The Natural Lie Algebra Brackets on Couples of Vector Fields and p-Forms

Miroslav Doupovec ${ }^{\text {a }}$, Jan Kurek ${ }^{\text {b }}$, Włodzimierz M. Mikulski ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Brno University of Technology, FSI VUT Brno, Technicka 2, Brno (Czech Republic)
${ }^{b}$ Institute of Mathematics, Maria Curie Sklodowska University, pl. Marii Curie Sklodowskiej 1, Lublin (Poland) ${ }^{\text {c Institute of Mathematics, Jagiellonian University, ul. Łojasiewicza 6, 30-348, Cracow (Poland) }}$

Abstract

If $m \geq p+1 \geq 2$ or $m=p \geq 3$, all natural Lie algebra brackets on couples of vector fields and p-forms on m-manifolds are described.

1. Introduction

Let $\mathcal{M} f_{m}$ be the category of m-dimensional C^{∞} manifolds and their embeddings.
The Courant bracket on the "doubled" tangent bundle $T \oplus T^{*}$ is of full interest because it is involved in the definitions of Dirac and generalized complex structures, see e.g. [1, 4, 5]. That is why, in [2], we studied "brackets" on $T \oplus T^{*}$ similar to the Courant one.

The Courant bracket can be extended on $T \oplus \bigwedge^{p} T^{*}$, see e.g. [5]. That is why, in [3], we described all $\mathcal{M} f_{m}$-natural bilinear operators

$$
A:\left(T \oplus \bigwedge^{p} T^{*}\right) \times\left(T \oplus \bigwedge^{p} T^{*}\right) \rightsquigarrow T \oplus \bigwedge^{p} T^{*}
$$

transforming pairs of couples $X^{i} \oplus \omega^{i} \in \mathcal{X}(M) \oplus \Omega^{p}(M)(i=1,2)$ of vector fields and p-forms on m-manifolds M into couples $A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right) \in \mathcal{X}(M) \oplus \Omega^{p}(M)$ of vector fields and p-forms on M.

In the present note, we extract all $\mathcal{M} f_{m}$-natural bilinear operators A as above satisfying the Jacobi identity in Leibniz form (or shortly, satisfying the Leibniz rule)

$$
A\left(\rho^{1}, A\left(\rho^{2}, \rho^{3}\right)\right)=A\left(A\left(\rho^{1}, \rho^{2}\right), \rho^{3}\right)+A\left(\rho^{2}, A\left(\rho^{1}, \rho^{3}\right)\right)
$$

for any $\rho^{i}=X^{i} \oplus \omega^{i} \in \mathcal{X}(M) \oplus \Omega^{p}(M)(i=1,2,3)$ and $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$.
In particular, we find all $\mathcal{M} f_{m}$-natural Lie algebra brackets [-,-] on $\mathcal{X}(M) \oplus \Omega^{p}(M)$ (i.e. $\mathcal{M} f_{m}$-natural skew-symmetric bilinear operators $A=[-,-]$ as above satisfying the Leibniz rule).

From now on, $\left(x^{i}\right)(i=1, \ldots, m)$ is the usual coordinates on \mathbb{R}^{m} and $\partial_{i}=\frac{\partial}{\partial x^{i}}$ are the canonical vector fields on \mathbb{R}^{m}.

[^0]
2. On the Courant like brackets

Definition 2.1. ([3]) A bilinear $\mathcal{M} f_{m}$-natural operator $A:\left(T \oplus \bigwedge^{p} T^{*}\right) \times\left(T \oplus \wedge^{p} T^{*}\right) \leadsto T \oplus \wedge^{p} T^{*}$ is a $\mathcal{M} f_{m}$-invariant family of bilinear operators

$$
A:\left(X(M) \oplus \Omega^{p}(M)\right) \times\left(\mathcal{X}(M) \oplus \Omega^{p}(M)\right) \rightarrow \mathcal{X}(M) \oplus \Omega^{p}(M)
$$

for m-dimensional manifolds M, where $\mathcal{X}(M)$ is the space of vector fields on M and $\Omega^{p}(M)$ is the space of p-forms on M.

