Filomat 33:9 (2019), 2555–2560 https://doi.org/10.2298/FIL1909555M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the Spectrum of Substitution Vector-Valued Integral Operators

Zahra Moayyerizadeh^a

^aLorestan University

Abstract. In this paper, we characterize the compact substitution vector-valued integral operators from $L^2(X)$ to $L^2(X)$ and determine their spectra.

1. Introduction and Preliminaries

Let (X, Σ, μ) be a σ -finite measure space and $\varphi : X \to X$ be a non-singular measurable transformation; i.e. $\mu \circ \varphi^{-1} \ll \mu$. Then $\mu \circ \varphi^{-n} \ll \mu$ where $n \ge 1$. It is assumed that the Radon-Nikodym derivative $h_n = d\mu \circ \varphi^{-n}/d\mu$ is almost everywhere finite-valued, or equivalently $\varphi^{-n}(\Sigma) \subseteq \Sigma$ is a sub- σ -finite algebra. If n = 1, we put $h_1 = h$. Here non-singularity of φ guarantees that the operator $f \to f \circ \varphi$ is well defined as a mapping on $L^0(\Sigma)$ where $L^0(\Sigma)$ denotes the linear space of all equivalence classes of Σ -measurable functions on X. We have the following change of variable formula:

$$\int_{\varphi^{-1}(A)} f \circ \varphi d\mu = \int_A hf d\mu \qquad A \in \Sigma, f \in L^0(\Sigma).$$

Every non-singular transformation φ from X into itself induces a linear transformation C_{φ} on $L^{p}(\mu)$ into linear space of all measurable functions on X, defined as

$$C_{\varphi}f=f\circ\varphi,$$

for every $f \in L^p(\mu)$. In case C_{φ} is continuous from $L^p(\mu)$ into itself, then it is called a composition operator on $L^p(\mu)$ induced by φ see[6]. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set.

Recall that an atom of the measure μ is an element $A \in \Sigma$ with $\mu(A) > 0$, such that for each $B \in \Sigma$, if $B \subset A$ then either $\mu(B) = 0$ or $\mu(B) = \mu(A)$. A measure with no atoms is called non-atomic. We can easily check the following well-known facts (see[9]):

(*a*) Every σ -finite measure space (X, Σ, μ) can be partitioned uniquely as

$$X = (\cup_{n \in \mathbb{N}} A_n) \cup B,$$

(1)

²⁰¹⁰ Mathematics Subject Classification. Primary 47B20 ; Secondary 47B38 Keywords. Compactness, Integral operator, Spectrum Received: 23 August 2018; Accepted: 02 May 2019

Communicated by Dragan S. Djordjević

Email address: moayerizadeh.za@lu.ac.ir (Zahra Moayyerizadeh)

where $\{A_n\}_{n \in \mathbb{N}} \subseteq \Sigma$ is a countable collection of pairwise disjoint atoms and *B*, being disjoint from each A_n , is non-atomic. Since (X, Σ, μ) is σ -finite, it follows that $\mu(A_n) < \infty$ for every $n \in \mathbb{N}$.

(b) Let *E* be a non-atomic set with $\mu(E) > 0$. Then there exists a sequence of positive disjoint Σ -measurable subsets of *E*, $\{E_n\}_{n \in \mathbb{N}}$ such that $\mu(E_n) > 0$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \mu(E_n) = 0$.

For a given complex Hilbert space \mathcal{H} , let $u : X \to \mathcal{H}$ be a mapping. We say that u is weakly measurable if for each $g \in \mathcal{H}$ the mapping $x \mapsto \langle u(x), g \rangle$ of X to \mathbb{C} is measurable. We will denote this map by $\langle u, g \rangle$. Let $L^2(X)$ be the class of all measurable mappings $f : X \to \mathbb{C}$ such that $||f||_2^2 = \int_X |f(x)|^2 d\mu < \infty$.

