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Abstract. In this paper we introduce the concept of credibility measure and we show some of its basic
properties. In this frame we present several results for credibility mappings. Our results generalize the
notion of the credibility measure of Lee.

1. Introduction

Credibility theory (CT) in actuarial mathematics can be used to calculate the premium rate, as well as
to determine the future premium rate based on experience and provision. Given that goal is to set the
appropriate premium rates for the future, it is important to adjust the past premium rates to the expected
value in the future period. Credibility factor Z is used to weight the observation, and its complement is
attached to the other information in the given application. Alternative version of credibility theory in a
fuzzy environment (CTF) and the credibility measure are formulated in Liu and Liu [6], and Liu [10].

Credibility measure, as a concept for the measure of a fuzzy event, is a set function satisfying normality,
monotonicity, self-duality and maximality. Another difference in CTF refers to the weighted average based
on the concepts of possibility measure and necessity measure.

In this paper, a generalized credibility theory is proposed. In that purpose in Section 2 the background
knowledge are briefly introduced,terms of the operations defined on [0, 1] interval (triangular norm, conorm
and uninorm, fuzzy complement and aggregation function) as well as their properties. The third section
contains an overview of the fuzzy measure. In Section 4, a new fuzzy measure is introduced, called
c− credibility measure. Some properties of the c−credibility measure are proved, such as, for example,
subadditivity and semicontinuity.

Furthermore, an integral based on this measure is defined, in analogy to the existing integrals, and its
properties. In the next section, the credibility in a fuzzy environment is introduced as the aggregation of
the possibility and necessity measures. Examples of the application of such credibility and its comparison
with the classical credibility are also shown.
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2. Aggregation functions

In this section, we recall some basic terms and properties of the operations defined on the interval [0, 1]
which will be used in the paper (see Klement, Mesiar and Pap [4], Klir and Yuan [5], Yager and Rybalov
[12]).

Definition 2.1. Let the binary operation F : [0, 1]2
→ [0, 1], satisfying the following axioms:

1. (∀a, b1, b2 ∈ [0, 1]) b1 ≤ b2 ⇒ F(a, b1) ≤ F(a, b2) (monotonicity);
2. (∀a, b ∈ [0, 1]) F(a, b) = F(b, a) (commutativity);
3. (∀a, b, c ∈ [0, 1]) F(a,F(b, c)) = F(F(a, b), c) (associativity);
4. (∃e ∈ [0, 1])(∀a ∈ [0, 1]) F(a, e) = a (e is neutral element);.

then we say that F is a norm. If e = 0, then F is a triangular conorm(shortly t−conorm) and instead of F we write S.
If e = 1, then F is a triangular norm (shortly t−norm) and instead of F we write T. If e ∈ (0, 1), then F is a uninorm
and instead of F we write U.

Remark 2.2. From the conditions given in the previous definition follows the monotonicity by coordinates, i.e. for
all a1, a2, b1, b2 ∈ [0, 1] it holds that

a1 ≤ a2 ∧ b1 ≤ b2 ⇒ F(a1, b1) ≤ F(a2, b2).

By replacing the given condition with the monotonic axiom in the definition of the t−norm, an equivalent definition
is obtained.

If, in the definition, instead of the axiom of monotonicity, a strict monotonicity is valid, i.e.

a1 < a2 ∧ b1 < b2 ⇒ F(a1, b1) < F(a2, b2),

for all a1, a2, b1, b2 ∈ [0, 1], we say that F is strict.

Definition 2.3. The power of the norm is given by formulas:
F1(a1, a2) = F(a1, a2), Fn(a1, ..., an, an+1) = F(Fn−1(a1, ..., an), an+1).

The most commonly used triangular norms are:

1. T(a, b) = min(a, b) = a ∧ b (standard intersection);
2. T(a, b) = ab (algebraic product);
3. T(a, b) = max(a + b − 1, 0) (bounded difference);

4. T(a, b) =


a, b = 1
b, a = 1
0, otherwise

(drastic intersection);

The most common triangular conorms are:

1. S(a, b) = max(a, b) = a ∨ b (standard union);
2. S(a, b) = a + b − ab (algebraic sum);
3. S(a, b) = min(1, a + b) (bounded sum);

4. S(a, b) =


a, b = 0
b, a = 0
1, otherwise

(drastic union).

Definition 2.4. The function c : [0, 1]→ [0, 1] is a fuzzy complement, if it satisfies the following conditions:

c1) c(0) = 1 and c(1) = 0, (boundary conditions)
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c2) (∀a, b ∈ [0, 1]) a ≤ b⇒ c(a) ≥ c(b) (monotonicity).