Remark 2.2. In the above definition, the $\mathcal{M} f_{m}$-invariance of A means that if $\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right) \in\left(X(M) \oplus \Omega^{p}(M)\right) \times$ $\left(X(M) \oplus \Omega^{p}(M)\right)$ and $\left(\bar{X}^{1} \oplus \bar{\omega}^{1}, \bar{X}^{2} \oplus \bar{\omega}^{2}\right) \in\left(X(\bar{M}) \oplus \Omega^{p}(\bar{M})\right) \times\left(X(\bar{M}) \oplus \Omega^{p}(\bar{M})\right)$ are φ-related by an $\mathcal{M} f_{m}$-map $\varphi: M \rightarrow \bar{M}$ (i.e. $\bar{X}^{i} \circ \varphi=T \varphi \circ X^{i}$ and $\bar{\omega}^{i} \circ \varphi=\bigwedge^{p} T^{*} \varphi \circ \omega^{i}$ for $i=1,2$), then so are $A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)$ and $A\left(\bar{X}^{1} \oplus \bar{\omega}^{1}, \bar{X}^{2} \oplus \bar{\omega}^{2}\right)$.

The most important example of a bilinear $\mathcal{M} f_{m}$-natural operator $A:\left(T \oplus \bigwedge^{p} T^{*}\right) \times\left(T \oplus \bigwedge^{p} T^{*}\right) \leadsto T \oplus \bigwedge^{p} T^{*}$ is the generalized Courant bracket.
Example 2.3. ([5]) The generalized Courant bracket is given by

$$
\left[X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right]_{C}=\left[X^{1}, X^{2}\right] \oplus\left(\mathcal{L}_{X^{1}} \omega^{2}-\mathcal{L}_{X^{2}} \omega^{1}+\frac{1}{2} d\left(i_{X^{2}} \omega^{1}-i_{X^{1}} \omega^{2}\right)\right)
$$

for any $X^{i} \oplus \omega^{i} \in \mathcal{X}(M) \oplus \Omega^{p}(M), i=1,2$, where \mathcal{L} denotes the Lie derivative, d the exterior derivative, $[-,-]$ the usual bracket on vector fields and i is the insertion derivative. For $p=1$ we obtain the usual Courant bracket as in [1].

Remark 2.4. If $m=p, \mathcal{L}_{X} \omega=d i_{X} \omega+i_{X} d \omega=d i_{X} \omega$ for any vector field X and any m-form ω on a m-manifold M as $d \omega=0$, and then $\left[X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right]_{C}=\left[X^{1}, X^{2}\right] \oplus \frac{1}{2}\left(\mathcal{L}_{X^{1}} \omega^{2}-\mathcal{L}_{X^{2}} \omega^{1}\right)$.
Theorem 2.5. ([3]) If $m \geq p+1 \geq 2$ (or $m=p \geq 3$), any bilinear $\mathcal{M} f_{m}$-natural operator $A:\left(T \oplus \wedge^{p} T^{*}\right) \times(T \oplus$ $\left.\bigwedge^{p} T^{*}\right) \leadsto T \oplus \bigwedge^{p} T^{*}$ is of the form

$$
A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)=a\left[X^{1}, X^{2}\right] \oplus\left(b_{1} \mathcal{L}_{X^{2}} \omega^{1}+b_{2} \mathcal{L}_{X^{1}} \omega^{2}+c_{1} d\left(i_{X^{2}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{2}\right)\right)
$$

for uniquely determined by A real numbers $a, b_{1}, b_{2}, c_{1}, c_{2}$ (or $a, b_{1}, b_{2}, c_{1}, c_{2}$ with $c_{1}=c_{2}=0$).
Corollary 2.6. ([3]) If $m \geq p+1 \geq 2$ (or $m=p \geq 3$), any skew-symmetric bilinear $\mathcal{M} f_{m}$-natural operator $A:\left(T \otimes \bigwedge^{p} T^{*}\right) \times\left(T \otimes \bigwedge^{p} T^{*}\right) \leadsto T \oplus \bigwedge^{p} T^{*}$ is of the form

$$
A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)=a\left[X^{1}, X^{2}\right] \oplus\left(b\left(\mathcal{L}_{X^{1}} \omega^{2}-\mathcal{L}_{X^{2}} \omega^{1}\right)+c d\left(i_{X^{2}} \omega^{1}-i_{X^{1}} \omega^{2}\right)\right)
$$

for uniquely determined by A real numbers a, b, c (or a, b, c with $c=0$), i.e. roughly speaking, any such A coincides with the generalized Courant bracket up to three (or two) real constants.

