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Determination of a Time-Dependent Coefficient in a Wave Equation
with Unusual Boundary Condition
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Abstract. In this paper, an initial boundary value problem for a wave equation with unusual boundary
condition is considered. Giving an integral over-determination condition, a time-dependent potential is
determined and existence and uniqueness theorem for small times is proved. We characterize the estimates
of conditional stability of the solution of the inverse problem. Also, the numerical solution of the inverse
problem is studied by using finite difference method.

1. Introduction

In this paper, we consider the one dimensional wave equation

utt = c2uxx + a(t)u(x, t) + f (x, t), (x, t) ∈ DT, (1)

with the initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ 1, (2)

Neumann boundary condition

ux(1, t) = 0, 0 ≤ t ≤ T, (3)

and unusual boundary condition

uxx(0, t) − bux(0, t) = 0, 0 ≤ t ≤ T, (4)

for b > 0, where DT = {(x, t) : 0 < x < 1, 0 ≤ t ≤ T} for some fixed T > 0 and c is a constant.
This model can be used for the motion of the longitudinal vibration of a uniform elastic bar subjected to

a distributed force f (x, t) per unit length, where c2 = E
ρ , E is Young’s modulus and ρ is the mass of density

of elastic bar. u = u(x, t) represents the displacement at the instant t of the point located at x, a(t) is the time
dependent potential, and the function ϕ(x) specifies the initial displacement, while ψ(x) specifies its initial
velocity. The boundary condition (3) means that right end of uniform elastic bar is free. On the contrary of
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the common boundary conditions, the boundary condition (4) contains the term of maximal order uxx(0, t)
which is called unusual (non-classical) boundary condition. This boundary condition arises if the left end
of bar is restrained with a rotational spring and b is the rotational stiffness coefficient. In this paper, we take
c = 1 for simplicity.

For a given function a(t), 0 ≤ t ≤ T the problem (1) - (4) for the unknown function u(x, t) is called
direct (forward) problem. Direct problems for the wave equation with various boundary conditions are
satisfactorily investigated in [3], [5], [14], [22] and [29]. It is important to note that the papers [2], [19],
[20], [21] which investigate the solution of direct problem for the wave equation with non-local integral
boundary condition. For the some numerical aspects of initial and initial-boundary value problems of the
hyperbolic equations is considered for direct problem in [4].

If a(t), 0 ≤ t ≤ T is unknown, finding the pair of solution {a(t),u(x, t)} of the problem (1)-(4) with the
additional condition∫ 1

0
u(x, t)dx = h(t), 0 ≤ t ≤ T. (5)

is called inverse problem.
Many physical models include unknown coefficients (i.e. potential, source) in the wave equation and

the solution of the inverse problems for the identification of these coefficients has become a very popular
area of research in recent years. The inverse problems for the wave equation with different boundary
conditions and space dependent coefficients are considered in [9], [17], [18] [23] and more recently in [10],
[30] . The inverse problem for the wave equation with time dependent coefficient with integral condition is
investigated in [15] and with non-classical boundary condition is studied in [1]. The time-dependent source
function of a time-fractional wave equation with integral condition in a bounded domain is determined in
[26].

On contrary to the inverse initial boundary value problem for the equation (1) with time-dependent
potential case, the finite difference method for the inverse problem for finding space-dependent potential,
or space dependent damping coefficient, or force function is well-known. The work [6] considers the
inverse problem for the wave equation which consists in determining an unknown time-dependent force
function by applying finite difference method. Same method is used for an unknown space-dependent
force function acting on a vibrating structure in the wave equation from Cauchy boundary data in [7]. In
[8], inverse problem of finding space-dependent potential or damping coefficients in the wave equation is
considered.

In present paper, we consider an initial boundary value problem for a wave equation with unusual
boundary condition. Giving an integral over-determination condition,we determine the time-dependent
potential and prove the existence and uniqueness theorem for small T, and we characterize the estimations
of conditional stability of the solution of the inverse problem. Also, we use the finite difference method to
the inverse initial boundary value problem for the equation (1) with time-dependent potential.

The article is organized as following: In Section 2, we present auxiliary spectral problem of this problem
and its properties. In Section 3, the series expansion method in terms of eigenfunctions converts the inverse
problem to a fixed point problem in a suitable Banach space. Under some consistency, regularity conditions
on initial and boundary data the existence and uniqueness of the inverse problem is shown by the way
that the fixed point problem has unique solution for small T. In this section, we also give the theorem for
continuous dependence upon the data in a certain class of data. In section 4, the inverse problem of finding
time-dependent potential is studied by using the finite difference method.

