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Abstract. Let X,X1,X2, . . . be a stationary sequence of ρ−-mixing positive random variables. A universal
result in the area of almost sure central limit theorems for the self-normalized products of sums of partial

sums (
∏k

j=1(T j/( j( j + 1)µ/2)))µ/(βVk) is established, where: T j =
∑ j

i=1 Si,Si =
∑i

k=1 Xk,Vk =

√∑k
i=1 X2

i , µ =

EX, β > 0. Our results generalize and improve those on almost sure central limit theorems obtained
by previous authors from the independent case to ρ−-mixing sequences and from partial sums case to
self-normalized products of sums of partial sums.

1. Introduction

Starting with Brosamler [6] and Schatte [22] established the almost sure central limit theorem (ASCLT)
for partial sums Sn/σn of independent random variables. Several authors investigated ASCLT for partial
sums Sn/σn of random variables in the last two decades. Some improved and generalized ASCLT results
for partial sums were obtained by Brosamler [6], Schatte [22], Lacey and Philipp [16], Ibragimov and
Lifshits [14], Berkes and Csáki [4], Hörmann [11], Miao [18], Zang [33] and Wu [27]. If σn is replaced

by an estimate from the given data, usually denoted by Vn =:
√∑n

i=1 X2
i , Vn is called a self-normalizer of

partial sums. A class of self-normalized random variables has been proposed and studied in Peligrad and
Shao [20], Peña et al. [19] and references therein. The limit theorems for the self-normalized sums Sn/Vn
have been developed significantly in the past decade. We refer the reader to: Bentkus and Gótze [3] for
the Berry-Esseen bound, Giné et al. [10] for the asymptotic normality, Hu et al. [12] for the Cramér type
moderate deviations, Csörgo et al. [9] for the Donsker’s theorem, Huang and Pang [13], Zhang and Yang
[37], Wu [28], Wu and Jiang [31] and Wu [32] for the almost sure central limit theorems.

The study of the sums of partial sums was initiated by Resnick [21] and [2] who obtained the central
limit theorem (CLT) for sums of records. As we know, the sum of exponential records is the sum of partial
sums of exponential random variables. So it is necessary to study the sum of partial sums. [38] obtained the
ASCLT for products of sums of partial sums. Furthermore, [29] proved the ASCLT for the self-normalized
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products of sums of partial sums that reads as follows: Let {X,Xn; n ≥ 1} be a sequence of i.i.d. positive
random variables in the domain of attraction of the normal law with mean µ > 0. Then

lim
n→∞

1
Dn

n∑
k=1

dkI


 k∏

j=1

(
T j

j( j + 1)µ/2

)
µ/Vk

≤ x

 = F(x) a.s. x ∈ R,

where sums of partial sums T j =:
∑ j

i=1 Si, dk =: k−1 exp(lnα k),Dn =:
∑n

k=1 dk, 0 ≤ α < 1/2, I denotes indicator
function, F is the distribution function of the random variable exp(

√
10/3N), andN stands for the standard

normal random variable.

Following introduced the related concept of ρ−-mixing. Let σ(S) be the σ-field generated by {Xk; k ∈ S ⊂
N}. Let C be a class of functions which are increasing for every variable (or decreasing for every variable).

Random variables X1,X2, . . . ,Xn,n ≥ 2, are said to be negatively associated (NA) if for every pair of
disjoint subsets A1 and A2 of {1, 2, . . . ,n},

Cov( f1(Xi; i ∈ A1), f2(X j; j ∈ A2)) ≤ 0,

where f1, f2 ∈ C such that this covariance exists. A sequence of random variables {Xn; n ≥ 1} is said to be
NA if its every finite subfamily is NA.

A sequence of random variables {Xn; n ≥ 1} is called ρ∗-mixing if

ρ∗(n) =: sup{ρ(S,T); S,T ⊂N,dist(S,T) ≥ n} → 0 as n→∞,

where

ρ(S,T) =: sup
{
|E( f − E f )(1 − E1)|
|| f − E f ||2||1 − E1||2

; f ∈ L2(σ(S)), 1 ∈ L2(σ(T))
}
, ||X||p =: (E|X|p)1/p,

and
dist(S,T) =: min{| j − k|; j ∈ S, k ∈ T}.

A sequence of random variables {Xn; n ≥ 1} is called ρ−-mixing if

ρ−(n) =: sup{ρ−(S,T); S,T ⊂N,dist(S,T) ≥ n} → 0 as n→∞,

where

ρ−(S,T) =: 0 ∨ sup

 Cov( f (Xi, i ∈ S), 1(X j, j ∈ T))√
Var( f (Xi, i ∈ S))Var(1(X j, j ∈ T))

; f , 1 ∈ C

 ,
and

a ∨ b =: max(a, b).

The concept of negative association was introduced by Alam and Saxena [1] and Joag-Dev and Proschan
[15]. The concept of ρ−-mixing was introduced by Zhang and Wang [34]. Obviously, ρ−-mixing random
variables include NA and ρ∗-mixing random variables. Because of the wide applications of ρ−-mixing
random variables in multivariate statistical analysis and reliability theory, the limit behaviors of ρ−-mixing
random variables have received extensive attention recently. One can refer to: Zhang and Wang [34] for
fundamental properties, Zhang [35, 36] for central limit theorem (CLT), Cai [7] for the moment inequalities
and convergence rates in the strong laws, Wang and Lu [26] for the inequalities of maximum of partial
sums and weak convergence, and Tan et al. [25] for the ASCLT.