3. The main result

The main result of the present note is the following
Theorem 3.1. If $m \geq p+1 \geq 2$ (or $m=p \geq 3$), any bilinear $\mathcal{M} f_{m}$-natural operator $A:\left(T \oplus \wedge^{p} T^{*}\right) \times\left(T \oplus \wedge^{p} T^{*}\right) \leadsto$ $T \oplus \bigwedge^{p} T^{*}$ satisfying the Leibniz rule as in Introduction is the constant multiple of one of the following four (or three respectively) operators $A_{1}, A_{2}, A_{3}, A_{4}$ (or A_{1}, A_{2}, A_{3}) given by

$$
\begin{aligned}
& A_{1}\left(\rho^{1}, \rho^{2}\right)=\left[X^{1}, X^{2}\right] \oplus 0 \\
& A_{2}\left(\rho^{1}, \rho^{2}\right)=\left[X^{1}, X^{2}\right] \oplus\left(\mathcal{L}_{X^{1}} \omega^{2}-\mathcal{L}_{X^{2}} \omega^{1}\right) \\
& A_{3}\left(\rho^{1}, \rho^{2}\right)=\left[X^{1}, X^{2}\right] \oplus \mathcal{L}_{X^{1}} \omega^{2} \\
& A_{4}\left(\rho^{1}, \rho^{2}\right)=\left[X^{1}, X^{2}\right] \oplus\left(\mathcal{L}_{X^{1}} \omega^{2}-\mathcal{L}_{X^{2}} \omega^{1}+d\left(i_{X^{2}} \omega^{1}\right)\right)
\end{aligned}
$$

where $\rho^{i}=X^{i} \oplus \omega^{i}$. The operators A_{1}, \ldots, A_{4} satisfy the Leibniz rule.

Proof. Let $A:\left(T \oplus \bigwedge^{p} T^{*}\right) \times\left(T \oplus \bigwedge^{p} T^{*}\right) \leadsto T \oplus \bigwedge^{p} T^{*}$ be a bilinear $\mathcal{M} f_{m}$-natural operator satisfying the Leibniz rule. By Theorem 2.5, if $m \geq p+1 \geq 2$ (or $m=p \geq 3$), A is of the form

$$
A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right)=a\left[X^{1}, X^{2}\right] \oplus\left(b_{1} \mathcal{L}_{X^{2}} \omega^{1}+b_{2} \mathcal{L}_{X^{1}} \omega^{2}+c_{1} d\left(i_{X^{2}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{2}\right)\right)
$$

for uniquely determined by A real numbers $a, b_{1}, b_{2}, c_{1}, c_{2}$ (or $a, b_{1}, b_{2}, c_{1}, c_{2}$ with $c_{1}=c_{2}=0$). Then for any $X^{1}, X^{2}, X^{3} \in X(M)$ and $\omega^{1}, \omega^{2}, \omega^{3} \in \Omega^{p}(M)$ we have

$$
\begin{aligned}
& A\left(X^{1} \oplus \omega^{1}, A\left(X^{2} \oplus \omega^{2}, X^{3} \oplus \omega^{3}\right)\right)=a^{2}\left[X^{1},\left[X^{2}, X^{3}\right]\right] \oplus \Omega \\
& A\left(A\left(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right), X^{3} \oplus \omega^{3}\right)=a^{2}\left[\left[X^{1}, X^{2}\right], X^{3}\right] \oplus \Theta \\
& A\left(X^{2} \oplus \omega^{2}, A\left(X^{1} \oplus \omega^{1}, X^{3} \oplus \omega^{3}\right)\right)=a^{2}\left[X^{2},\left[X^{1}, X^{3}\right]\right] \oplus \mathcal{T}
\end{aligned}
$$