2. Auxiliary Spectral Problem

We attempt to apply the Fourier method of eigenfunction expansion to the problem (1)-(5). Auxiliary
spectral problem of the problem (1)-(4) is
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X′′(x) + λX(x) = 0, 0 ≤ x ≤ 1,

X′(1) = 0, bX′(0) + λX(0) = 0.
(6)

The problem (6) is considered in [12] and has eigenfunctions

Xn(x) =
√

2 cos
√
λn(1 − x), n = 0, 1, 2, ... (7)

with positive eigenvalues λn determined from the equation

tan
√

λ =
−
√
λ

b
.

The zero index is assigned to an arbitrary eigenfunction and all remaining eigenfunctions are numbered
increasing order of eigenvalues. This characteristic equation has no roots outside the positive part of the
real line on the complex plane. The asymptotic formula for the eigenvalues has the form√

λn = µn +
b
µn

+ O(
1
n2 )

for sufficiently large n and µn =
(2n−1)

2 π.
The system Xn(x), n = 1, 2, ... is bi-orthogonal to the system

Yn(x) =
2

1 + cos2
√
λn

b

[
cos

√
λn(1 − x) −

cos
√
λn

cos
√
λ0

cos
√
λ0(1 − x)

]
, n = 1, 2, ...

and the system Xn(x), n = 1, 2, ... forms a Riesz basis in L2 [0, 1]. Also, the system Yn(x), n = 1, 2, ... is a Riesz
basis in L2 [0, 1] and is complete.
The pair {a(t),u(x, t)} from the class C[0,T] × C2(DT) for which the conditions (1)-(5) are satisfied, is called
a classical solution of the inverse problem (1)-(5). Since we are seeking the classical solution of the inverse
problem (1)-(5), the uniformly convergence of the Fourier series expansion in the system Xn(x), n = 1, 2, ...
is important.

Lemma 2.1 (Corollary 1, [12]). Let the function 1(x) ∈ C[0, 1] and

1(0) +
b

cos
√
λ0

∫ 1

0
1(x) cos

√
λ0(1 − x)dx = 0

is satisfied. Then this function can be expanded in a Fourier series in the system Xn(x), n = 1, 2, ... and this expansion
is uniformly convergent on [0, 1].

Let us introduce the functional space

B3/2
2,T =

u(x, t) =

∞∑
n=1

un(t)Xn(x) : un(t) ∈ C[0,T], JT(u) =

 ∞∑
n=1

(
λ3/2

n max
0≤t≤T

|un(t)|
)2


1/2

< +∞


with the norm ‖u(x, t)‖B3/2

2,T
≡ JT(u) which relates the Fourier coefficients of the function u(x, t) by the

eigenfunctions Xn(x), n = 1, 2, .... It is shown in [13] that B3/2
2,T is Banach space. Obviously E3/2

T = C[0,T]×B3/2
2,T

with the norm ‖z‖E3/2
T

= ‖a(t)‖C[0,T] + ‖u(x, t)‖B3/2
2,T

is also Banach space, where z = {a(t),u(x, t)}.
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3. Solution of the Inverse Problem

In this section, we will examine the existence and uniqueness of the solution of the inverse problem
(1)-(5) with time-dependent potential and conditional stability of the solution of this inverse problem.

Definition 3.1. The pair {a(t),u(x, t)} from the class C[0,T] × C2,2(DT) for which the conditions (1)-(5) are satisfied
is called the classical solution of the inverse problem (1)-(5).

Since the function a(t) is solely time dependent, seeking the solution of the problem (1)-(5) in the
following form is suitable:

u(x, t) =

∞∑
n=1

un(t)Xn(x) (8)

where un(t) =
∫ 1

0 u(x, t)Yn(x)dx, n = 1, 2, ....

From the equation (1) and initial condition (2), we obtain
u′′n (t) + λnun(t) = Fn(t; a,u),

un(0) = ϕn, u′n(0) = ψn,
,n = 1, 2, .. (9)

where Fn(t; a,u) = a(t)un(t) + fn(t), fn(t) =
∫ 1

0 f (x, t)Yn(x)dx, ϕn =
∫ 1

0 ϕ(x)Yn(x)dx, ψn =
∫ 1

0 ψ(x)Yn(x)dx,
n = 1, 2, ....