Definition 1.1. Let $u : X \to L^2(X)$ be a weakly measurable function. We say that u is a semi-weakly bounded function if for some A > 0,

$$\|\langle u,g\rangle\|_2 \le A \|g\|_2,$$

for each $g \in L^2(X)$

Definition 1.2. Let $\varphi : X \to X$ be a non-singular measurable transformation and C_{φ} be a composition operator on $L^2(X)$. Also let $u : X \to L^2(X)$ be a weakly measurable function. Then the pair (u, φ) induces a substitution vector-valued integral operator $T_u^{\varphi} : L^2(X) \to L^2(X)$ defined by

$$\langle (T_u^{\varphi})^k f, g \rangle = \int_X \langle u, g \rangle \langle u \circ \varphi, g \rangle ... \langle u \circ \varphi^{k-1}, g \rangle C_{\varphi^k} f d\mu, \quad g, f \in L^2(X).$$

for every $k \in \mathbb{N}$. It is easy to see that $(T_u^{\varphi})^k$ is well defined and linear and also we have $\langle T_u^{\varphi} f, g \rangle = \int_X \langle u, g \rangle C_{\varphi} f d\mu$

In [4], we have $||T_u^{\varphi}f|| = \sup_{g \in \mathcal{D}} |\langle T_u^{\varphi}f, g \rangle|$, where \mathcal{D} is the closed unit ball of L^2 and $\langle ., . \rangle$ is inner product in L^2 . Some fundamental properties of the substitution vector-valued integral operator $T_u^{\varphi} : L^2(X) \to \mathcal{H}$ are studied by the author et al in [4].

Definition 1.3 ([4]). Let $u : X \to \mathcal{H}$ be a weakly measurable function. We say that $(u, \varphi, \mathcal{H})$ has absolute property, if for each $f \in L^2(X)$, there exists $g_f \in \mathcal{D}$ such that $\sup_{g \in \mathcal{D}} \int_X |\langle u, g \rangle| |C_{\varphi}f| d\mu = \int_X |\langle u, g_f \rangle| |C_{\varphi}f| d\mu$, and $\langle u, g_f \rangle = e^{i(-\arg C_{\varphi}f + \theta_f)} |\langle u, g_f \rangle|$, for a constant θ_f .

Proposition 1.4 ([4]). Assume that $(u, \varphi, \mathcal{H})$ has the absolute property. Then

$$\sup_{g\in\mathcal{D}}|\int_X \langle u,g\rangle C_{\varphi}fd\mu| = \sup_{g\in\mathcal{D}}\int_X |\langle u,g\rangle||C_{\varphi}f|d\mu.$$

Throughout of this paper we assume that $(u, \varphi, \mathcal{H})$ has the absolute property.

The aim of this paper is to carry some of the results obtained for the weighted composition operators in [1, 3, 5, 7] to a substitution vector-valued integral operator on $L^2(X)$ space. In this note, we will determine under certain conditions the specrum of T_u^{φ} on $L^2(X)$ space.

2. The main results

In this section we give necessary conditions for the compactness of T_u^{φ} from $L^2(X)$ to $L^2(X)$. Then, we determine the spectrum $\sigma(T_u^{\varphi})$ of a compact substitution vector-valued integral operator T_u^{φ} on $L^2(X)$.

Theorem 2.1. Let $u : X \to L^2(X)$ be a semi-weakly bounded function and let $h \in L^{\infty}(\Sigma)$, then $T_u^{\varphi} : L^2(X) \to L^2(X)$ is bounded.

Proof. Let $f \in L^2(X)$. By Holder's inequality and change of variable formula we have

$$\begin{split} \|T_u^{\varphi}f\| &= \sup_{g \in \mathcal{D}} |\int_X \langle u, g \rangle C_{\varphi} f d\mu| \\ &\leq \sup_{g \in \mathcal{D}} (\int_X |\langle u, g \rangle|^2 d\mu)^{\frac{1}{2}} (\int_X |f \circ \varphi|^2 d\mu)^{\frac{1}{2}} \\ &\leq \sup_{g \in \mathcal{D}} (A ||g||_2) (\int_X h |f|^2 d\mu)^{\frac{1}{2}} \\ &\leq A \sqrt{||h||_{\infty}} ||f||_2. \end{split}$$