where

$$
\begin{aligned}
\Omega= & b_{1} \mathcal{L}_{a\left[X^{2}, X^{3}\right]} \omega^{1}+c_{1} d\left(i_{a\left[X^{2}, X^{3}\right]} \omega^{1}\right) \\
& +b_{2} \mathcal{L}_{X^{1}}\left(b_{1} \mathcal{L}_{X^{3}} \omega^{2}+b_{2} \mathcal{L}_{X^{2}} \omega^{3}+c_{1} d\left(i_{X^{3}} \omega^{2}\right)+c_{2} d\left(i_{X^{2}} \omega^{3}\right)\right) \\
& +c_{2} d\left(i_{X^{1}}\left(b_{1} \mathcal{L}_{X^{3}} \omega^{2}+b_{2} \mathcal{L}_{X^{2}} \omega^{3}+c_{1} d\left(i_{X^{3}} \omega^{2}\right)+c_{2} d\left(i_{X^{2}} \omega^{3}\right)\right)\right), \\
\Theta=\quad & b_{2} \mathcal{L}_{a\left[X^{1}, X^{2}\right]} \omega^{3}+c_{2} d\left(i_{a\left[X^{1}, X^{2}\right]} \omega^{3}\right) \\
& +b_{1} \mathcal{L}_{X^{3}}\left(b_{1} \mathcal{L}_{X^{2}} \omega^{1}+b_{2} \mathcal{L}_{X^{1}} \omega^{2}+c_{1} d\left(i_{X^{2}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{2}\right)\right) \\
& +c_{1} d\left(i_{X^{3}}\left(b_{1} \mathcal{L}_{X^{2}} \omega^{1}+b_{2} \mathcal{L}_{X^{1}} \omega^{2}+c_{1} d\left(i_{X^{2}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{2}\right)\right)\right), \\
\mathcal{T}=\quad & b_{1} \mathcal{L}_{a\left[X^{1}, X^{3}\right]} \omega^{2}+c_{1} d\left(i_{a\left[X^{1}, X^{3}\right]} \omega^{2}\right) \\
& +b_{2} \mathcal{L}_{X^{2}}\left(b_{1} \mathcal{L}_{X^{3}} \omega^{1}+b_{2} \mathcal{L}_{X^{1}} \omega^{3}+c_{1} d\left(i_{X^{3}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{3}\right)\right) \\
& +c_{2} d\left(i_{X^{2}}\left(b_{1} \mathcal{L}_{X^{3}} \omega^{1}+b_{2} \mathcal{L}_{X^{1}} \omega^{3}+c_{1} d\left(i_{X^{3}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{3}\right)\right)\right) .
\end{aligned}
$$

The Leibniz rule of A is equivalent to

$$
\begin{equation*}
\Omega=\Theta+\mathcal{T} \tag{1}
\end{equation*}
$$

Assume $m=p \geq 3$. Then $c_{1}=c_{2}=0$ and equation (1) gives

$$
\begin{aligned}
& b_{1} a \mathcal{L}_{\left[X^{2}, X^{3}\right]} \omega^{1}+b_{2} b_{1} \mathcal{L}_{X^{1}} \mathcal{L}_{X^{3}} \omega^{2}+b_{2}^{2} \mathcal{L}_{X^{1}} \mathcal{L}_{X^{2}} \omega^{3} \\
& =\left(b_{2} a \mathcal{L}_{\left[X^{1}, X^{2}\right]} \omega^{3}+b_{1}^{2} \mathcal{L}_{X^{3}} \mathcal{L}_{X^{2}} \omega^{1}+b_{1} b_{2} \mathcal{L}_{X^{3}} \mathcal{L}_{X^{1}} \omega^{2}\right) \\
& +\left(b_{1} a \mathcal{L}_{\left[X^{1}, X^{3}\right]} \omega^{2}+b_{2} b_{1} \mathcal{L}_{X^{2}} \mathcal{L}_{X^{3}} \omega^{1}+b_{2}^{2} \mathcal{L}_{X^{2}} \mathcal{L}_{X^{1}} \omega^{3}\right) .
\end{aligned}
$$