Solving the problem (9), we get

un(t) = ϕn cos
√
λnt +

1
√
λn
ψn sin

√
λnt +

1
√
λn

∫ t

0
Fn(τ; a,u) sin

√
λn(t − τ)dτ. (10)

Integrating the equation (1) from 0 to 1 with respect to x and using the over-determination condition (5)
and the equality (10), we obtain the first component of the pair {a(t),u(x, t)} as

a(t) =
1

h(t)

h′′(t) − ∫ 1

0
f (x, t)dx +

√

2
∞∑

n=1

√
λn

(
ϕn cos

√
λnt

+
1
√
λn
ψn sin

√
λnt +

1
√
λn

∫ t

0
Fn(τ; a,u) sin

√
λn(t − τ)dτ

)
sin

√
λn

]
. (11)

Substituting (10) into (8), the second component of the pair is

u(x, t) =

∞∑
n=1

[
ϕn cos

√
λnt +

1
√
λn
ψn sin

√
λnt +

1
√
λn

∫ t

0
Fn(τ; a,u) sin

√
λn(t − τ)dτ

]
√

2 cos
√
λn(1−x) (12)

Thus, the solution of the inverse problem (1)-(5) is reduced to the solution of system (11)-(12) with
respect to the unknown functions {a(t),u(x, t)}.

Let us denote z = [a(t),u(x, t)]T and consider the operator equation

z = Φ(z). (13)
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The operator Φ is determined in the set of functions z and has the form [φ1, φ2]T, where

φ1(z) =
1

h(t)

h′′(t) − ∫ 1

0
f (x, t)dx +

√

2
∞∑

n=1

√
λn

(
ϕn cos

√
λnt

+
1
√
λn
ψn sin

√
λnt +

1
√
λn

∫ t

0
Fn(τ; a,u) sin

√
λn(t − τ)dτ

)
sin

√
λn

]
. (14)

φ2(z) =

∞∑
n=1

[
ϕn cos

√
λnt +

1
√
λn
ψn sin

√
λnt

+
1
√
λn

∫ t

0
Fn(τ; a,u) sin

√
λn(t − τ)dτ

]
√

2 cos
√
λn(1 − x) (15)

Let us show that Φ maps E3/2
T onto itself continuously. In other words, we need to show φ1(z) ∈ C[0,T]

and φ2(z) ∈ B3/2
2,T for arbitrary z = [a(t),u(x, t)]T with a(t) ∈ C[0,T], u(x, t) ∈ B3/2

2,T .
We will use the following assumptions on the data of problem (1)-(5):

(A1) ϕ(x) ∈ C3[0, 1], ϕ(0) + b
cos
√
λ0

∫ 1

0 ϕ(x) cos
√
λ0(1 − x)dx = 0, ϕ′(0) = ϕ′′(0) = 0, ϕ′(1) = 0,

(A2) ψ(x) ∈ C2[0, 1], ψ(0) + b
cos
√
λ0

∫ 1

0 ψ(x) cos
√
λ0(1 − x)dx = 0, ψ′(0) = ψ′(1) = 0,

(A3) h(t) ∈ C2[0,T], h(t) , 0,∀t ∈ [0,T], h(0) =
∫ 1

0 ϕ(x)dx, h′(0) =
∫ 1

0 ψ(x)dx,

(A4) f (x, t) ∈ C(DT), fx, fxx ∈ C[0, 1], ∀t ∈ [0,T], fx(0, t) = fx(1, t), f (0, t)+ b
cos
√
λ0

∫ 1

0 f (x, t) cos
√
λ0(1−x)dx = 0.

By using integration by parts under the assumptions (A1)-(A4), it easy to see that

ϕn =
1

λ3/2
n

−
√

2

1 + cos2
√
λn

b

∫ 1

0
ϕ′′′(x) sin

√
λn(1 − x)dx,

ψn =
1
λn

−
√

2

1 + cos2
√
λn

b

∫ 1

0
ϕ′′(x) cos

√
λn(1 − x)dx,

fn(t) =
1
λn

−
√

2

1 + cos2
√
λn

b

∫ 1

0
fxx(x, t) cos

√
λn(1 − x)dx.

