Filomat 33:9 (2019), 2561–2570 https://doi.org/10.2298/FIL1909561K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

f-Biharmonic Integral Submanifolds in Generalized Sasakian Space Forms

Fatma Karaca^a

^a Beykent University, Department of Mathematics, 34550, Beykent, Buyukcekmece, Istanbul, TURKEY.

Abstract. We study *f*-biharmonic integral submanifolds and integral *C*-parallel submanifolds in generalized Sasakian space forms. As an application, we find the *f*-biharmonicity conditions for the integral and integral *C*-parallel submanifolds in Sasakian, λ -Sasakian, Kenmotsu and cosymplectic space forms. Finally, we give also some examples of *f*-biharmonic integral submanifolds in Sasakian space forms.

1. Introduction

Let (M, g) and (N, h) be two Riemannian manifolds. If a map $\varphi : (M, g) \to (N, h)$ is a critical point of the *energy functional* and *bienergy functional*

$$E(\varphi) = \frac{1}{2} \int_{\Omega} \left\| d\varphi \right\|^2 d\nu_g,$$
$$E_2(\varphi) = \frac{1}{2} \int_{\Omega} \left\| \tau(\varphi) \right\|^2 d\nu_g,$$

where Ω is a compact domain of *M*, then it is called a *harmonic map* and a *biharmonic map*, respectively. The Euler-Lagrange equation of harmonic maps is given by

$$\tau(\varphi) = tr(\nabla d\varphi) = 0,$$

where $\tau(\varphi)$ is the *tension field* of φ [9]. In [17], Jiang obtained the Euler-Lagrange equation of biharmonic maps, where

$$\tau_2(\varphi) = tr(\nabla^N \nabla^N - \nabla^N_{\nabla})\tau(\varphi) - tr(R^N(d\varphi, \tau(\varphi))d\varphi) = 0$$
(1)

is the *bitension field* of φ . An *f-biharmonic map* with function $f : M \xrightarrow{C^{\infty}} \mathbb{R}$ is a critical point of the *f-bienergy functional*

$$E_{2,f}(\varphi) = \frac{1}{2} \int_{\Omega} f \left\| \tau(\varphi) \right\|^2 d\nu_{g}$$

²⁰¹⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C25

Keywords. *f*-biharmonic submanifold, integral submanifold, integral C-parallel submanifold, generalized Sasakian space form Received: 23 August 2018; Accepted: 23 October 2018

Communicated by Mića S. Stanković

Email address: fatmagurlerr@gmail.com (Fatma Karaca)

where Ω is a compact domain of *M* [21]. The *f*-biharmonic map equation is given by

$$\tau_{2,f}(\varphi) = f\tau_2(\varphi) + \Delta f\tau(\varphi) + 2\nabla_{\text{orad}\,f}^N \tau(\varphi) = 0,\tag{2}$$

where $\tau_{2,f}(\varphi)$ is the *f*-bitension field of φ [21]. If the *f*-biharmonic map is neither harmonic nor biharmonic then we call it by proper *f*-biharmonic [21].

Biharmonic and *f*-biharmonic submanifolds have become popular in recent years (see [6], [13], [16], [20], [26], [27], [28]). In [3], Baikoussis and Blair gave a classification of 3-dimensional flat integral *C*-parallel submanifolds in the unit sphere $S^7(1)$ with the standard Sasakian structure. In [10], Fetcu and Oniciuc studied integral *C*-parallel submanifolds in 7-dimensional Sasakian space form. In [12], the same authors studied biharmonic integral *C*-parallel submanifolds in 7-dimensional Sasakian space forms and classified such submanifolds in this space. In [30], Roth and Upadhyay studied biharmonic submanifolds in both generalized complex and Sasakian space forms. In [29], Ou considered *f*-biharmonic maps and *f*-biharmonic submanifolds. In [1], Alegre, Blair and Carriazo defined the notion of a generalized Sasakian space forms. In [2], Alegre and Carriazo studied submanifolds of generalized Sasakian space forms. For some recent study of generalized Sasakian space forms see [7], [8], [15], [23], [24], [25]. Motivated by these studies, in this paper, we find the necessary and sufficient conditions for integral and integral *C*-parallel submanifolds in Sasakian, λ -Sasakian, Kenmotsu and cosymplectic space forms. Finally, we give some examples of *f*-biharmonic integral submanifolds in Sasakian space forms.