This shows that T_u^{φ} is bounded. \Box

Theorem 2.2. Let (X, Σ, μ) be partitioned as (1.1) and the substitution vector-valued integral operator T_u^{φ} be a compact operator on $L^2(X)$. Then

(i)
$$\sup_{q \in \mathcal{D}} |\langle u(\varphi^{-1}(B)), g \rangle| = 0,$$

(*ii*) for any $\epsilon > 0$, the set $\{i \in \mathbb{N}; \mu(\{y \in \varphi^{-1}(A_i); \sup_{g \in \mathcal{D}} |\langle u(y), g \rangle| > \epsilon\} > 0\}$, is finite.

Proof. We first show that the compactness T_u^{φ} implies (i). Assuming the contrary, we can find some $\delta > 0$ and $g_1 \in \mathcal{D}$ such that $\mu(\varphi^{-1}(B)) \cap D_{\delta,g_1}(u) > 0$, where $D_{\delta,g_1}(u) := \{x \in X : |\langle u(x), g_1 \rangle| > \delta\}$. Consider ψ , the restriction of φ to $D_{\delta,g_1}(u)$. As the measure $\mu\psi^{-1}$ is absolutely continuous with respect to μ , hence there exists a non-negative Σ -measurable function v such that

$$\mu\psi^{-1}(E) = \int_E v d\mu \quad \text{for all} \quad E \in \Sigma.$$

Now, it follows from $\mu\psi^{-1}(B) = \mu(\varphi^{-1}(B)) \cap D_{\delta,g_1}(u)) > 0$ that there is some $\alpha > 0$ satisfying $\mu(\{x \in B : v(x) \ge \alpha\}) > 0$. Since the set $\{x \in B : v(x) \ge \alpha\}$ is non-atomic, we can find a sequence of pairwise disjoint Σ -measurable subsets $\{J_n\}_{n \in \mathbb{N}}$ with $0 < \mu(J_n) < \infty$ for all $n \in \mathbb{N}$. Define $f_n = \frac{\chi_{l_n}}{\mu(J_n)^{\frac{1}{2}}}$ for each $n \in \mathbb{N}$. Hence, $\|f_n\|_2 = 1$ and $\mu\psi^{-1}(J_n) = \int_{J_n} vd\mu \ge \alpha\mu(J_n) > 0$. Moreover, for any $m, n \in \mathbb{N}$ with $m \ne n$, we get that

$$\begin{split} \|T_{u}^{\varphi}f_{n} - T_{u}^{\varphi}f_{m}\| &= \sup_{g \in \mathcal{D}} \int_{X} |\langle u, g \rangle \|f_{n} - f_{m}| \circ \varphi d\mu \\ &\geq \int_{X} |\langle u, g_{1} \rangle \|f_{n} - f_{m}| \circ \varphi d\mu \\ &= \int_{X} |\langle u, g_{1} \rangle \| \frac{\chi_{I_{n}}}{\mu(J_{n})^{\frac{1}{2}}} - \frac{\chi_{I_{m}}}{\mu(J_{m})^{\frac{1}{2}}} | \circ \varphi d\mu \\ &\geq \int_{\psi^{-1}(J_{n}) \cup \psi^{-1}(J_{m})} |\langle u, g_{1} \rangle \| \frac{\chi_{I_{n}}}{\mu(J_{n})^{\frac{1}{2}}} - \frac{\chi_{I_{m}}}{\mu(J_{m})^{\frac{1}{2}}} | \circ \varphi d\mu \\ &= \int_{\psi^{-1}(J_{n})} |\langle u, g_{1} \rangle \| \frac{\chi_{I_{n}}}{\mu(J_{n})^{\frac{1}{2}}} - \frac{\chi_{I_{m}}}{\mu(J_{m})^{\frac{1}{2}}} | \circ \varphi d\mu + \int_{\psi^{-1}(J_{m})} |\langle u, g_{1} \rangle \| \frac{\chi_{I_{n}}}{\mu(J_{n})^{\frac{1}{2}}} - \frac{\chi_{I_{m}}}{\mu(J_{m})^{\frac{1}{2}}} | \circ \varphi d\mu \\ &= \frac{1}{\mu(J_{n})^{\frac{1}{2}}} \int_{\psi^{-1}(J_{n}) \cap \varphi^{-1}(J_{m})} |\langle u, g_{1} \rangle| d\mu + \frac{1}{\mu(J_{m})^{\frac{1}{2}}} \int_{\psi^{-1}(J_{m}) \cap \varphi^{-1}(J_{m})} |\langle u, g_{1} \rangle| d\mu \\ &> \delta(\frac{\mu(\psi^{-1}(J_{n}))}{\mu(J_{n})^{\frac{1}{2}}} + \frac{\mu(\psi^{-1}(J_{m}))}{\mu(J_{m})^{\frac{1}{2}}}). \end{split}$$