From these equalities, we have∑
∞

n=1
√
λn

∣∣∣ϕn

∣∣∣ ≤ C1

∥∥∥ϕ′′′(x)
∥∥∥

L2[0,1]
,

∑
∞

n=1

∣∣∣ψn

∣∣∣ ≤ C1

∥∥∥ψ′′(x)
∥∥∥

L2[0,1]
,

∑
∞

n=1

∣∣∣ fn(t)
∣∣∣ ≤ C1

∥∥∥ fxx(x, t)
∥∥∥

L2(DT)
,

(16)

by using Cauchy-Schwartz inequality and Bessel inequality where C1 =
(∑
∞

n=1
1
λ2

n

)1/2
.
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First, let us show that φ1(z) ∈ C[0,T]. Under the assumptions (A1)-(A4) and considering the estimates
(16), we obtain from (14)

max
0≤t≤T

∣∣∣φ1(z)
∣∣∣ ≤ R1(T) + R2(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3/2

2,T
(17)

where R1(T) = 1
‖h(t)‖C[0,T]

(‖h′′(t)‖C[0,T] +
∥∥∥ fint(t)

∥∥∥
C[0,T]

+ 2
√

2C1(
∥∥∥ϕ′′′(x)

∥∥∥
L2[0,1]

+
∥∥∥ψ′′(x)

∥∥∥
L2[0,1]

+ T
∥∥∥ fxx(x, t)

∥∥∥
L2(DT)

)),

R2(T) = 2
√

2C1C2T
‖h(t)‖C[0,T]

, fint(t) =
∫ 1

0 f (x, t)dx, and C2 =
(∑
∞

n=1
1
λ3

n

)1/2
. Since the right hand side is bounded,

φ1(z) ∈ C[0,T].
Now, let us show that φ2(z) ∈ B3/2

2,T , i.e. we need to verify that

JT(φ2) =

 ∞∑
n=1

(
λ3/2

n max
0≤t≤T

∣∣∣φ2n(t)
∣∣∣)2


1/2

< +∞,

where

φ2n(t) = ϕn cos
√
λnt +

1
√
λn
ψn sin

√
λnt +

1
√
λn

∫ t

0
Fn(τ; a,u) sin

√
λn(t − τ)dτ.

After some manipulations on the last equality under the assumptions (A1)-(A4), we get

∞∑
n=1

(
λ3/2

n max
0≤t≤T

∣∣∣φ2n(t)
∣∣∣)2
≤ R̃1(T) + R̃2(T)

(
max
0≤t≤T

|a(t)|
)2 ∞∑

n=1

(
λ3/2

n max
0≤t≤T

|un(t)|
)2

(18)

where R̃2(T) = 4T2,and R̃1(T) = 4
∑
∞

n=1 |αn|
2 + 4

∑
∞

n=1

∣∣∣βn

∣∣∣2 + 4T2 ∑
∞

n=1

(
max
0≤t≤T

∣∣∣ηn(t)
∣∣∣)2

with

αn =
−
√

2

1 + cos2
√
λn

b

∫ 1

0
ϕ′′′(x) sin

√
λn(1 − x)dx,

βn =
−
√

2

1 + cos2
√
λn

b

∫ 1

0
ϕ′′(x) cos

√
λn(1 − x)dx,

ηn(t) =
−
√

2

1 + cos2
√
λn

b

∫ 1

0
fxx(x, t) cos

√
λn(1 − x)dx.

From the Bessel inequality and
∑
∞

n=1

(
λ3/2

n max
0≤t≤T

|un(t)|
)2
< +∞, series on the right side of (18) are conver-

gent. Thus JT(φ2) < +∞ and φ2 is belongs to the space B3/2
2,T .

Now, let z1 and z2 be any two elements of E3/2
T . We know that ‖Φ(z1) −Φ(z2)‖E3/2

T
=

∥∥∥φ1(z1) − φ1(z2)
∥∥∥

C[0,T]
+∥∥∥φ2(z1) − φ2(z2)

∥∥∥
B3/2

2,T
. Here zi = [ai(t),ui(x, t)]T, i = 1, 2.

Under the assumptions (A1)-(A4) and considering (17)-(18), we obtain

‖Φ(z1) −Φ(z2)‖E3/2
T
≤ A(T)C(a1,u2) ‖z1 − z2‖E3/2

T

where A(T) = 2T
(
1 +

√
2C1C2

‖h(t)‖C[0,T]

)
and C(a1,u2) is the constant includes the norms of

∥∥∥a1(t)
∥∥∥

C[0,T]
and

∥∥∥u2(x, t)
∥∥∥

B3/2
2,T

.