2. Preliminaries

Let $M^{2n+1} = (M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold with almost contact metric structure (φ, ξ, η, g) . If a contact metric manifold is normal, then the manifold is called a *Sasakian manifold* [5]. An almost contact metric manifold M^{2n+1} is called a *Kenmotsu manifold* [19] if

$$(\nabla_X \varphi) Y = q(\varphi X, Y)\xi - \eta(Y)X$$

where ∇ is the Levi-Civita connection. An almost contact metric manifold M^{2n+1} is called a *cosymplectic* manifold if $\nabla \varphi = 0$, which implies that $\nabla \xi = 0$ [22]. An almost contact metric manifold M^{2n+1} is called a λ -Sasakian manifold if

$$(\nabla_X \varphi) Y = \lambda \left[g(\varphi X, Y) \xi - \eta(Y) X \right],$$

(see [18]). If $\lambda = 1$, a λ -Sasakian manifold turns into a Sasakian manifold.

The sectional curvature of a φ -section is called a φ -sectional curvature. When the φ -sectional curvature is constant, the manifold is called a *space form* (*Sasakian*,*Kenmotsu*, *cosymplectic*, λ -*Sasakian*) (see [5], [19], [22], [18]). The manifold $M^{2n+1} = (M, \varphi, \xi, \eta, g)$ is called a *generalized Sasakian space form* if its curvature tensor *R* is given by

$$R(X, Y)Z = f_1 \{g(Y, Z)X - g(X, Z)Y\}$$

$$+f_{2} \{g(X, \varphi Z)\varphi Y - g(Y, \varphi Z)\varphi X + 2g(X, \varphi Y)\varphi Z\}$$

+
$$f_{3} \{\eta(X)\eta(Z)Y - \eta(X)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi\}$$
(3)

for certain differentiable functions f_1 , f_2 and f_3 on M^{2n+1} [1]. If M is a Sasakian space form then $f_1 = \frac{c+3}{4}$, $f_2 = f_3 = \frac{c-1}{4}$ [5], if M is a Kenmotsu space form $f_1 = \frac{c-3}{4}$, $f_2 = f_3 = \frac{c+1}{4}$ [19], if M is a cosymplectic space form $f_1 = f_2 = f_3 = \frac{c}{4}$ [22] and if M is a λ -Sasakian space form then $f_1 = \frac{c+3\lambda}{4}$, $f_2 = f_3 = \frac{c-\lambda}{4}$ [18].

2562

A submanifold M^m of a Sasakian manifold N^{2n+1} is called an *integral submanifold* if $\eta(X) = 0$ for any vector field X tangent to M [5]. An integral submanifold M^m of a Sasakian manifold N^{2n+1} is said to be *integral C-parallel* [3] if $\nabla^{\perp}B$ is parallel to the characteristic vector field , where B is the second fundamental form of M and $\nabla^{\perp}B$ is given by

$$\nabla^{\perp}B(X,Y,Z) = \nabla^{\perp}_{X}B(Y,Z) - B(\nabla_{X}Y,Z) - B(Y,\nabla_{X}Z)$$

for any vector fields *X*, *Y*, *Z* tangent to *M*, ∇^{\perp} and ∇ being the normal connection and the Levi-Civita connection on *M*, respectively.

3. *f*-Biharmonic integral submanifolds in generalized Sasakian space forms

By *B*, *A*, *H*, ∇^{\perp} and Δ^{\perp} , we will denote the second fundamental form of a integral submanifold M^n in a generalized Sasakian space form N^{2n+1} , the shape operator and the mean curvature vector field, the connection and the Laplacian in normal bundle, respectively. We have the following theorem:

Theorem 3.1. Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a generalized Sasakian space form with constant φ -sectional curvature c and M^n an integral submanifold of N^{2n+1} . The integral submanifold $i : M^n \to N^{2n+1}$ is f-biharmonic if and only if

$$\Delta^{\perp}H + traceB(., A_H.) - \frac{\Delta f}{f}H - (f_1n + 3f_2)H - 2\nabla^{\perp}_{grad\ln f}H = 0$$

$$\tag{4}$$

and

ท

$$\frac{h'}{2}grad(||H||^2) + 2traceA_{\nabla_{0}^{\perp}H}(.) + 2A_{H}grad\ln f = 0.$$
(5)

Proof. Let $\{e_i\}$, $1 \le i \le n$ be a local geodesic orthonormal frame at $p \in M$ and $\tau(i) = nH$. Using the equation (1), bitension field of *i* is

$$\tau_{2}(i) = -n \left\{ \frac{n}{2} \operatorname{grad}(||H||^{2}) + 2 \operatorname{trace} A_{\nabla_{(i)}^{\perp} H}(.) + \operatorname{trace} B(., A_{H}.) + \Delta^{\perp} H + \sum_{i=1}^{n} R^{N}(e_{i}, H)e_{i} \right\}.$$
(6)