If we put $X^{1}=\partial_{1}, X^{2}=x^{1} \partial_{1}, X^{3}=0$ and $\omega^{1}=0, \omega^{2}=0, \omega^{3}=d\left(x^{1}\right)^{2} \wedge d x^{2} \wedge \ldots \wedge d x^{m}$, we get

$$
4 b_{2}^{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}=2 b_{2} a d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}+2 b_{2}^{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}
$$

If we put $X^{1}=0, X^{2}=\partial_{1}, X^{3}=x^{1} \partial_{1}$ and $\omega^{1}=d\left(x^{1}\right)^{2} \wedge d x^{2} \wedge \ldots \wedge d x^{m}, \omega^{2}=0, \omega^{3}=0$, we get

$$
2 b_{1} a d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}=2 b_{1}^{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}+4 b_{2} b_{1} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}
$$

If we put $X^{1}=\partial_{1}, X^{2}=0, X^{3}=x^{1} \partial_{1}$ and $\omega^{1}=0, \omega^{2}=d\left(x^{1}\right)^{2} \wedge d x^{2} \wedge \ldots \wedge d x^{m}, \omega^{3}=0$, we get

$$
4 b_{2} b_{1} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}=2 b_{1} b_{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}+2 b_{1} a d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{m}
$$

So,

$$
\begin{equation*}
b_{2} a=b_{2}^{2}, \quad b_{1} a=b_{1}^{2}+2 b_{1} b_{2}, \quad b_{1} b_{2}=b_{1} a \tag{2}
\end{equation*}
$$

From the first equality we get $b_{2}=0$ or $b_{2}=a$. From the third one we get $b_{1}=0$ or $b_{2}=a$. Adding the first two equalities we get $\left(b_{2}+b_{1}\right) a=\left(b_{2}+b_{1}\right)^{2}$, i.e. $b_{2}+b_{1}=0$ or $b_{2}+b_{1}=a$. Consequently

$$
\begin{equation*}
\left(b_{1}, b_{2}\right)=(0,0) \text { or }\left(b_{1}, b_{2}\right)=(0, a) \text { or }\left(b_{1}, b_{2}\right)=(-a, a) \tag{3}
\end{equation*}
$$

Theorem 3.1 for $m=p \geq 3$ is complete.
So, we may assume $m \geq p+1 \geq 2$. Applying the differentiation d to both sides of the equality (1) and using the well-known formula $d \circ \mathcal{L}_{X}=\mathcal{L}_{X} \circ d$ we get

$$
\begin{aligned}
& b_{1} a \mathcal{L}_{\left[X^{2}, X^{3}\right]} d \omega^{1}+b_{2} b_{1} \mathcal{L}_{X^{1}} \mathcal{L}_{X^{3}} d \omega^{2}+b_{2}^{2} \mathcal{L}_{X^{1}} \mathcal{L}_{X^{2}} d \omega^{3} \\
& =\left(b_{2} a \mathcal{L}_{\left[X^{1}, X^{2}\right]} d \omega^{3}+b_{1}^{2} \mathcal{L}_{X^{3}} \mathcal{L}_{X^{2}} d \omega^{1}+b_{1} b_{2} \mathcal{L}_{X^{3}} \mathcal{L}_{X^{1}} d \omega^{2}\right) \\
& +\left(b_{1} a \mathcal{L}_{\left[X^{1}, X^{3}\right]} d \omega^{2}+b_{2} b_{1} \mathcal{L}_{X^{2}} \mathcal{L}_{X^{3}} d \omega^{1}+b_{2}^{2} \mathcal{L}_{X^{2}} \mathcal{L}_{X^{1}} d \omega^{3}\right)
\end{aligned}
$$