For sufficiently small T, 0 < A(T) < 1. This implies that the operator Φ is contraction mapping which
maps E3/2

T onto itself continuously. Then according to Banach fixed point theorem there exists unique
solution of (13).

Thus, we proved the following theorem:
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Theorem 3.2 (Existence and uniqueness). Let the assumptions (A1)-(A4) be satisfied. Then, the inverse problem
(1)-(5) has a unique solution for small T.

Now, let us investigate the stability of the solution of the inverse problem. Because of the presence of the
term a(t)u(x, t) in the equation (1), finding the pair of solution {a(t),u(x, t)} of the inverse problem (1)-(5) is
non-linear. Therefore we can not apply the standard stability criteria but we can characterize the estimation
of conditional stability. Thus we can obtain a stability estimate under a priori assumption on the smallness
of a(t) . This type of stability results are studied by V.G. Romanov in [23] and more recently in [11], [24],
[25], [27], [28].

Such an estimate can be obtained by setting a certain class of data =(α,N0,N1,N2,N3) for the functions
ϕ(x), ψ(x), h(t), f (x, t) and a class ℵ(M0) for the function a(t) if they satisfy

∥∥∥ f
∥∥∥

C(DT)
≤ N0,

∥∥∥ϕ∥∥∥
C3[0,1]

≤ N1,
∥∥∥ψ∥∥∥

C2[0,1]
≤ N2,

‖h‖C2[0,T] ≤ N3, 0 < α ≤ |h(t)| ,

and

‖a(t)‖C[0,T] ≤M0,

respectively.
It is easy to seen that, since ϕ(x), ψ(x), h(t), f (x, t) ∈ =(α,N0,N1,N2,N3) and a(t) ∈ ℵ(M0),

‖u(x, t)‖B3/2
2,T
≤M1

where M1 = 4
1−4T2C2M0

(T2N0 + N1 + N2).
Let {a(t),u(x, t)} and

{
a(t),u(x, t)

}
be the solutions of (1)-(5) corresponding to data ϕ(x), ψ(x), h(t), f (x, t)

and ϕ(x), ψ(x), h(t), f (x, t), respectively. Then, we obtain from (11) and (12)

a(t) − a(t) = 1
h(t)h(t)

{
h(t)

[
h′′(t) −

∫ 1

0 f (x, t)dx +
√

2
∑
∞

k=1

√
λn

(
ϕn cos

√
λnt

+ 1
√
λn
ψn sin

√
λnt + 1

√
λn

∫ t

0 Fn(τ; a,u) sin
√
λn(t − τ)dτ

)
sin
√
λn

]
−h(t)

[
h
′′

(t) −
∫ 1

0 f (x, t)dx +
√

2
∑
∞

k=1

√
λn

(
ϕn cos

√
λnt

+ 1
√
λn
ψn sin

√
λnt + 1

√
λn

∫ t

0 Fn(τ; a,u) sin
√
λn(t − τ)dτ

)
sin
√
λn

]}
(19)

and

u(x, t) − u(x, t) =
∑
∞

n=1

[
ϕn cos

√
λnt + 1

√
λn
ψn sin

√
λnt

+ 1
√
λn

∫ t

0 Fn(τ; a,u) sin
√
λn(t − τ)dτ

] √
2 cos

√
λn(1 − x)

−
∑
∞

n=1

[
ϕn cos

√
λnt + 1

√
λn
ψn sin

√
λnt

+ 1
√
λn

∫ t

0 Fn(τ; a,u) sin
√
λn(t − τ)dτ

] √
2 cos

√
λn(1 − x)

(20)
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where Fn(t; a,u) = a(t)un(t) + f n(t), f n(t) =
∫ 1

0 f (x, t)Yn(x)dx, ϕn =
∫ 1

0 ϕ(x)Yn(x)dx, ψn =
∫ 1

0 ψ(x)Yn(x)dx,
n = 1, 2, ....