Since $\{e_i\}_{i=1}^n$ is a local orthonormal frame on M, $\{e_i, \varphi e_j, \xi\}_{i,j=1}^n$ is a local orthonormal frame on N. From the equation (3) and $H \in span \{\varphi e_i : i = 1, ..., n\}$, after a straightforward computation, we have

$$R^N(e_i, H)e_i = -f_1g(e_i, e_i)H + 3f_2g(e_i, \varphi H)\varphi e_i.$$

Hence,

$$\sum_{i=1}^{n} R^{N}(e_{i}, H)e_{i} = -\sum_{i=1}^{n} f_{1}g(e_{i}, e_{i})H + 3\sum_{i=1}^{n} f_{2}g(e_{i}, \varphi H)\varphi e_{i}$$

= -(f_{1}n + 3f_{2})H. (7)

Using the Weingarten formula, we find

$$\nabla_{\operatorname{grad}f}^{N}\tau(i) = \nabla_{\operatorname{grad}f}^{N}nH = n(-A_{H}(\operatorname{grad}f) + \nabla_{\operatorname{grad}f}^{\perp}H).$$
(8)

In addition, substituting equations (6), (7) and (8) into equation (2), we obtain

$$-fn\left\{\frac{n}{2}\text{grad}(||H||^{2}) + 2traceA_{\nabla_{(.)}^{\perp}H}(.) + traceB(.,A_{H}.) + \Delta^{\perp}H - (f_{1}n + 3f_{2})H\right\}$$
$$+n\Delta fH + 2n(-A_{H}(\text{grad}f) + \nabla_{\text{grad}f}^{\perp}H) = 0.$$
(9)

Finally, taking the tangent and normal parts the equation (9), we obtain the desired result. \Box

Corollary 3.2. Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a generalized Sasakian space form with constant φ -sectional curvature c. Then there does not exist a proper f-biharmonic integral submanifold M^n such that $\frac{\Delta f}{f} + (f_1n + 3f_2) < 0$ with constant mean curvature $\parallel H \parallel in N^{2n+1}$.

Proof. Let M^n be an *f*-biharmonic integral submanifold with constant mean curvature || H || in N^{2n+1} . Then taking the scalar product of the first equation of Theorem 3.1 with *H*, we obtain

$$g(\Delta^{\perp}H,H) = -g(traceB(.,A_{H}.),H) + \frac{\Delta f}{f}g(H,H) + (f_{1}n + 3f_{2})g(H,H) + 2g(\nabla^{\perp}_{\text{grad }\ln f}H,H) = -\sum_{i=1}^{n} g(B(e_{i},A_{H}e_{i}),H) + \frac{\Delta f}{f} ||H||^{2} + (f_{1}n + 3f_{2}) ||H||^{2} + 2g(\nabla^{\perp}_{\text{grad }\ln f}H,H) = -\sum_{i=1}^{n} g(A_{H}e_{i},A_{H}e_{i}) + \frac{\Delta f}{f} ||H||^{2} + (f_{1}n + 3f_{2}) ||H||^{2} + 2g(\nabla^{\perp}_{\text{grad }\ln f}H,H) = -||A_{H}||^{2} + \left(\frac{\Delta f}{f} + (f_{1}n + 3f_{2})\right) ||H||^{2} + 2g(\nabla^{\perp}_{\text{grad }\ln f}H,H).$$
(10)

Using the equation $g(H, H) = ||H||^2 = \text{constant}$, we find

$$2g(\nabla_{\operatorname{grad}\ln f}^{\perp}H,H) = 0. \tag{11}$$

Then, putting equation (11) into equation (10), we have

$$g(\Delta^{\perp}H,H) = - ||A_H||^2 + \left(\frac{\Delta f}{f} + (f_1n + 3f_2)\right) ||H||^2 .$$
(12)

Thus, from the Weitzenböck formula,

$$\frac{1}{2}\Delta ||H||^2 = g(\Delta^{\perp}H, H) - ||\nabla^{\perp}H||^2$$
(13)

and since M^n is an *f*-biharmonic integral submanifold with constant mean curvature, the equation (13) is reduced to

$$g(\Delta^{\perp}H,H) = \|\nabla^{\perp}H\|^2 .$$
⁽¹⁴⁾

In view of equation (14) into equation (12), we obtain

$$\|\nabla^{\perp} H\|^{2} + \|A_{H}\|^{2} = \left(\frac{\Delta f}{f} + (f_{1}n + 3f_{2})\right) \|H\|^{2}.$$
(15)

Since we assume $\frac{\Delta f}{f} + (f_1 n + 3f_2) < 0$, from the equation (15), we get $||H||^2 = 0$, so M^n is minimal. This completes the proof. \Box