This implies that the sequence $\{T_u^{\varphi}f_n\}_n$ does not contain a convergent subsequence, but this contradicts compactness of T_u^{φ} .

Next, we prove (ii). Suppose, on the contrary, the set

$$\{i \in \mathbb{N}; \mu(\{y \in \varphi^{-1}(A_i); \sup_{g \in \mathcal{D}} |\langle u(y), g \rangle| > \epsilon_0\} > 0\}$$

is infinite for some $\epsilon_0 > 0$. Then, there is a subsequence of disjoint atoms $\{A_k\}_{k \in \mathbb{N}}$ such that for any $k \in \mathbb{N}$, the set $\{y \in \varphi^{-1}(A_k) : \sup_{g \in \mathcal{D}} |\langle u(y), g \rangle| > \epsilon_0\}$ has positive measure. Hence we obtain for any $k \in \mathbb{N}$ there exists $g_k \in \mathbb{N}$ such that the set

$$v_k = \{ y \in \varphi^{-1}(A_k) : \sup_{g \in \mathcal{D}} |\langle u(y), g \rangle| > \epsilon_0 \},\$$

has positive measure and

$$\mu(v_k) \leq \mu(\varphi^{-1}(A_k)) = \int_{A_k} h d\mu = h(A_k)\mu(A_k) < \infty.$$

Define $f_k := \frac{\chi_{A_k}}{(\mu(A_k))^{\frac{1}{2}}}$. Hence $||f_k||_2 = 1$. For any $m, n \in \mathbb{N}$ with $m \neq n$, we get that

$$\begin{split} \|T_{u}^{\varphi}f_{n} - T_{u}^{\varphi}f_{m}\| &= \sup_{g \in \mathcal{D}} \int_{X} |\langle u, g \rangle \|f_{n} - f_{m}| \circ \varphi d\mu \\ &= \sup_{g \in \mathcal{D}} \int_{X} |\langle u, g \rangle \| \frac{\chi_{A_{n}}}{\mu(A_{n})^{\frac{1}{2}}} - \frac{\chi_{A_{m}}}{\mu(A_{m})^{\frac{1}{2}}} | \circ \varphi d\mu \\ &\geq \sup_{g \in \mathcal{D}} \int_{V_{n} \cup V_{m}} |\langle u, g \rangle \| \frac{\chi_{A_{n}}}{\mu(A_{n})^{\frac{1}{2}}} - \frac{\chi_{A_{m}}}{\mu(A_{m})^{\frac{1}{2}}} | \circ \varphi d\mu \\ &= \sup_{g \in \mathcal{D}} \int_{V_{n} \cap \varphi^{-1}(A_{n})} |\langle u, g \rangle | \frac{1}{\mu(A_{n})^{\frac{1}{2}}} d\mu + \sup_{g \in \mathcal{D}} \int_{V_{m} \cap \varphi^{-1}(A_{m})} |\langle u, g \rangle | \frac{1}{\mu(A_{m})^{\frac{1}{2}}} d\mu \\ &\geq \int_{V_{n} \cap \varphi^{-1}(A_{n})} |\langle u, g_{n} \rangle | \frac{1}{\mu(A_{m})^{\frac{1}{2}}} d\mu + \int_{V_{m} \cap \varphi^{-1}(A_{m})} |\langle u, g_{m} \rangle | \frac{1}{\mu(A_{m})^{\frac{1}{2}}} | d\mu \\ &\geq \varepsilon_{0}(\frac{\mu(v_{n})}{\mu(A_{n})^{\frac{1}{2}}} + \frac{\mu(v_{m})}{\mu(A_{m})^{\frac{1}{2}}}). \end{split}$$