If we put $X^{1}=\partial_{1}, X^{2}=x^{1} \partial_{1}, X^{3}=0$ and $\omega^{1}=0, \omega^{2}=0, \omega^{3}=\left(x^{1}\right)^{2} d x^{2} \wedge \ldots \wedge d x^{p+1}$, we get

$$
4 b_{2}^{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}=2 b_{2} a d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}+2 b_{2}^{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}
$$

If we put $X^{1}=0, X^{2}=\partial_{1}, X^{3}=x^{1} \partial_{1}$ and $\omega^{1}=\left(x^{1}\right)^{2} d x^{2} \wedge \ldots \wedge d x^{p+1}, \omega^{2}=0, \omega^{3}=0$, we get

$$
2 b_{1} a d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}=2 b_{1}^{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}+4 b_{2} b_{1} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}
$$

If we put $X^{1}=\partial_{1}, X^{2}=0, X^{3}=x^{1} \partial_{1}$ and $\omega^{1}=0, \omega^{2}=\left(x^{1}\right)^{2} d x^{2} \wedge \ldots \wedge d x^{p+1}, \omega^{3}=0$, we get

$$
4 b_{2} b_{1} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}=2 b_{1} b_{2} d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}+2 b_{1} a d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{p+1}
$$

So,

$$
b_{2} a=b_{2}^{2}, \quad b_{1} a=b_{1}^{2}+2 b_{1} b_{2}, \quad b_{1} b_{2}=b_{1} a
$$

i.e. equations (2). Consequently, we have (as above) alternative (3).

Then, using the formula $\mathcal{L}_{X} \mathcal{L}_{Y} \omega-\mathcal{L}_{Y} \mathcal{L}_{X} \omega=\mathcal{L}_{[X, Y]} \omega$ and alternative (3), one can easily verify that

$$
\begin{aligned}
& b_{1} a \mathcal{L}_{\left[X^{2}, X^{3}\right]} \omega^{1}+b_{2} b_{1} \mathcal{L}_{X^{1}} \mathcal{L}_{X^{3}} \omega^{2}+b_{2}^{2} \mathcal{L}_{X^{1}} \mathcal{L}_{X^{2}} \omega^{3} \\
& =\left(b_{2} a \mathcal{L}_{\left[X^{1}, X^{2}\right]} \omega^{3}+b_{1}^{2} \mathcal{L}_{X^{3}} \mathcal{L}_{X^{2}} \omega^{1}+b_{1} b_{2} \mathcal{L}_{X^{3}} \mathcal{L}_{X^{1}} \omega^{2}\right) \\
& +\left(b_{1} a \mathcal{L}_{\left[X^{1}, X^{3}\right]} \omega^{2}+b_{2} b_{1} \mathcal{L}_{X^{2}} \mathcal{L}_{X^{3}} \omega^{1}+b_{2}^{2} \mathcal{L}_{X^{2}} \mathcal{L}_{X^{1}} \omega^{3}\right) .
\end{aligned}
$$

The last formula for $\left(a, b_{1}, b_{2}\right)=(1,0,0)$ or $\left(a, b_{1}, b_{2}\right)=(1,0,1)$ or $\left(a, b_{1}, b_{2}\right)=(1,-1,1)$ means that the operators A_{1}, A_{2}, A_{3} satisfy the Leibniz rule, as well.

More, the last formula implies that the Leibniz rule (1) is equivalent to alternative (3) and the following condition