Corollary 3.3. Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a generalized Sasakian space form with constant φ -sectional curvature c. Then there does not exist a proper f-biharmonic compact integral submanifold M^n in N^{2n+1} such that $\frac{\Delta f}{f} + (f_1n+3f_2) \leq 0$. *Proof.* Let M^n be an *f*-biharmonic compact integral submanifold. Then using the same method in the proof of Corollary 3.2, from equation (12), $\frac{\Delta f}{f} + (f_1n + 3f_2) \le 0$ and Weitzenböck formula, we obtain

$$\| \nabla^{\perp} H \|^{2} + \| A_{H} \|^{2} \le \left(\frac{\Delta f}{f} + (f_{1}n + 3f_{2}) \right) \| H \|^{2}.$$

Hence, we obtain the result. \Box

For integral C-parallel submanifold, we obtain the following propositions:

Proposition 3.4. Let M^n be an integral *C*-parallel submanifold of N^{2n+1} . Then, we have

 $A_H grad \ln f = 0.$

Proof. By the use of Proposition 3.40 in [12], we have || H || is constant and $\nabla^{\perp} H$ is parallel to ξ . Thus, we have $A_{\nabla_{\chi}^{\perp} H} = 0$ for any vector field X tangent to M, since $A_{\xi} = 0$. Hence from tangent part of Theorem 3.1, we have

 A_H grad ln f = 0.

This completes the proof. \Box

Proposition 3.5. A non-minimal integral C-parallel submanifold M^n with constant mean curvature || H || in N^{2n+1} is proper *f*-biharmonic if and only if

$$\frac{\Delta f}{f} + f_1 n + 3f_2 - 1 > 0$$

and

$$traceB(., A_{H}.) - 2\nabla_{grad \ln f}^{\perp} H = \left(\frac{\Delta f}{f} + f_1 n + 3f_2 - 1\right) H.$$

Proof. It is known that $\Delta^{\perp}H = H$ [12]. Thus, from normal part of Theorem 3.1 and the above proposition, we obtain

$$traceB(., A_{H}.) - 2\nabla_{\text{grad } \ln f}^{\perp}H = \left(\frac{\Delta f}{f} + f_1n + 3f_2 - 1\right)H.$$

Then taking the scalar product of the above equation with H, we find

$$||A_H||^2 = \left(\frac{\Delta f}{f} + f_1 n + 3f_2 - 1\right) ||H||^2.$$

Hence, it follows that

$$\frac{\Delta f}{f} + f_1 n + 3f_2 - 1 > 0.$$

4. Applications

In this section, we apply Theorem 3.1, Corollary 3.2, Corollary 3.3 and Proposition 3.5 to Sasakian, Kenmotsu, cosymplectic and λ -Sasakian space forms. Firstly, we investigate above results for Sasakian space form and then, using Theorem 3.1, we have following theorem:

Theorem 4.1. Let M^n be an integral submanifold of a Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$ with constant φ -sectional curvature c. The integral submanifold $i : M^n \to N^{2n+1}$ is f-biharmonic if and only if

$$\Delta^{\perp}H + traceB(., A_{H}.) - \frac{\Delta f}{f}H - \left(\frac{(n+3)c+3n-3}{4}\right)H - 2\nabla^{\perp}_{grad\ln f}H = 0$$

and

 $\frac{n}{2}grad(\parallel H\parallel^2) + 2traceA_{\nabla_{(i)}^{\perp}H}(.) + 2A_H grad \ln f = 0.$

Proof. Using the equations (4), (5) and $f_1 = \frac{c+3}{4}$, $f_2 = f_3 = \frac{c-1}{4}$, we obtain the result.

From Corollary 3.2 and Corollary 3.3, we have the following corollaries:

Corollary 4.2. There does not exist a proper *f*-biharmonic integral submanifold M^n with constant mean curvature $\|H\|$ such that $\frac{\Delta f}{f} + \left(\frac{(n+3)c+3n-3}{4}\right) < 0$ in a Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

Corollary 4.3. There does not exist a proper *f*-biharmonic compact integral submanifold M^n such that $\frac{\Delta f}{f} + \left(\frac{(n+3)c+3n-3}{4}\right) \leq 0$ in a Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

By the use of Proposition 3.5, we find the following proposition:

Proposition 4.4. A non-minimal integral C-parallel submanifold M^n with constant mean curvature || H || in a Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$ is proper *f*-biharmonic if and only if

$$\frac{\Delta f}{f} + \left(\frac{(n+3)c + 3n - 7}{4}\right) > 0$$

and

$$traceB(., A_H.) - 2\nabla_{grad \ln f}^{\perp}H = \left(\frac{\Delta f}{f} + \left(\frac{(n+3)c+3n-7}{4}\right)\right)H.$$

Now, we analyze *f*-biharmonic integral and integral *C*-parallel submanifolds in Kenmotsu space forms. Then we have the following theorem:

Theorem 4.5. Let M^n be an integral submanifold of a Kenmotsu space form $(N^{2n+1}, \varphi, \xi, \eta, g)$. The integral submanifold $i : M^n \to N^{2n+1}$ is f-biharmonic if and only if

$$\Delta^{\perp}H + traceB(., A_{H}.) - \frac{\Delta f}{f}H - \left(\frac{(n+3)c - 3n + 3}{4}\right)H - 2\nabla_{grad\ln f}^{\perp}H = 0$$

and

$$\frac{n}{2}grad(\parallel H\parallel^2) + 2traceA_{\nabla_{1}^{\perp}H}(.) + 2A_H grad \ln f = 0.$$

Proof. Putting $f_1 = \frac{c-3}{4}$, $f_2 = f_3 = \frac{c+1}{4}$ into the equations (4) and (5), we get the result.

By utilizing, Corollary 3.2 and Corollary 3.3, we find the following corollaries:

Corollary 4.6. There does not exist a proper *f*-biharmonic integral submanifold M^n with constant mean curvature $\|H\|$ such that $\frac{\Delta f}{f} + \left(\frac{(n+3)c-3n+3}{4}\right) < 0$ in a Kenmotsu space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

Corollary 4.7. There does not exist a proper *f*-biharmonic compact integral submanifold M^n such that $\frac{\Delta f}{f} + \left(\frac{(n+3)c-3n+3}{4}\right) \leq 0$ in a Kenmotsu space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

Using Proposition 3.5, we obtain the following proposition:

Proposition 4.8. A non-minimal integral C-parallel submanifold M^n with constant mean curvature || H || in a Kenmotsu space form $(N^{2n+1}, \varphi, \xi, \eta, g)$ is proper *f*-biharmonic if and only if

$$\frac{\Delta f}{f} + \left(\frac{(n+3)c+3n-1}{4}\right) > 0$$

and

$$traceB(., A_{H}.) - 2\nabla_{grad \ln f}^{\perp}H = \left(\frac{\Delta f}{f} + \left(\frac{(n+3)c + 3n - 1}{4}\right)\right)H$$

Now, we consider cosymplectic space forms. Then we obtain the following theorem:

Theorem 4.9. Let M^n be an integral submanifold of a cosymplectic space form $(N^{2n+1}, \varphi, \xi, \eta, g)$. The integral submanifold $i : M^n \to N^{2n+1}$ is *f*-biharmonic if and only if

$$\Delta^{\perp}H + traceB(., A_{H}.) - \frac{\Delta f}{f}H - \frac{(n+3)c}{4}H - 2\nabla^{\perp}_{grad\ln f}H = 0$$

and

$$\frac{h}{2}grad(||H||^2) + 2traceA_{\nabla_{(i)}^{\perp}H}(.) + 2A_H grad \ln f = 0.$$

Proof. In view of equation $f_1 = f_2 = f_3 = \frac{c}{4}$ into the equations (4) and (5), we have the desired result.

So, we have the following corollaries for an integral submanifold of cosymplectic space forms.

Corollary 4.10. There does not exist a proper *f*-biharmonic integral submanifold M^n with constant mean curvature || H || such that $\frac{\Delta f}{f} + \frac{(n+3)c}{4} < 0$ in a cosymplectic space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

Corollary 4.11. There does not exist a proper *f*-biharmonic compact integral submanifold M^n such that $\frac{\Delta f}{f} + \frac{(n+3)c}{4} \leq 0$ in a cosymplectic space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

By Proposition 3.5, we obtain the following proposition for an integral *C*-parallel submanifold of cosymplectic space forms.

Proposition 4.12. A non-minimal integral C-parallel submanifold M^n with constant mean curvature || H || in a cosymplectic space form $(N^{2n+1}, \varphi, \xi, \eta, g)$ is proper *f*-biharmonic if and only if

$$\frac{\Delta f}{f} + \left(\frac{(n+3)c - 4}{4}\right) > 0$$

and

$$traceB(., A_{H}.) - 2\nabla_{grad \ln f}^{\perp}H = \left(\frac{\Delta f}{f} + \left(\frac{(n+3)c - 4}{4}\right)\right)H.$$

Finally, we study an integral submanifold and an integral *C*-parallel submanifold of λ -Sasakian space forms. Thus we find the following results:

Theorem 4.13. Let M^n be an integral submanifold of a λ -Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$. The integral submanifold $i : M^n \to N^{2n+1}$ is f-biharmonic if and only if

$$\Delta^{\perp}H + traceB(., A_{H}.) - \frac{\Delta f}{f}H - \left(\frac{(n+3)c + 3\lambda(n-1)}{4}\right)H - 2\nabla^{\perp}_{grad\ln f}H = 0$$

and

$$\frac{n}{2}grad(\parallel H\parallel^2) + 2traceA_{\nabla_{(.)}^{\perp}H}(.) + 2A_H grad \ln f = 0.$$

Proof. Substituting $f_1 = \frac{c+3\lambda}{4}$, $f_2 = f_3 = \frac{c-\lambda}{4}$ into the equations (4) and (5), we obtain the result.