But this shows that T_{μ}^{φ} is not compact. \Box

The *k*th iterate φ^k of the non-singular measurable transformation $\varphi : X \to X$ is defined by $\varphi^0(x) = x$ and $\varphi^k(x) = \varphi(\varphi^{k-1}(x))$ for all $x \in X$ and $k \in \mathbb{N}$.

Definition 2.3. A atom A is called an invariant atom with respect to φ , if for all $n \in \mathbb{Z}$, $\varphi^n(A)$ is an atom. An invariant atom A with respect to φ is called a fixed atom of φ of order one, if for each $g \in \mathcal{D}$, $\langle u(A), g \rangle \neq 0$ and $\varphi(A) = A$. Also, it is called of order $2 \le k \in \mathbb{N}$, if for each $g \in \mathcal{D}$, $\prod_{i=0}^{k-1} \langle u(\varphi^i(A)), g \rangle \neq 0$, $\varphi^k(A) = A$ and $\varphi^i(A) \neq A$ for all i = 1, ..., k - 1.

Recall that a complex λ is in the spectrum $\sigma(T_u^{\varphi})$ of T_u^{φ} , if $T_u^{\varphi} - \lambda I$ is not invertible.

Theorem 2.4. Let T_u^{φ} be a compact substitution vector-valued operator integral from $L^2(X)$ to $L^2(X)$ and also let (X, Σ, μ) be partitioned as (1.1). If we set

$$\Lambda = \{\lambda \in \mathbb{C} : \langle \lambda^k, g \rangle = \prod_{i=0}^{k-1} \langle u(\varphi^i(A)), g \rangle) \mu(A) \},\$$

for some fixed atom A of φ of order k and for each $g \in \mathcal{D}$. Then, we have $\sigma(T_u^{\varphi}) \cup \{0\} = \Lambda \cup \{0\}$.

Proof. To prove the theorem, we adopt the method by Kamowitz [5] and Takagi [7]. Firstly, we show the inclusion $\Lambda \cup \{0\} \subseteq \sigma(T_u^{\varphi}) \cup \{0\}$. Let λ be a non-zero number in Λ such that for each $g \in \mathcal{D}$,

$$\langle \lambda^{k}, g \rangle = \langle u(A), g \rangle \langle u(\varphi(A)), g \rangle ... \langle u(\varphi^{k-1}(A)), g \rangle \mu(A)$$

for some fixed atom *A* of φ of order *k*.

If k = 1, then $\langle \lambda, g \rangle = \langle u(A), g \rangle \mu(A)$ and $\varphi(A) = A$. We claim that there exists no $f \in \mathcal{D}$ such that $T_u^{\varphi} f - \lambda f = \chi_A \mu$ -a.e. on X. Indeed, since $\varphi(A) = A$, for each $g \in L^2$, we get that $\langle (T_u^{\varphi} f - \lambda f)(A), g \rangle = \int_A \langle u, g \rangle (f \circ \varphi) d\mu - \langle u(A), g \rangle \mu(A) f(A) = 0$, whereas $\chi_A(A) = 1$. This shows that $T_u^{\varphi} f - \lambda f$ is not surjective. Hence, $\lambda \in \sigma(T_u^{\varphi})$.