If c(c(a)) = a holds, for all a ∈ [0, 1], then the function c is involutive.
If c is a continuous function, then we say that c is a continuous fuzzy complement.

Lemma 2.5. ([5]). If c : [0, 1]→ [0, 1] is an involutive, monotonic and non increasing function, than follows that c
is a continuous bijective function for which boundary conditions are valid.

The most commonly used continuous involutive fuzzy complements are:

1) c(a) = 1 − a, (standard fuzzy complement);

2) cλ(a) = 1−a
1+λa , λ ∈ (1,∞) (Sugeno class fuzzy complement);

3) cλ(a) = (1 − aλ)1/λ, λ ∈ (0,∞) (Yager class).

Definition 2.6. The equilibrium of fuzzy complement is element ε ∈ [0, 1], such that c(ε) = ε is satisfied.

Theorem 2.7. Every fuzzy complement has at most one equilibrium.
If fuzzy complement c has an equilibrium, then

a ≥ ε⇒ ε ≥ c(a), a ≤ ε⇒ ε ≤ c(a).

If c is a continuous fuzzy complement, then c has a unique equilibrium.

Lemma 2.8. De Morgan’s laws hold, i.e.

c(a ∨ b) = c(a) ∧ c(b), c(a ∧ b) = c(a) ∨ c(b).

Definition 2.9. An aggregation function is a function A :
⋃

n∈N
[0, 1]n

→ [0, 1] such that

A1) A(0, ..., 0) = 0 and A(1, ..., 1) = 1 (boundary condition).

A2) A(x1, ..., xn) ≤ A(y1, ..., yn) whenever xi ≤ yi for all i ∈ {1, ...,n} (A is monotonically nondecreasing function
in all its arguments).

A3) A(x) = x for all x ∈ [0, 1] (A is idempotent function).

The aggregation function A is

1. idempotent if A(x, ..., x) = x for all x ∈ [0, 1] (A is idempotent function).
2. continuous if A is continuous function.
3. commutative if A is symmetric function in all its arguments, i.e. A(x1, ..., xn) = A(xp1 , ..., xpn ) for any

permutation (p1, ..., pn) of set {1, ...,n}.

Remark 2.10. The aggregation function is also defined as a function A :
⋃

n∈N
In
→ I,where I is nonempty subinterval

of the extended real, such that

A1) inf
x∈In

A(x) = inf I and sup
x∈In

A(x) = sup I (boundary condition).

A2) A(x) ≤ A(y) whenever x = (x1, ..., xn) ≤ (y1, ..., yn) = y ⇔ (∀i ∈ {1, ...,n}) xi ≤ yi (A is monotonically
nondecreasing function in all its arguments).

A3) A(x) = x for all x ∈ [0, 1] (A is idempotent function).

Some examples of aggregation functions:
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1) WAM(x1, x2, . . . , xn) =
n∑

i=1
win xi weighted arithmetic mean associated with weight vector

w = (w1,w2, . . . ,wn),
n∑

i=1
wi = 1, wi ∈ [0, 1].

2) M f ( x1, x2, . . . , xn) = f−1
(

1
n

n∑
i=1

f ( xi)
)

( f : [0, 1] → [−∞,+∞] continuous and strictly monotonic func-

tion) quasi-arithmetic mean;

3) The power of the norm.

The root-power mean Mp( x1, x2, . . . , xn) =
(

1
n

∑n
i=1 xp

i

) 1
p
, p ∈ (−∞, 0) ∪ (0,+∞) is special case of 2).

Marginal members of these classes are M0 = G = Mlog x, which is the geometric mean, while M∞ = max
and M−∞ = min which are not in the class of quasi-arithmetic means.

For details on aggregation functions see for example Grabish, Marichal, Mesiar and Pap [2] or Dubois
and Prade [1].

Dual aggregation function of aggregation function A with respect to a fuzzy complement c is a function
Ac (briefly A) defined by

Ac(x1, ..., xn) = c(A(c(x1), ..., c(xn))).

Lemma 2.11. Dual aggregation function is aggregation function.

Proof. A1) From boundary conditions of function A, we have

Ac(0, ..., 0) = c(A(c(0), ..., c(0))) = c(A(1, ..., 1)) = c(1) = 0,

Ac(1, ..., 1) = c(A(c(1), ..., c(1))) = c(A(0, ..., 0)) = c(0) = 1.