Corollary 4.14. There does not exist a proper *f*-biharmonic integral submanifold M^n with constant mean curvature $\|H\|$ such that $\frac{\Delta f}{f} + \left(\frac{(n+3)c+3\lambda(n-1)}{4}\right) < 0$ in a λ -Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

Corollary 4.15. There does not exist a proper *f*-biharmonic compact integral submanifold M^n such that $\frac{\Delta f}{f} + \left(\frac{(n+3)c+3\lambda(n-1)}{4}\right) \leq 0$ in a λ -Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$.

Proposition 4.16. A non-minimal integral C-parallel submanifold M^n with constant mean curvature || H || in a λ -Sasakian space form $(N^{2n+1}, \varphi, \xi, \eta, g)$ is proper *f*-biharmonic if and only if

$$\frac{\Delta f}{f} + \left(\frac{(n+3)c + 3\lambda(n-1) - 4}{4}\right) > 0$$

and

$$traceB(., A_{H}.) - 2\nabla_{grad \ln f}^{\perp}H = \left(\frac{\Delta f}{f} + \left(\frac{(n+3)c + 3\lambda(n-1) - 4}{4}\right)\right)H.$$

5. Examples of *f*-Biharmonic Integral Submanifolds

In the present section, we give some examples of f-biharmonic integral submanifolds of Sasakian space forms. To obtain examples of f-biharmonic integral submanifolds of Sasakian space forms., similar to the proof of Theorem 4.1, Remark 4.2 and Theorem 4.3 in [11], we state the following Theorem 5.1, Remark 5.2 and Theorem 5.3:

Theorem 5.1. Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a strictly regular Sasakian space form with constant φ -sectional curvature c and $i : M \to N$ an r-dimensional integral submanifold of $N, 1 \le r \le n$. Consider

$$F: M = I \times M \rightarrow N$$
 , $F(t, p) = \phi_t(p) = \phi_p(t)$,

where $I = \mathbb{S}^1$ or $I = \mathbb{R}$ and $\{\phi_t\}_{t \in I}$ is the flow of the vector field ξ . Then $F : (\widetilde{M}, \widetilde{g} = dt^2 + i^*g) \to N$ is a Riemannian immersion [11]. Then \widetilde{M} is proper *f*-biharmonic if and only if M is a proper *f*-biharmonic submanifold of N, where $f : M \to \mathbb{R}$ is a differentiable function.

Proof. From [11], we have

$$\tau(F)_{(t,p)} = \left(d\phi_t\right)_v \tau(i) \tag{16}$$

2569

and

$$\tau_2(F)_{(t,p)} = \left(d\phi_t\right)_p \tau_2(i). \tag{17}$$

Let $\sigma \in C(F^{-1}(TN))$ be a section in $F^{-1}(TN)$ defined by $\sigma_{(t,p)} = (d\phi_t)_p(Z_p)$, where *Z* is a vector field along *M*. Then we have

$$\left(\nabla_X^F \sigma\right)_{(t,p)} = \left(d\phi_t\right)_p \left(\nabla_X^N Z\right) \quad , \quad \forall X \in C(TM),$$
(18)

where ∇^F is the pull-back connection determined by the Levi-Civita connection on *N* (see [11]). Using the equations (16) and (18), we calculate

$$\nabla_{gradf}^{F}\tau(F) = \nabla_{gradf}^{F}\left(\left(d\phi_{t}\right)_{p}\tau(i)\right)$$

$$= \left(d\phi_{t}\right)_{p}\nabla_{gradf}^{i}\tau(i).$$
(19)

In view of the equations (16), (17) and (19) into the equation (2), we get

$$\tau_{2,f}(F)_{(t,p)} = (d\phi_t)_n \tau_{2,f}(i).$$

This completes the proof. \Box

By the use of *f*-biharmonicity of *F* and Fubini Theorem, we have

Remark 5.2. Let $(N^{2n+1}, \varphi, \xi, \eta, g)$ be a compact strictly regular Sasakian manifold and $G : M \to N$ be an arbitrary smooth map from a compact Riemannian manifold M. If F is f-biharmonic, then G is f-biharmonic, where

 $F: \widetilde{M} = \mathbb{S}^1 \times M \to N$, $F(t, p) = \phi_t(G(p)).$

Using the above remark, we can state the following theorem:

Theorem 5.3. Let $N^{2n+1}(c)$ be a Sasakian space form with constant φ -sectional curvature c and \widetilde{M}^2 a surface of $N^{2n+1}(c)$ invariant under the flow-action of the characteristic vector field ξ . Then \widetilde{M} is proper f-biharmonic if and only if, locally, it is given by $F(t,s) = \phi_t(\gamma(s))$, where γ is a proper f-biharmonic Legendre curve.