When $k \ge 2$, again there exists no $f \in L^2(X)$ which satisfies $T_u^{\varphi} f - \lambda f = \chi_A \mu$ -a.e. on X. For, if such a function f exists, then by induction we have

$$\lambda^{k} f(A) - ((T_{u}^{\varphi})^{k}(f))(A) = \lambda^{k-1} + \sum_{j=1}^{k-1} \lambda^{k-j-1}((T_{u}^{\varphi})^{j}(\chi_{A}))(A).$$
(2)

Therefore for each $g \in \mathcal{D}$, we have

$$\langle \lambda^k f(A) - ((T_u^{\varphi})^k(f))(A), g \rangle = \langle \lambda^{k-1} + \sum_{j=1}^{k-1} \lambda^{k-j-1} ((T_u^{\varphi})^j(\chi_A))(A), g \rangle.$$

Moreover

$$\langle (T_u^{\varphi})^k f(A), g \rangle = \langle u(A), g \rangle ... \langle u(\varphi^{k-1}(A)), g \rangle f \circ \varphi^k(A) \mu(A),$$

Since $\varphi^k(A) = A$ and $\varphi^j(A) \neq A$ for $1 \leq j \leq k - 1$, the left hand side of (2.1) equals 0, while the right hand side of (2.1) equals $\langle \lambda^{k-1}, g \rangle$, which is non-zero. This contradiction shows that $\lambda \in \sigma(T_u^{\varphi})$. Therefore $\Lambda \cup \{0\} \subseteq \sigma(T_u^{\varphi}) \cup \{0\}$.

Now, we show the opposite inclusion. Let $\lambda \notin \Lambda \cup \{0\}$, and suppose that an L^2 function f satisfies $\lambda f = T_u^{\varphi} f$. All that we have to show is that f is zero μ -almost everywhere on X. For, if this holds, λ is not an eigenvalue of T_u^{φ} , and by Fredholm alternative for compact operators, λ is not in $\sigma(T_u^{\varphi})$, and thus we get $\sigma(T_u^{\varphi}) \cup \{0\} \subseteq \Lambda \cup \{0\}$. We first show that f vanishes μ -almost everywhere on $\bigcup_{n \in \mathbb{N}} A_n$, or equivalently, f(A) = 0 for every invariant atom A. Let A be a fixed atom of φ of order k. Since $T_u^{\varphi} f = \lambda f$, by induction, we get $(T_u^{\varphi})^k f = \lambda^k f$. Hence for each $g \in \mathcal{D}$, $\langle (T_u^{\varphi})^k f(A), g \rangle = \langle \lambda^k f(A), g \rangle$. Since $\varphi^k(A) = A$ and $\langle \lambda^k, g \rangle \neq \langle u(A), g \rangle \langle u(\varphi(A)), g \rangle ... \langle u(\varphi^{k-1}(A)), g \rangle \mu(A)$, we can easily deduce that f(A) = 0.

By the fist part of the poof, we can assume that for all $k \in \mathbb{N} \cup 0$ and for all $g \in \mathcal{D}$, $\langle u(\varphi^k(A)), g \rangle \neq 0$. Put $\mathcal{K}(A) = \{\varphi^i(A) : i \in \mathbb{N} \cup \{0\}\}$. If $\mathcal{K}(A)$ is finite, In this case for some $n, m \in \mathbb{N}, \varphi^n(A)$ is a fixed atom of φ of order m. By a preceding discussion, we have $f(\varphi^n(A)) = 0$. On the other hand, since $\lambda^n f = (T_u^{\varphi})^n f$ and

$$\langle (T_u^{\varphi})^n f(A), g \rangle = \langle u(A), g \rangle ... \langle u(\varphi^{n-1}(A)), g \rangle \mu(A) f(\varphi^n(A)).$$

Then f(A) = 0.