A2) Suppose xi ≤ yi for all i ∈ I = {1, ...,n}. The complement c is non-increasing function, then
c(xi) ≥ c(yi), i ∈ I, and because A is monotonically non-decreasing function in all its arguments, it follows

A(c(x1), ..., c(xn)) ≥ A(c(y1), ..., c(yn)),

c(A(c(x1), ..., c(xn))) ≤ c(A(c(y1), ..., c(yn))),

Ac(x1, ..., xn) ≤ Ac(y1, ..., yn).

A3) The function A is idempotent

Ac(x) = c(A(c(x))) = c(c(x)) = x,

if c is involutive.
1. If A is an idempotent aggregation function, we have

Ac(x, ..., x) = c(A(c(x), ..., c(x))) = c(c(x)) = x,

if c is involutive fuzzy complement.
2. If A is a continuous function, supposing that complement c is continuous function, and from properties

that composition of the continuous functions is a continuous function, it follow that Ac is a continuous
function.

3. Assuming A is a symmetric function in all its arguments, for any permutation (p1, ..., pn) of set {1, ...,n},
we have

Ac(x1, ..., xn) = c(A(c(x1), ..., c(xn))) = c(A(c(xp1 ), ..., c(xpn )) = Ac(xp1 , ..., xpn ),

i.e. Ac is a commutative function. �
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3. Fuzzy measure

Definition 3.1. Let X be a nonempty set and Σ be a nonempty class of subsets of X, such that ∅ ∈ Σ. The map
m : Σ→ [0,∞] is called a fuzzy measure (fuzzy measure in the narrow sense) m on Σ if it holds that

FM1) m(∅) = 0,

FM2) (∀A,B ∈ Σ) A ⊂ B ⇒ m(A) ≤ m(B) (monotonicity)

FM3) An ⊂ An+1 , An ∈ Σ , n ∈N ,
∞⋃

n=1
An ∈ Σ ⇒ m(

∞⋃
n=1

An) = lim
n→∞

m(An) (continuity from below)

FM4) An ⊃ An+1 , An ∈ Σ , n ∈N ,
∞⋂

n=1
An ∈ Σ and there exist n0 ∈N such that m(An0 ) < ∞

⇒ m(
∞⋂

n=1
An) = lim

n→∞
m(An), (continuity from above)

If also condition m(X) = 1, where X ∈ Σ holds, then it is a regular fuzzy measure. The triple (X,Σ,m) is
a space with fuzzy measure or space with semi-continuous fuzzy measure.

We say m is lower or upper semi-continuous fuzzy measure if FM1),FM2), and FM3) or FM1),FM2) and
FM4) are satisfied. If only one of those conditions holds, then m is a semi-continuous fuzzy measure. If for
m also FM1) and FM2) hold, then it is a fuzzy measure in the broader sense.

Usually, Σ is a monotone class, semiring, σ−ring, σ−algebra, plump class or P(X) (power set of X). (see
[13])

Definition 3.2. Possibility function pos (see [14]) is a fuzzy measure on (X,Σ) if

pos(
⋃
i∈I

Ai) = sup
i∈I

pos(Ai),

for any family {Ai|i ∈ I} in Σ such that
⋃
i∈I

Ai ∈ Σ, where I is an arbitrary index set.

Definition 3.3. Necessity function nec (see [14]) is a fuzzy measure on (X,Σ) if

nec(
⋂
i∈I

Ai) = inf
i∈I

nec(Ai),

for any family {Ai|i ∈ I} in Σ such that
⋃
i∈I

Ai ∈ Σ, where I is an arbitrary index set.

Let X be a nonempty sample set, P(X) the power set of X, and pos a possibility measure defined on X. Then
the triplet (X,P(X), pos) is called a possibility space. The functions pos and nec are dual, i.e. nec(A) = 1−pos(A)
and pos(A) = 1 − nec(A).

Liu in his Uncertainty theory introduced the credibility measure (see [10], [7], [8], [9], [11]).