Let us consider $M = \mathbb{R}^7$ with the standard coordinate functions $(x_1, x_2, x_3, y_1, y_2, y_3, z)$, the contact structure $\eta = \frac{1}{2}(dz - \sum_{i=1}^{3} y_i dx_i)$, the characteristic vector field $\xi = 2\frac{\partial}{\partial z}$ and the tensor field φ are given by

$$\varphi = \left[\begin{array}{ccc} 0 & \delta_{ij} & 0 \\ -\delta_{ij} & 0 & 0 \\ 0 & y_j & 0 \end{array} \right].$$

The associated Riemannian metric is $g = \eta \otimes \eta + \frac{1}{4} \sum_{i=1}^{3} ((dx_i)^2 + (dy_i)^2)$. Then $(M, \varphi, \xi, \eta, g)$ is a Sasakian space form with constant φ -sectional curvature c = -3 and it is denoted by $\mathbb{R}^7(-3)$. The vector fields

$$X_{i} = 2\frac{\partial}{\partial y_{i}}, \ X_{3+i} = \varphi X_{i} = 2(\frac{\partial}{\partial x_{i}} + y_{i}\frac{\partial}{\partial z}), 1 \le i \le 3, \ \xi = 2\frac{\partial}{\partial z}$$
(20)

form a *g*-orthonormal basis and the Levi-Civita connection is

$$\nabla_{X_i} X_j = \nabla_{X_{3+i}} X_{3+j} = 0, \nabla_{X_i} X_{3+j} = \delta_{ij} \xi, \nabla_{X_{3+i}} X_j = -\delta_{ij} \xi,$$

$$\nabla_{X_i}\xi = \nabla_{\xi}X_i = -X_{3+i}, \nabla_{X_{3+i}}\xi = \nabla_{\xi}X_{3+i} = X_i,$$

(see [5]).

Now we give the following four examples of proper *f*-biharmonic Legendre curves in $\mathbb{R}^7(-3)$.

Example 5.4. ([14]) Let us take $\gamma(t) = (2 \sinh^{-1}(t), \sqrt{1+t^2}, \sqrt{3}\sqrt{1+t^2}, 0, 0, 0, 1)$ in $\mathbb{R}^7(-3)$. Then γ is a proper *f*-biharmonic Legendre curve with osculating order r = 2, $\kappa_1 = \frac{1}{1+t^2}$, $f = c_1(1+t^2)^{3/2}$, where $c_1 > 0$ is a constant.

Example 5.5. ([14]) Let $\gamma(t) = (a_1, a_2, a_3, \sqrt{2}t, 2\sinh^{-1}(\frac{t}{\sqrt{2}}), \sqrt{2}\sqrt{2+t^2}, a_4)$ be a curve in $\mathbb{R}^7(-3)$, where $a_i \in \mathbb{R}$, $1 \le i \le 4$. Then γ is proper *f*-biharmonic Legendre curve with osculating order r = 3, $\kappa_1 = \kappa_2 = \frac{1}{2+t^2}$, $f = c_1(2+t^2)^{3/2}$, where $c_1 > 0$ is a constant.

Example 5.6. Let us take $\gamma(t) = (\sqrt{2} \ln (\sqrt{2t^2 + 1} + \sqrt{2t}), \sqrt{2t^2 + 1}, \sqrt{2t^2 + 1}, 0, 0, 0, 1)$ in $\mathbb{R}^7(-3)$. Then γ is proper *f*-biharmonic Legendre curve with osculating order r = 2, $\kappa_1 = \frac{\sqrt{2}}{2t^2+1}$, $f = 2^{-3/4}c_1(1+2t^2)^{3/2}$, where $c_1 > 0$ is a constant.

Example 5.7. Let $\gamma(t) = (a_1, a_2, a_3, \sinh^{-1}(2t), -\frac{\sqrt{4t^2+1}}{\sqrt{2}}, \frac{\sqrt{4t^2+1}}{\sqrt{2}}, a_4)$ be a curve in $\mathbb{R}^7(-3)$, where $a_i \in \mathbb{R}, 1 \le i \le 4$. Then γ is proper *f*-biharmonic Legendre curve with osculating order r = 2, $\kappa_1 = \frac{2}{1+4t^2}$, $f = 2^{-3/2}c_1(1+4t^2)^{3/2}$, where $c_1 > 0$ is a constant.