Now, suppose that $\mathcal{K}(A)$ is infinite. We claim that the set $\{j \ge 0 : \sup_{g \in \mathcal{D}} | \langle u(\varphi^j(A)), g \rangle | > \epsilon \}$ is finite for every $\epsilon > 0$. Suppose this does not hold. Then the set $\{j \ge 0 : \mu(\{x \in \varphi^{-1}(\varphi^{j+1})(A)) : \sup_{g \in \mathcal{D}} | \langle u(x), g \rangle | \ge \epsilon \}) > 0\}$ is infinite. But this contradicts the compactness of T_u^{φ} . Hence, for any $\epsilon > 0$, there exists a M such that

 $\sup_{q \in \mathcal{D}} |\langle u(\varphi^m(A), g)| < \epsilon \text{ for all } m \ge M.$ Therefore there exists $g_1 \in \mathcal{D}$ such that for each $m \ge M$,

$$\begin{split} |\langle \lambda^m f(A), g_1 \rangle|^2 &= |\langle (T^{\varphi}_u)^m f(A), g_1 \rangle|^2 = |\langle u(A), g_1 \rangle|^2 ... |\langle u(\varphi^{M-1}(A), g_1 \rangle)|^2 \\ &\dots \langle u(\varphi^{m-1}(A)), g_1 \rangle|^2 |f(\varphi^m(A))|^2 \mu(A) \\ &= h_m |\langle u(A), g_1 \rangle|^2 ... |\langle u(\varphi^{M-1}(A), g_1 \rangle)|^2 \\ &\dots \langle u(\varphi^{m-1}(A)), g_1 \rangle|^2 \int_{\varphi^{-m}(A)} |f|^2 d\mu \\ &\leq h_m ||f||_2^2 ||u(A)||_2^{2M} ||g_1||_2^{2M} \epsilon^{2(m-M)}. \end{split}$$

so

$$|f(A)|^{2} < \frac{h_{m} ||f||_{2}^{2} ||u(A)||_{2}^{2M} \epsilon^{2(m-M)}}{|\langle \lambda^{m}, g_{1} \rangle|^{2}}$$

As $\epsilon = \frac{|\langle \lambda^m, g_1 \rangle|}{2}$ and $m \to \infty$, we obtain f(A) = 0. Therefore we conclude that f is zero on $\bigcup_{n \in \mathbb{N}} A_n$.

It remains to show that *f* is zero μ -almost everywhere on *B*. Since $L^2(X) = L^2(\bigcup_{n \in \mathbb{N}} A_n) \oplus L^2(B)$. hence it suffices to show that *f* is zero as an element of $L^2(B)$. Since $\sup_{g \in \mathcal{D}} |\langle u(\varphi^{-1}(B), g)| = 0$, so

$$\|T_u^{\varphi}f\|_{L^2(B)} = \sup_{g \in \mathcal{D}} \int_B |\langle u, g \rangle \|f| \circ \varphi d\mu \ge \int_B |\langle u, g_1 \rangle \|f| \circ \varphi d\mu = 0.$$

Consequently $\lambda f = T_u^{\varphi} f = 0$ and hence *f* is zero μ -almost everywhere on *B*. This completes the proof of the theorem. \Box

References

- [1] J. T. Chan, A note on compact weighted composition operators on $L^p(\mu)$, Acta Sci. Math, **56**(1992), 165-168.
- [2] N. Dunford and J. T. Schwartz, Linear Operators, part I, Wiley, NewYork, 1988.
- [3] M.R. Jabbarzadeh and H. Emamalipour, Compact weighted Frobenius-Perron operators and their spectra, Bulletin of the Iranian Mathematical Society, 38(2012), 817-826.
- [4] H. Emamalipour, M. R. Jabbarzadeh and Z. Moayyerizadeh, A substitution vector-valued integral operator, J. Math. Anal. Appl, 431(2015), 812-821.
- [5] H. Kamowitz, Compact weighted endomorphisms of C(X), Proceedings of the American Mathematical Society, 83(1981), 517-521.
- [6] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North Holland Math. Studies 179, Amsterdam 1993.
- [7] H. Takagi, Compact weighted composition operators on L^p , Proceedings of the American Mathematical Society, 116(1992), 505-511.
- [8] A. E. Taylor and D.C. Lay, Introduction to functional analysis, 2nd ed. wiley, 1980.
- [9] A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.