Definition 3.4. Let X be a nonempty set and I an arbitrary index set. A set function Cr : P(X) → [0, 1] such that
for all A,B ⊂ X:
C1) Cr(X) = 1 (normality);
C2) A ⊂ B⇒ Cr(A) ≤ Cr(B) (monotonicity);
C3) Cr(A) + Cr(A) = 1 (self-duality);
C4) Cr(

⋃
i∈I

Ai) = sup
i∈I

Cr(Ai), for any sets Ai ⊂ X, i ∈ I for which it is sup
i∈I

Cr(Ai) < 1/2,

is called the credibility measure.
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4. c−Credibility

Definition 4.1. Let c : [0, 1]→ [0, 1] be an involutive fuzzy complement, whose equilibrium is ε. The c−credibility
measure on X is a set function cr : P(X)→ [0, 1] such that

CR1) cr(∅) = 0;

CR2) (∀A,B ∈ P(X)) A ⊂ B⇒ cr(A) ≤ cr(B);

CR3) (∀A ∈ P(X)) cr(A) = c(cr(A));

CR4) cr(
⋃
i∈I

Ai) = sup
i∈I

cr(Ai), for any sets Ai ∈ P(X), i ∈ I, for which it is sup
i∈I

cr(Ai) < ε, where I is an arbitrary

index set.

The triplet (X,P(X), cr) is called c−credibility space.

The fuzzy complement c is involutive function so

cr(A) = c(cr(A)).

It is clear that cr(X) = cr(∅) = c(cr(∅)) = c(0) = 1. Also 0 ≤ cr(A) ≤ 1. Indeed ∅ ⊂ A ⊂ X ⇒ 0 = cr(∅) ≤
cr(A) ≤ cr(X) = 1.

Theorem 4.2. Let cr be a c−credibility measure, then for all A,B ∈ P(X)

i) cr(A ∪ B) ≤ ε ⇒ cr(A ∪ B) = cr(A) ∨ cr(B).

ii) cr(A ∩ B) ≥ ε ⇒ cr(A ∩ B) = cr(A) ∧ cr(B).

Proof. i) If cr(A∪ B) < ε, then from monotonicity cr(A) ≤ cr(A∪ B) and cr(B) ≤ cr(A∪ B), it is cr(A)∨ cr(B) ≤
cr(A ∪ B), i.e. cr(A) ∨ cr(B) < ε, due to CR4) we have cr(A ∪ B) = cr(A) ∨ cr(B).

If cr(A∪B) = ε and we suppose cr(A∪B) > cr(A)∨ cr(B),must be that cr(A)∨ cr(B) < ε, so we can apply
CR4):

cr(A ∪ B) = cr(A) ∨ cr(B) < ε,

which gives contradiction with the assumption.

ii) From cr(A∩B) ≥ ε, monotonicity of the fuzzy complement and the fact that ε is equilibrium, it follows

ε = c(ε) ≥ c(cr(A∩B)). Now from CR2) we have c(cr(A∩B)) = c(cr(A ∪ B)) = cr(A∪B) and from the property
i), we have

cr(A ∩ B) = c(cr(A ∩ B)) = c(cr(A ∪ B)) = c(cr(A) ∨ cr(B)) = c(cr(A)) ∧ c(cr(B)) = cr(A) ∧ cr(B) �

Theorem 4.3. (Subadditivity Law) Let c be an involutive fuzzy complement, such that c(x) ≥ 1− x for all x ∈ [0, 1].
Then subadditivity holds, i.e.

(∀A,B ∈ P(X)) cr(A ∪ B) ≤ cr(A) + cr(B).

Proof. If cr(A), cr(B) ∈ [0, ε), then from CR4) follows

cr(A ∪ B) = cr(A) ∨ cr(B) ≤ cr(A) + cr(B).

Let cr(A) ∈ [ε, 1] or cr(B) ∈ [ε, 1]. Let cr(A) ≥ ε. Then

cr(A) = c(cr(A)) ≤ c(ε) = ε.
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From A = A ∩ (B ∪ B) = (A ∩ B) ∪ (A ∩ B), and from A ∩ B ⊂ A⇒ cr(A ∩ B) ≤ cr(A) ≤ ε, A ∩ B ⊂ A⇒
cr(A ∩ B) ≤ cr(A) ≤ ε, we can use property i), so

cr(A) = cr((A ∩ B) ∪ (A ∩ B)) = cr(A ∩ B) ∨ cr(A ∩ B).

From Lema 2.8 we have c(x ∨ y) = c(x) ∧ c(y) and it follows that

cr(A) = c(cr(A)) = c(cr(A ∩ B)) ∧ c(cr(A ∩ B)).

Now, from property (x ∧ y) + z = (x + z) ∧ (y + z) we get

cr(A) + cr(B) = [c(cr(A ∩ B)) + cr(B)] ∧ [c(cr(A ∩ B)) + cr(B)]

= [c(cr(A ∪ B)) + cr(B)] ∧ [c(cr(A ∪ B)) + cr(B)]

= [cr(A ∪ B) + cr(B)] ∧ [cr(A ∪ B) + cr(B)].