$$
\begin{align*}
& c_{1} a d\left(i_{\left[X^{2}, X^{3}\right]} \omega^{1}\right)+b_{2} \mathcal{L}_{X^{1}}\left(c_{1} d\left(i_{X^{3}} \omega^{2}\right)+c_{2} d\left(i_{X^{2}} \omega^{3}\right)\right) \\
& +c_{2} d\left(i_{X^{1}}\left(b_{1} \mathcal{L}_{X^{3}} \omega^{2}+b_{2} \mathcal{L}_{X^{2}} \omega^{3}+c_{1} d\left(i_{X^{3}} \omega^{2}\right)+c_{2} d\left(i_{X^{2}} \omega^{3}\right)\right)\right) \\
& =c_{2} a d\left(i_{\left[X^{1}, X^{2}\right]} \omega^{3}\right)+b_{1} \mathcal{L}_{X^{3}}\left(c_{1} d\left(i_{X^{2}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{2}\right)\right) \tag{4}\\
& +c_{1} d\left(i_{X^{3}}\left(b_{1} \mathcal{L}_{X^{2}} \omega^{1}+b_{2} \mathcal{L}^{1} \omega^{2}+c_{1} d\left(i_{X^{2}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{2}\right)\right)\right) \\
& +c_{1} a d\left(i_{\left[X^{1}, X^{3}\right.} \omega^{2}\right)+b_{2} \mathcal{L}_{X^{2}}\left(c_{1} d\left(i_{X^{3}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{3}\right)\right) \\
& +c_{2} d\left(i_{X^{2}}\left(b_{1} \mathcal{L}_{X^{3}} \omega^{1}+b_{2} \mathcal{L}_{X^{1}} \omega^{3}+c_{1} d\left(i_{X^{3}} \omega^{1}\right)+c_{2} d\left(i_{X^{1}} \omega^{3}\right)\right)\right) .
\end{align*}
$$

If we put (in (4)) $X^{1}=\partial_{1}, X^{2}=\partial_{2}, X^{3}=0, \omega^{1}=\omega^{2}=0$ and $\omega^{3}=\left(x^{2}\right)^{2} d x^{1} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}$, we get

$$
2 c_{2} b_{2} d x^{2} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}=2 c_{2} b_{2} d x^{2} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}+2 c_{2}^{2} d x^{2} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}
$$

Then $c_{2}=0$.
If we put $X^{1}=0, X^{2}=\partial_{1}, X^{3}=\partial_{2}, \omega^{1}=\left(x^{2}\right)^{2} d x^{1} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}$, and $\omega^{2}=\omega^{3}=0$, we get

$$
0=2 b_{1} c_{1} d x^{2} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}+2 c_{1}^{2} d x^{2} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}+2 c_{2} b_{1} d x^{2} \wedge d x^{3} \wedge \ldots \wedge d x^{p+1}
$$

Then (as $c_{2}=0$) we get $c_{1}=0$ or $c_{1}=-b_{1}$.
Consequently we obtain that $\left(b_{1}, b_{2}, c_{1}, c_{2}\right)=(0,0,0,0)$ or $\left(b_{1}, b_{2}, c_{1}, c_{2}\right)=(0, a, 0,0)$ or $\left(b_{1}, b_{2}, c_{1}, c_{2}\right)=$ $(-a, a, 0,0)$ or $\left(b_{1}, b_{2}, c_{1}, c_{2}\right)=(-a, a, a, 0)$.

On the other hand, A_{1}, \ldots, A_{4} from Theorem 3.1 satisfy the Leibniz rule, see above for A_{1}, A_{2}, A_{3} and see Lemma 3.2 below for A_{4}. Theorem 3.1 is complete.

Lemma 3.2. The operator A_{4} from Theorem 3.1 satisfies the Leibniz rule.
Proof. It is sufficient to prove (4) for $\left(a, b_{1}, b_{2}, c_{1}, c_{2}\right)=(1,-1,1,1,0)$, i.e that

$$
\begin{align*}
& d i_{\left[X^{2}, X^{3}\right.} \omega^{1}+\mathcal{L}_{X^{1}} d i_{X^{3}} \omega^{2}=-\mathcal{L}_{X^{3}} d i_{X^{2}} \omega^{1}-d i_{X^{3}} \mathcal{L}_{X^{2}} \omega^{1} \tag{5}\\
& +d i i_{X^{3}} \mathcal{L}_{X^{1}} \omega^{2}+d i_{X^{3}} d i_{X^{2}} \omega^{1}+d i_{\left[X^{1}, X^{3}\right]} \omega^{2}+\mathcal{L}_{X^{2}} d i_{X^{3}} \omega^{1} .
\end{align*}
$$