Using Example 5.4, Example 5.5, Example 5.6, Example 5.7 and Theorem 5.3, we can give the following example of proper *f*-biharmonic surfaces:

Example 5.8. Let \widetilde{M}^2 be a surface of $\mathbb{R}^7(-3)$ endowed with its canonical Sasakian structure which is invariant under the flow-action of the characteristic vector field ξ . If γ is a Legendre curve given in Example 5.4, Example 5.5, Example 5.6 or Example 5.7 and locally, \widetilde{M}^2 is given by $F(t,s) = \phi_t(\gamma(s))$, then \widetilde{M}^2 is proper f-biharmonic.

References

- [1] P. Alegre, D.E. Blair, A. Carriazo, Generalized Sasakian space-forms, Israel J. Math. 141 (2004), 157-183.
- [2] P. Alegre, A. Carriazo, Submanifolds of generalized Sasakian space forms, Taiwanese J. Math. 13 (2009), 923–941.
- [3] C. Baikoussis, D. E. Blair, T. Koufogiorgos, Integral submanifolds of Sasakian space forms M (k), Results Math. 27 (1995), 207–226.
- [4] P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford University Press, 2003.
- [5] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Boston. Birkhauser 2002.
- [6] R. Caddeo, S. Montaldo, P. Piu, On biharmonic maps, Global differential geometry: the mathematical legacy of Alfred Gray, Contemp. Math., Amer. Math. Soc., Providence, RI 288 (2000).
- U. C. De, A. Sarkar, Some results on generalized Sasakian-space-forms, Thai J. Math. 8 (2010), 1–10.
- [8] U. C. De, A. Yıldız, Certain curvature conditions on generalized Sasakian space forms, Quaest. Math. 38 (2015), 495–504.
- [9] J. Jr. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.
- [10] D. Fetcu, C. Oniciuc, A note on integral C-parallel submanifolds in S⁷(c), Rev. Un. Mat. Argentina. 52 (2011), 33–45.
 [11] D. Fetcu, C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific J. Math. 240 (2009), 85–107.
- [12] D. Fetcu, C. Oniciuc, Biharmonic integral C-parallel submanifolds in 7-dimensional Sasakian space forms, Tohoku Math. J. 64 (2012), 195-222.
- [13] F. Gürler, C. Özgür, C., f -Biminimal immersions, Turkish J. Math. 41 (2017), 564–575.
- [14] Ş. Güvenç, C. Özgür, On the characterizations of f-biharmonic Legendre curves in Sasakian space forms, Filomat. 31 (2017), 639-648.
- [15] C. Özgür, Ş. Güvenç, On some classes of biharmonic Legendre curves in generalized Sasakian space forms, Collect. Math. 65 (2014), 203-218.
- [16] J. I. Inoguchi, T. Sasahara, Biharmonic hypersurfaces in Riemannian symmetric spaces I, Hiroshima Math. J. 46 (2016), 97–121.
- [17] G. Y. Jiang, 2-Harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), 389-402.
- [18] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1–27.
- [19] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93–103.
- [20] E. Loubeau, S. Montaldo, Biminimal immersions, Proceedings of the Edinburgh Mathematical Society, 51 (2008), 421-437.
- [21] W-J. Lu, On f biharmonic maps and bi-f-harmonic maps between Riemannian manifolds, Sci. China Math. 58 (2015), 1483–1498.
- [22] G.D. Ludden, Submanifolds of cosymplectic manifolds, J. Dif. Geo. 4 (1970), 237–244.
- [23] P. Majhi, U. C. De, The structure of a class of generalized Sasakian space forms, Extracta Math. 27 (2012), 301-308.
- [24] P. Majhi, U. C. De, On three dimensional generalized Sasakian space forms, J. Geom. 108 (2017), 1039–1053.
- [25] P. Majhi, U. C. De, A. Yıldız, On a class of generalized Sasakian space forms, Acta Math. Univ. Comenian. 87 (2018), 97–106.
- [26] S. Maeta, H. Urakawa, Biharmonic Lagrangian submanifolds in Kaehler manifolds, Glasgow Math. J. 55 (2013), 465–480.
- [27] S. Ouakkas, R. Nasri, M. Djaa, On the f-harmonic and f-biharmonic maps, JP. J. Geom. Top. 10 (2010), 11–27.
- [28] Y-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math. 248 (2010), 217–232.
- [29] Y-L. Ou, On f-biharmonic maps and f-biharmonic submanifolds, Pacific J. Math. 271 (2014), 461–477.
- [30] J. Roth, A. Upadhyay, Biharmonic submanifolds of generalized space forms, Differential Geom. Appl. 50 (2017), 88-104.