Denote the difference between two functions with the tilde (∼), i.e. ã = a − a, ũ = u − u, etc. Then,under
the conditions(A1)-(A4) by using the estimates given above we obtain from (19) and (20)

∥∥∥̃a(t)
∥∥∥

C[0,T]
≤

D1

∆(T)

{∥∥∥∥̃h
∥∥∥∥

C2[0,T]
+

∥∥∥ϕ̃∥∥∥
C3[0,1]

+
∥∥∥ψ̃∥∥∥

C2[0,1]
+

∥∥∥∥ f̃
∥∥∥∥

C(DT)

}
(21)

where D1 = max
{

d4
α2 (2N3 + N0 + 2

√
2C1(N0 + N1 + N2) + 2TM0M1),

d4
α2 (1 + 2

√
2C1N3) − 4T2d2,

d4
α2 2
√

2C1N3 − 4d2

}
,∆(T) = d1d4−d2d3 , 0,d1 = 1− 2

√
2

α2 TC1N3M0, d2 = 2
√

2
α2 TC1C2N3M1,

d3 = 4T2C2M0, d4 = 1 − 4T2C2M1.
Similarly, we get the estimate∥∥∥ũ(x, t)

∥∥∥
B3/2

2,T
≤

D2

∆(T)

{∥∥∥∥̃h
∥∥∥∥

C2[0,T]
+

∥∥∥ϕ̃∥∥∥
C3[0,1]

+
∥∥∥ψ̃∥∥∥

C2[0,1]
+

∥∥∥∥ f̃
∥∥∥∥

C(DT)

}
(22)

where D2 is dependent only the parameters α,N0,N1,N2,N3,M0 and M1.

Theorem 3.3 (continuous dependence upon the data). Let {a(t),u(x, t)} and
{
a(t),u(x, t)

}
be two solutions of

the inverse problem (1)-(5) with the data ϕ(x), ψ(x), h(t), f (x, t) and ϕ(x), ψ(x), h(t), f (x, t), respectively, which are
satisfied the conditions of the Theorem 3.2. Then the estimates (21)-(22)are true for small T. The constants D1 and
D2 depend only on the choice of the classes =(α,N0,N1,N2,N3) and ℵ(M0).

4. Numerical Method and Examples

In this section,we describe the numerical method applied to the inverse initial boundary value problem
(1)-(5).

The discrete form of our problem is as follows: We divide the domain (0, 1) × (0,T) into nx and nt
subintervals of equal length hx and ht, where hx = 1/nx and ht = T/nt, respectively. We denote by
Un

j := U(x j, tn), an := a(tn) and f n
j := f (x j, tn), where x j = jhx, tn = nht for j = 0, ...,nx, n = 0, ...,nt. Then, a

central difference approximation to the equations (1)-(4) at the mesh points (x j, tn) is

Un+1
j = r2Un

j+1 + 2(1 − r2)Un
j + r2Un

j−1 −Un−1
j + (ht)2(anUn

j + f n
j ), (23)

j = 1, ...,nx − 1, n = 1, ...,nt − 1,

U0
j = ϕ j, j = 0, ...,nx,

U1
j −U−1

j

2ht
= ψ j, j = 1, ...,nx − 1, (24)

Un
2 − (2 + bhx)Un

1 + (1 + bhx)Un
0 = 0,

Un
nx −Un

nx−1

hx
= 0, n = 0, ...,nt, (25)

where r = ht2

hx2 . Equation (23) represents an explicit finite difference method which is stable for r ≤ 1. Putting
n = 0 in the equation (23) and using (24), we obtain

U1
j =

1
2

(r2ϕ j+1 + 2(1 − r2)ϕ j + r2ϕ j−1 + 2htψ j + (ht)2(a0ϕ j + f 0
j )), (26)

j = 1, ...,nx − 1.
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Consider (5) in the equation (1), we obtain

a(t) =
h′′(t) + ux(0, t) − fint(t)

h(t)

where fint(t) =
∫ 1

0 f (x, t)dx and for the over-determination condition (5) we use trapezoidal rule approxima-
tion.

After discretizing last equation, we have

an =
(hn+1

− 2hn + hn−1)/(ht)2 + (Un
1 −Un

0 )/hx − f n
int

hn , (27)

n = 1, ...,nt − 1

ant =
(hnt
− 2hnt−1 + hnt−2)/(ht)2 + (Unt

1 −Unt
0 )/hx − f nt

int

hnt , (28)

a0 =
(h2
− 2h1 + h0)/(ht)2

− (U0
1 −U0

0)/(hx)2
− fint

h0 . (29)

Now let us consider (27)-(29) in (23), we obtain the system with respect to Un
j , j = 0, ...,nx, n = 0, ...,nt

which can be solved explicitly. Then using the calculated values of Un
j in (27)-(29), we obtain the values of

an , n = 0, ...,nt.