In order that subadditivity is fulfilled, i.e. cr(A) + cr(B) ≥ cr(A ∪ B), it must be

cr(A ∪ B) + cr(B) ≥ cr(A ∪ B) i cr(A ∪ B) + cr(B) ≥ cr(A ∪ B).

The second inequality is obvious. To show the first we assume the opposite i.e. cr(A∪B) > cr(A∪B) +cr(B).
If we use axioms CR2) and CR3) and assumption c(x) ≥ 1 − x, we have

cr(A ∪ B) > cr(A ∪ B) + cr(B) ≥ cr(B) + cr(B) = c(cr(B)) + cr(B) ≥ 1,

and that is impossible. Thus, the second inequality is true and subadditivity is fulfilled. �

Theorem 4.4. Let An ↓, i.e. An ⊃ An+1, An ⊂ X, n ∈N and lim
n→∞

cr(An) = 0. Then for all A ∈ P(X):

lim
n→∞

cr(A ∪ An) = lim
n→∞

cr(A \ An) = cr(A).

Proof. From monotonicity and subadditivity of cr, we obtain

A ⊂ A ∪ An ⇒ cr(A) ≤ cr(A ∪ An) ≤ cr(A) + cr(An).

From the squeeze theorem, because of lim
n→∞

cr(An) = 0, it follows that lim
n→∞

cr(A ∪ An) = cr(A).

Analogously
A \ An ⊂ A ⊂ (A \ An) ∪ An ⇒

cr(A \ An) ≤ cr(A) ≤ cr((A \ An) ∪ An) ≤ cr(A \ An) + cr(An).

And follows lim
n→∞

cr(A \ An) ≤ cr(A) ≤ lim
n→∞

cr(A \ An) = cr(A), then we have

lim
n→∞

cr(A \ An) = cr(A). �

Theorem 4.5. (Semicontinuity Law) For any series {An}, lim
n→∞

cr(An) = cr( lim
n→∞

An) is true if one of the following
conditions is satisfied
i) An ↑ A and (cr(A) ≤ ε or lim

n→∞
cr(An) < ε);

ii) An ↓ A and (cr(A) ≥ ε or lim
n→∞

cr(An) > ε).
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Proof. i) First, we can notice that for all monotone series of sets {An} there exits lim
n→∞

An and it is equal
⋃

n∈N
An,

i.e.
⋂

n∈N
An when An ↑ A, i.e. An ↓ A, respectively. Also exits lim

n→∞
An and we have lim

n→∞
An = lim

n→∞
An.

Since cr(A) ≤ ε, from the credibility monotonicity it follows An ⊂
⋃

n∈N
An = A ⇒ cr(An) ≤ cr(A) ≤ ε for

all n ∈N.
From An ⊂ An+1 we have cr(An) ≤ cr(An+1), then series of real numbers {cr(An)} which is limited (from

the upper side) converges to its supremum.
Hence from CR4) we have cr(A) = cr(

⋃
n∈N

An) = sup
n∈N

cr(An) = lim
n→∞

cr(An).

In the case that lim
n→∞

cr(An) < ε from the previous consideration we have lim
i→∞

cr(An) = sup
n

cr(An) < ε, by

using axiom CR4), it follows cr(A) = cr(
⋃

n∈N
An) = sup

n∈N
cr(An) = lim

n→∞
cr(An).

ii) Assuming cr(A) ≥ ε from CR3) we have cr(A) = c(cr(A)) ≤ c(ε) = ε, and from An ↓ A, i.e. An ⊃ An+1,

n ∈ N and from the fuzzy complement monotonicity follows An ⊂ An+1, n ∈ N, i.e. An ↑ A. Now, from i),
lim
n→∞

cr(An) = cr(A) and from the continuity of c (follows from Lemma 2.5), we have

lim
n→∞

cr(An) = lim
n→∞

c(cr(An)) = c( lim
n→∞

cr(An)) = c(cr(A)) = cr(A).

Suppose that lim
n→∞

cr(An) > ε. Based on the previous one, from the assumption An ↓ A, we get An ↑ A.
From Lemma 2.5 it follows that fuzzy complement c is a bijective function, and then it is a monotonic

decreasing function. Therefore lim
n→∞

cr(An) > ε ⇒ c( lim
n→∞

cr(An)) < c(ε). Now, from continuity of c we have

lim
n→∞

cr(An) = lim
n→∞

c(cr(An)) = c( lim
n→∞

cr(An)) < c(ε) = ε.