The above formula (5) is the sum of the following two formulas

$$
\begin{align*}
& d i_{\left[X^{2}, X^{3}\right]} \omega^{1}=-\mathcal{L}_{X^{3}} d i_{X^{2}} \omega^{1}-d i_{X^{3}} \mathcal{L}_{X^{2}} \omega^{1}+d i_{X^{3}} d i_{X^{2}} \omega^{1}+\mathcal{L}_{X^{2}} d i_{X^{3}} \omega^{1} \tag{6}\\
& \mathcal{L}_{X^{1}} d i_{X^{3}} \omega^{2}=d i_{X^{3}} \mathcal{L}_{X^{1}} \omega^{2}+d i_{\left[X^{1}, X^{3}\right]} \omega^{2} . \tag{7}
\end{align*}
$$

The formula (7) follows immediately from $\mathcal{L}_{X^{1}} d=d \mathcal{L}_{X^{1}}$ and $i_{\left[X^{1}, X^{3}\right]}=\mathcal{L}_{X^{1}} i_{X^{3}}-i_{X^{3}} \mathcal{L}_{X^{1}}$. The proof of (6) is following. Applying $\mathcal{L}_{X^{3}}=d i_{X^{3}}+i_{X^{3}} d$ and $d d=0$, we easily get $d i_{X^{3}} d i_{X^{2}} \omega^{1}=\mathcal{L}_{X^{3}} d i_{X^{2}} \omega^{1}$. We have also $\mathcal{L}_{X^{2}} d=d \mathcal{L}_{X^{2}}$ and then $\mathcal{L}_{X^{2}} d i_{X^{3}} \omega^{1}=d \mathcal{L}_{X^{2}} i_{X^{3}} \omega^{1}$. Then (6) follows from $i_{\left[X^{2}, X^{3}\right]}=\mathcal{L}_{X^{2}} i_{X^{3}}-i_{X^{3}} \mathcal{L}_{X^{2}}$.

From Theorem 3.1 and Corollary 2.6 it follows immediately
Corollary 3.3. If $m \geq p+1 \geq 2$ or $m=p \geq 3$, any $\mathcal{M} f_{m}$-natural Lie algebra bracket on $\mathcal{X}(M) \oplus \Omega^{p}(M)$ is the constant multiple of one of the following two ones

$$
\begin{aligned}
& {\left[X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right]_{1}=\left[X^{1}, X^{2}\right] \oplus 0,} \\
& {\left[X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}\right]_{2}=\left[X^{1}, X^{2}\right] \oplus\left(\mathcal{L}_{X^{1}} \omega^{2}-\mathcal{L}_{X^{2}} \omega^{1}\right) .}
\end{aligned}
$$

References

[1] T. Courant, Dirac manifolds, Trans Amer Math Soc 1990 319(631) 631-661.
[2] M. Doupovec, J. Kurek, W. M. Mikulski, The natural brackets on couples of vector fields and 1-forms, Turk J Math $201842(4)$ 1853-1862.
[3] M. Doupovec, J. Kurek, W.M. Mikulski, On the Courant bracket on couples of vector fields and p-forms, Ann. Univ. Mariae Curie Sklodowska Sectio A 2018 72(2) 29-36.
[4] M. Gualtieri, Generalized complex geometry, Ann Math 2011 174(1) 75-123.
[5] N. Hitchin, Generalized Calabi-Yau manifolds, Q J Math 2003 54(3) 281-308.

[^0]: 2010 Mathematics Subject Classification. Primary 58 A 20; Secondary 58 A 32
 Keywords. natural operator, vector field, p-form, Lie algebra
 Received: 11 September 2018; Accepted: 24 October 2018
 Communicated by Ljubica Velimirović
 The first author has been supported by the Project LO1202 (funded by the MEYS under the National Sustainability Programme I) Email addresses: doupovec@fme.vutbr.cz (Miroslav Doupovec), kurek@hektor.umcs.lublin.pl (Jan Kurek),
 Wlodzimierz.Mikulski@im.uj.edu.pl (Włodzimierz M. Mikulski)