Example 4.1. Consider the inverse IBVP (1)-(5) with the input data

f (x, t) = (1 + 2πx − sin(2πx) − 8π2 sin(2πx)) exp(t) − (1 + 2πx − sin(2πx)),
ϕ(x) = (1 + 2πx − sin(2πx)), ψ(x) = (1 + 2πx − sin(2πx)), h(t) = (1 + π)exp(t),

b = 1, x ∈ [0, 1], t ∈ [0, 1].

According to the Theorem 3.2, the solution of the inverse problem exist and is unique. In fact, it can easily be
checked by direct substitution that the analytical solution is given by

{a(t),u(x, t)} = {1/ exp(t), (1 + 2πx − sin(2πx)) exp(t)}.

The direct and inverse numerical solutions for u(x, t) at the interior points are shown in Figure 1 for nx = 200,nt = 200,
and also, the absolute error between them is included. One can notice that an excellent agreement is obtained. Figure
2 shows the inverse numerical solution in comparison with the exact a(t).

Example 4.2. Consider the inverse IBVP (1)-(5) with the input data

f (x, t) = (x2
− 2x)(exp(t) − 1) − 2 exp(t),

ϕ(x) = (x2
− 2x), ψ(x) = (x2

− 2x), h(t) = −
2
3

exp(t),

b = −1, x ∈ [0, 1], t ∈ [0, 1].

One can easily check that the input data does not satisfy the conditions (A1)− (A4). As the conditions of Theorem
3.2 are not satisfied we can not conclude the unique solvability of the inverse problem. However, the solution at least
exists and given by

{a(t),u(x, t)} = {1/ exp(t), (x2
− 2x) exp(t)}

which can easily check by direct substitution. Figure 3 shows the exact and numerical solution of {a(t),u(x, t)} for
nt = 100 and nx = 100. Next, we investigate the stability of numerical solution with respect to the noisy over-
determination data (5), denoted by the function hγ(t) = h(t)(1 + γθ) where γ is the percentage of noise and θ are
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random variables generated from a uniform distribution in the interval [−0.5, 0.5] which are generated using rand
command in MATLAB. Figs. 4, 5 show the exact and numerical solutions of {a(t),u(nx/2, t)} when the input data
(5) is contaminated by γ = 1% and 5% noise. Figs. 6, 7 show the exact and numerical solutions of {a(t),u(nx/2, t)}
obtained after mollification, when the input data (5) is contaminated by γ = 1% and 5% noise. This mollification
procedure has been performed using MATLAB version of the computational program supplied by D. A. Murio in [16].
From these figures it can be seen that the application of the mollification to stabilize the noisy function hγ(t), produce
stable numerical solutions for{a(t),u(nx/2, t)}.

5. Conclusion

The inverse problems for linear wave equations with unusual boundary conditions connected with
recovery of the coefficient are scarce. The paper considers the of inverse problem of recovering a time-
dependent potential in an initial boundary value problem for a wave equation. The series expansion
method in terms of eigenfunction of a Sturm-Liouville problem converts the considered inverse problem
to a fixed point problem in a suitable Banach space. Under some consistency and regularity conditions on
initial and boundary data, the existence and uniqueness of inverse problem is shown by using the Banach
fixed point theorem and conditional stability of the solution of inverse problem is shown in a certain class
of data. Numerically, the inverse problem has been discretized by using finite difference method, which
has been solved using the MATLAB. Numerical results show that accurate, and stable solutions have been
obtained.
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Figure 1: Direct and inverse numerical solutions for u(x, t) and the absolute error for the direct and inverse
numerical solutions for Example 4.1.
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Figure 2: Exact and inverse numerical solutions for a(t) for Example 4.1.
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Figure 3: Exact and numerical solutions of the problem (1)-(5) for example 4.2.
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Figure 4: Exact and numerical coefficient solutions of the problem (1)-(5) for Example 4.2 with 1% and 5%
noise.
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Figure 5: Exact and numerical u(x, t) solutions of the problem (1)-(5) for Example 4.2 with 1% and 5% noise.
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Figure 6: Exact and numerical u(x, t) solutions of the problem (1)-(5) for Example 4.2 after mollification with
1% and 5% noise.
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Figure 7: Exact and numerical coefficient solutions of the problem (1)-(5) for Example 4.2 after mollification
with 1% and 5% noise.