By using i), we have lim
n→∞

cr(An) = cr( lim
n→∞

An), i.e. lim
n→∞

c(cr(An)) = cr( lim
n→∞

An), and from c( lim
n→∞

cr(An)) =

c(cr( lim
n→∞

An)), finally lim
n→∞

cr(An) = cr( lim
n→∞

An). �

Theorem 4.6. A credibility measure on X is additive if and only if there are at most two singletons in P(X) taking
nonzero credibility values.

Proof. Let the credibility measure cr be additive. Suppose there are more than two singletons taking nonzero
credibility values, for example {x1}, {x2} i {x3} such that cr({x1}) ≥ cr({x2}) ≥ cr({x3}) > 0.

If cr({x1}) ≥ ε, then from CR3) follows cr({x1}) = c(cr({x1})) ≤ c(ε) = ε, and we have {x2, x3} ⊂ {x1}, from
CR2) we obtain cr({x2, x3}) ≤ cr({x1}) ≤ ε.

By using CR4) we get

cr({x2, x3}) = cr({x2}) ∨ cr({x3}) < cr({x2}) + cr({x3}),

and that is a contradiction with the additivity assumption.
If cr({x1}) < ε, then cr({x3}) ≤ cr({x2}) < ε, and by using CR4):

cr({x2, x3}) = cr({x2}) ∨ cr({x3}) < ε.

It follows
cr({x2, x3}) = cr({x2}) ∨ cr({x3}) < cr({x2}) + cr({x3}),

an it is contradiction with the additivity assumption, hence there are at most two singletons taking nonzero
credibility values.

Conversely, suppose that there are at most two singletons, for example {x1} i {x2} such that cr({x1}), cr({x2}) >
0.
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Let us consider two arbitrary disjunctive sets A and B. If cr(A) = 0 or cr(B) = 0, then from subadditivity
theorem we have

cr(A ∪ B) ≤ cr(A) + cr(B) = cr(A) ∨ cr(B),

and by using credibility monotonicity A,B ⊂ A∪B⇒ cr(A), cr(B)≤ cr(A∪B), we have cr(A)∨cr(B) ≤ cr(A∪B),
and then cr(A ∪ B) = cr(A) ∨ cr(B), holds and in this case subadditivity too.

In case that cr(A) > 0 and cr(B) > 0, follows that each set A and B must contain one of the elements
x1 and x2, for example x1 ∈ A and x2 ∈ B. Otherwise, for example if x1, x2 < A, we would have cr(A) =

cr(
⋃

x∈A
{x}) = sup

x∈A
({x}) = 0. For the same reason, any set (A ∪ B) that does not contain x1 and x2 is of measure

0, i.e. cr(A ∪ B) = 0.
From monotonicity and subadditivity of the credibility measure, we have

cr(A ∪ B) ≤ cr(A ∪ B ∪ A ∪ B) ≤ cr(A ∪ B) + cr(A ∪ B) = cr(A ∪ B),

and from cr(A ∪ B ∪ A ∪ B) = cr(X) = 1, then cr(A ∪ B) = 1.
Similarly

cr(A) ≤ cr(A ∪ A ∪ B) ≤ cr(A) + cr(A ∪ B) = cr(A),

cr(A ∪ A ∪ B) = cr(A), then

cr(A) + cr(B) = cr(A ∪ A ∪ B) + cr(B) ≥ cr(A ∪ A ∪ B ∪ B) = cr(X) = 1,

and it must be that cr(A) + cr(B) = 1.
Therefore, cr(A ∪ B) = cr(A) + cr(B), and the additivity is proved. �

5. Integral based on c−credibility measure

Integrals based on different fuzzy measures can be defined in various ways (see for example [2], [3], [5],
[10], [13]).

We will introduce integral based on c−credibility measure. Suppose that (X,P(X), cr) is c−credibility
space and S continuous t−conorm on [0, 1] and µ ∈ M =

{
µ
∣∣∣µ : X→ [0, 1]

}
fuzzy sets on X, i.e. their

membership functions.

Definition 5.1. An integral based on c−credibility measure, of µ ∈ M is defined as∫
A

µ (x)dcr = inf
α∈[0,1]

S
(
α, cr

(
A ∩ αµ

))
,

where αµ = {x ∈ X|µ(x) ≥ α}.

