥∥∥
∞
· sup

y∈R

{(
π

<ε

)1/2
exp

[
−<βy2 +

(<δ)2

<ε
y2 +<ξy +

<δ<γ

<ε
y +

(<γ)2

4<ε

]}
which is bounded under the hypothesis considered.

Hence, we have

‖Fβ,ε,δ,ξ,γ f ‖∞ ≤ C
∥∥∥ f

∥∥∥
∞

for a certain real constant C.
Consequently, the operator Fβ,ε,δ,ξ,γ is bounded from L∞(R,w(x)dx) into L∞(R,w(x)dx), w ≥ 1 a.e. on

R.

As a consequence of (ii) in Theorem 2.1, it follows that for <ε ≥ |<δ|, <β ≥ |<δ| and <γ = <ξ = 0,
then the operator Fε,β,δ,γ,ξ is bounded from the spaces L1(R,w(x)dx) into L∞(R,w(x)dx), w ≥ 1 a.e. on R.

From this fact and having into account that the weight w is greater than or equal to one a.e. on R, the
Proposition 3.2 in [6] yields to

Theorem 2.2. The following Parseval-type relation holds∫ +∞

−∞

(
Fβ,ε,δ,ξ,γ f

)
(x) 1 (x) dx =

∫ +∞

−∞

f (x)
(
Fε,β,δ,γ,ξ1

)
(x) dx

for f , 1 ∈ L1(R,w(x)dx), w ≥ 1 a.e. on R,<ε ≥ |<δ|,<β ≥ |<δ| and<γ =<ξ = 0.

Also, as a consequence of the Corollary 3.1 in [6], we get

Corollary 2.2. Assume f ∈ L1 (R,w(x)dx), w ≥ 1 a.e. on R. For <ε ≥ |<δ|, <β ≥ |<δ| and <γ = <ξ = 0, it
follows

F′ε,β,δ,γ,ξT f = TFβ,ε,δ,ξ,γ f

on
(
L1 (R,w(x)dx)

)′
.
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3. The Gauss-Weierstrass semigroup

The Gauss-Weierstrass semigroup on R (see [1, p. 521] and [15]) is given by

(ez∆ f )(y) = (4πz)−1/2
∫ +∞

−∞

exp
[
−(y − x)2/4z

]
f (x)dx,

where<z ≥ 0 (and z , 0).
Except for the factor (4πz)−1/2, this integral operator corresponds to the particular case when the param-

eters are given by

β = ε = δ = 1/4z and ξ = γ = 0.

Now, as a consequence of Theorem 2.1 above, it follows

Theorem 3.1. Assume w ≥ 1 almost everywhere on R. For the Gauss-Weierstrass semigroup ez∆, one has

(i) For<z > 0, the operator ez∆ is bounded from the spaces Lp(R,w(x)dx) into L∞(R,w(x)dx), 1 < p < ∞.
(ii) For<z ≥ 0 (and z , 0), the operator ez∆ is bounded from the spaces L1(R,w(x)dx) into L∞(R,w(x)dx).

(iii) For<z > 0, the operator ez∆ is bounded from the spaces L∞(R,w(x)dx) into L∞(R,w(x)dx).

Also, from Theorem 2.2 above, one obtains

Theorem 3.2. The following Parseval relation holds∫ +∞

−∞

(
ez∆ f

)
(x) 1 (x) dx =

∫ +∞

−∞

f (x)
(
ez∆1

)
(x) dx (4)

for f , 1 ∈ L1(R,w(x)dx), w ≥ 1 a.e. on R,<z ≥ 0 (and z , 0).

Moreover, from Corollary 2.2, one has

Corollary 3.1. For f ∈ L1 (R,w(x)dx), w ≥ 1, a.e. on R,<z ≥ 0 (and z , 0), it follows(
ez∆

)′
T f = Tez∆ f (5)

on
(
L1 (R,w(x)dx)

)′
.

4. Concluding Remarks and Observations

In our present investigation, we have systematically studied several new Lp-boundedness properties for
operators with complex Gaussian kernels on the spaces Lp (R,w(x)dx), 1 ≤ p ≤ ∞. Our main result asserted
by Theorem 2.1 is believed to be new. We have also briefly considered relevant connections of our results
with the Gauss-Weierstrass semigroup.
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