Theorem 5.2. Let cr, cr1 and cr2 be the c−credibility measures. For arbitrary sets A,B ⊂ X and µ, µ1, µ2 ∈ M, the
following statements hold:

i)
∫
A
µ(x)dcr ∈ [0, 1]; ii) µ1 ≤ µ2 ⇒

∫
A
µ1(x)dcr ≤

∫
A
µ2(x)dcr;

iii) A ⊂ B ⇒

∫
A
µ(x)dcr ≤

∫
B
µ(x)dcr; iv) cr1 ≤ cr2 ⇒

∫
A
µ(x)dcr1 ≤

∫
A
µ(x)dcr2;

v) cr(A) = 0 ⇒
∫
A
µ(x)dcr = 0; vi) k ∈ [0, 1] ⇒

∫
A

kdcr = cr (A) ∧ k.

Proof. i) How infimum preserves the order, i.e. f (α) ≤ 1 (α) ⇒ inf
α

f (α) ≤ inf
α
1 (α) , from 0 ≤

S
(
α, cr

(
A ∩ αµ

))
≤ 1 follows the claim.
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ii) From the property of α−cut µ1 ≤ µ2 ⇒
αµ1 ⊂

αµ2, monotonicity of measures and conorms, and
properties of infimum, we have A ∩ αµ1 ⊂ A ∩ αµ2 ⇒ cr

(
A ∩ αµ1

)
≤ cr

(
A ∩ αµ2

)
⇒ S

(
α, cr

(
A ∩ αµ1

))
≤

S
(
α, cr

(
A ∩ αµ2

))
⇒ inf

α∈[0,1]
S
(
cr

(
A ∩ αµ1

))
≤ inf
α∈[0,1]

S
(
cr

(
A ∩ αµ2

))
.

iii) A ⊂ B ⇒ A ∩ αµ ⊂ B ∩ αµ ⇒ cr
(
A ∩ αµ

)
≤ cr

(
B ∩ αµ

)
⇒ S

(
α, cr

(
A ∩ αµ

))
≤ S

(
α, cr

(
B ∩ αµ

))
⇒

inf
α∈[0,1]

S
(
α, cr

(
A ∩ αµ

))
≤ inf
α∈[0,1]

S
(
α, cr

(
B ∩ αµ

))
.

iv) cr1 ≤ cr2 ⇒ cr1
(
A ∩ αµ

)
≤ cr2

(
A ∩ αµ

)
⇒ S

(
α, cr1

(
A ∩ αµ

))
≤ S

(
α, cr2

(
A ∩ αµ

))
⇒

inf
α∈[0,1]

S
(
α, cr1

(
A ∩ αµ

))
≤ inf
α∈[0,1]

S
(
α, cr2

(
A ∩ αµ

))
.

v) A ∩ αµ ⊂ A ⇒ cr
(
A ∩ αµ

)
≤ cr (A) = 0 ⇒ cr

(
A ∩ αµ

)
= 0 ⇒ S

(
α, cr

(
A ∩ αµ

))
= S (α, 0) = α ⇒

inf
α∈[0,1]

S
(
α, cr

(
A ∩ αµ

))
= 0.

vi) Based on the facts α ∈ [0, k] ⇒ αk = {x ∈ X|k ≥ α} = X, α ∈ (k, 1] ⇒ αk = {x ∈ X|k ≥ α} = ∅,we obtain∫
A

kdcr = inf
α∈[0,1]

S (α, cr (A ∩ αk))

= inf
α∈[0,k]

S (α, cr (A ∩ αk)) ∧ inf
α∈(k,1]

S (α, cr (A ∩ αk))

= inf
α∈[0,k]

S (α, cr (A)) ∧ inf
α∈(k,1]

S (α, cr (∅))

= inf
α∈[0,k]

S (α, cr (A)) ∧ inf
α∈(k,1]

S (α, 0)

= S (0, cr (A)) ∧ S (k, 0)
= cr (A) ∧ k. �

6. Possibility, Necessity and Credibility of a Fuzzy Events

Liu and Liu in [6] introduced the credibility in a fuzzy environment as the average of the possibility and
necessity measures:

Cr(A) =
1
2

(pos(A) + nec(A)),

where A is a set on the possibility space (X,P(X), pos). In the classical credibility theory the main task is to
find the weight of measures, but as we can see here a choice of 0.5 is preliminary made. Further we will
generalize credibility measure.

Let X be a triangular fuzzy number on (X,P(X), pos), with the membership function

µ(x) =


x−`
m−` , ` < x < m
r−x
r−m , m ≤ x < r

0, x ≤ ` ∨ r ≤ x
.

Possibility of a fuzzy event {X ≤ x} is defined with

pos({X ≤ x}) = sup
z≤x

µ(z)

and for triangular fuzzy number is given by

posα({X ≤ x}) =


0, x ≤ `

x−`
r−` , ` < x < r

1, r ≤ x
.

Necessity of a fuzzy event {X ≤ x} is given with

nec({X ≤ x}) = 1 − pos({X > x}) = 1 − sup
z>x

µ(z) =


0, x ≤ m
x−m
r−m , m < x < r
1, r ≤ x

.
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Credibility of a fuzzy event {X ≤ x} is

Cr({X ≤ x}) =
1
2

(pos({X ≤ x}) + nec({X ≤ x})) =


0, x ≤ `

x−`
2(m−`) , ` < x < m
x+r−2m
2(r−m) , m ≤ x < r

1, r ≤ x

.

Now, we can define the c−credibility in a fuzzy environment in the relation on aggregation function h
with

crh(A) = h(pos(A),nec(A)).

Theorem 6.1. The c−credibility in a fuzzy environment is a regular fuzzy measure in the broader sense.

Proof. crh(∅) = h(pos(∅),nec(∅)) = h(0, 0) = 0.
crh(X) = h(pos(X),nec(X) = h(1, 1) = 1.
A ⊂ B⇒ pos(A) ≤ pos(B) ∧ nec(A) ≤ nec(B)

⇒ crh(A) = h(pos(A),nec(A)) ≤ h(pos(B),nec(B)) = crh(A). �
If c is a standard fuzzy complement, then we also have additional property

crh(A) = 1 − crh(A).

Indeed,
crh(A) = h(pos(A),nec(A)) = h(1 − nec(A), 1 − pos(A)) = h(1 − pos(A), 1 − nec(A)) = 1 − h(pos(A),nec(A)) =

1 − crh(A).

If aggregation function is weighted arithmetic mean: h(x, y) = λ · x + (1 − λ) · y, λ ∈ [0, 1] (which is not
symmetric in the general case), then c−credibility in a fuzzy environment is

crλ(A) = λ · pos(A) + (1 − λ) · nec(A),

and c−credibility (in a fuzzy environment) of a fuzzy events {X ≤ x} is given with (see figure)

crλ({X ≤ x}) = λ · pos({X ≤ x}) + (1 − λ) · nec({X ≤ x}) =


0, x ≤ `
λ · x−`

m−` , ` < x ≤ m
λ + (1 − λ) · x−m

r−m , m < x < r
1, r ≤ x

.

The c−credibility (in a fuzzy environment) (in the relation with aggregation function h) of a fuzzy events
{X ≤ x} is given with

crh({X ≤ x}) = h(pos({X ≤ x}),nec({X ≤ x})) =


0, x ≤ `
h( x−`

m−` , 0), ` < x ≤ m
h(1, x−m

r−m ), m < x < r
1, r ≤ x

The expected value (which we will use in applications) we define by

E(X) =

+∞∫
0

crλ({X ≥ x})dx −

0∫
−∞

crλ({X ≤ x})dx.
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Credibility is the estimate of the prediction value in the given application that the actuary assigns to a
particular set of data. As we mentioned before, in the classical credibility theory the main task is to find the
weight of measures i.e. Z in equation

Estimated = Z · [Observation] + (1 − Z) · [Other information] , 0 ≤ Z ≤ 1.

In the next example we will show comparative results in determining indicated premium rate changes
using classical credibility and c−credibility.

Example 6.2. The main task is to determine the new premium rates for each premium class in the function of the
potential loss measure, which together gives the total average rate change. For each risk classification variables there is
a vector of differentials. Suppose that there are 3 classes of risk variables x, y and z, with the differentials respectively
i, j and k, and that the differentials are multiplicative. The previous formula can be transformed to

Adopted differential = Z ·DI + (1 − Z) ·DE.

Formulated in the case of the c−credibility (the aggregation function is root-power mean, see Remark 2.10)

New differential =
p
√

Z ·Dp
I + (1 − Z)Dp

E, where DI = Di
E

LRi

LRb
, DE =

Ri
c

Rb
.

Territory Current Earned premium Incurred
Base rates at current rates Losses

x 150 850000 330000
y 64 970000 525000
z 100 600000 290000

Territory Current Loss Indicated Z Adopted New (p=1) New (p=2) New (p=3) New (p=4)
diff. Ratio

x 2,344 0,388 1,681 0,850 1,781 1,781 1,796 1,814 1,834
y 1,000 0,541 1,000 1,000 1,000 1,000 1,000 1,000 1,000
z 1,563 0,483 1,395 0,550 1,471 1,471 1,473 1,475 1,478
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