Many results concerning the limit theory for the self-normalized random sequences and for the ρ−-
mixing random sequences have been obtained, respectively. However, since the denominator of the self-
normalized random sequences contains random variables, the study of limit theory for the self-normalized
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random sequences of ρ− random variables is very difficult, and so far, there are very few research results in
this field. Thus, this is a challenging, difficult and meaningful research topic.

The purpose of this article is based on the Wu [29], to establish the ASCLT for the self-normalized
products of sums of partial sums (

∏k
j=1(T j/( j( j + 1)µ/2)))µ/(βVk) of ρ−-mixing random variables, where

T j =
∑ j

i=1 Si,Si =
∑i

k=1 Xk,Vk =

√∑k
i=1 X2

i , µ = EX, β > 0. We will show that the ASCLT holds under a fairly
general growth condition.

In the following, an ∼ bn denotes limn→∞ an/bn = 1, and the symbol c stands for a generic positive
constant which may differ from one place to another. We assume that {X,Xn; n ≥ 1} is a stationary sequence
of ρ−-mixing positive random variables with EX = µ > 0.

For every 1 ≤ i ≤ k ≤ n, define:

Sk =:
k∑

i=1

Xi, Tk =:
k∑

i=1

Si, V2
k =:

k∑
i=1

(Xi − µ)2,

X̄i,k =: −
√

kI(Xi − µ < −
√

k) + (Xi − µ)I(|Xi − µ| ≤
√

k) +
√

kI(Xi − µ >
√

k),

S̄i,k =:
i∑

j=1

c j,kX̄ j,k, where c j,k =: 2
k∑

l= j

l + 1 − j
l(l + 1)

,

and

σ2
k =: VarS̄k,k, δ

2
k =: EX̄2

1,k.

Our theorem is formulated in a general setting.

Theorem 1.1. Let {X,Xn; n ≥ 1} be a stationary sequence of ρ−-mixing positive random variables withEX = µ > 0
satisfying

∞∑
k=1

ρ−(k) < ∞, (1)

E(X2h(X)) < ∞, P(X ≥ µ) > 0, P(X < µ) > 0, (2)

where h > 0 is a increasing slowly varying function at infinity satisfying
∫
∞

1
1

xh(x) < ∞,

∞∑
k=2

|Cov(X1,Xk)| < ∞, VarX1 + 2
∞∑

k=2

Cov(X1,Xk) > 0, (3)

and

σ2
n ∼

10nβ2δ2
n

3
=: B2

n for some β > 0. (4)

Set

dk =
L(k)

k
, Dn =

n∑
k=1

dk, (5)

where L(·) > 0 is a slowly varying function at infinity and there exist constants c > 0 and θ > 0 such that

max
1≤k≤n

L(k) ≤ c
Dn

(ln Dn)1+θ
. (6)
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Then

lim
n→∞

1
Dn

n∑
k=1

dkI


 k∏

j=1

(
T j

j( j + 1)µ/2

)
µ/(βVk)

≤ x

 = F(x) a.s. for any x ∈ R, (7)

here and in the sequel, F is the distribution function of the random variable exp(
√

10/3N), and N is a standard
normal random variable.

By the terminology of summation procedures (see e.g. Chandrasekharan and Minakshisundaram [8],
p.35), Theorem 1.1 remains valid if we replace the weight sequence {dk; k ≥ 1} by any {d∗k; k ≥ 1} such that
0 ≤ d∗k ≤ dk,

∑
∞

k=1 d∗k = ∞.

Suppose that {X,Xn; n ≥ 1} is a sequence of NA random variables, then ρ−(k) = 0 for any k ≥ 1, further, by
the following proof of Theorem 1.1, the condition E(X2h(X)) < ∞ can be reduced to the condition EX2 < ∞.
Therefore, we have the following Corollary.

Corollary 1.2. Let {X,Xn; n ≥ 1} be a stationary sequence of NA positive random variables with EX = µ > 0
satisfying conditions (3)-(6), and 0 < E(X−µ)2I(X−µ ≥ 0) < ∞, 0 < E(X−µ)2I(X−µ < 0) < ∞. Then (7) holds.

Remark 1.3. If {X,Xn; n ≥ 1} is a sequence of i.i.d. random variables, then by the Lemma 3.1 (iii) in Appendix and
EX̄1,n → 0 as n→∞,

σn =: Var

 n∑
j=1

c j,nX̄ j,n

 =

n∑
j=1

c2
j,nVarX̄1,n ∼

10n
3

VarX̄1,n ∼
10nδ2

n

3
.

Hence, (4) holds and β = 1.

Remark 1.4. Let L(k) = exp(lnγ k), 0 ≤ γ < 1/2. Then from (13) in Wu [30], we get

max
1≤k≤n

L(k) = exp(lnγ n) ≤ c
Dn

(ln Dn)1+θ
,

where, θ = 1/γ − 2 > 0. Hence, condition (6) holds for L(k) = exp(lnγ k), 0 ≤ γ < 1/2. Therefore, Theorem 1.1
generalizes theorem 1.1 in Wu [29].

2. Proofs

We will point out that it is of great difficulties and challenges to extend the sequence of random variables
from independent be extended to ρ−-mixing for self-normalized random sequences and, to overcome the
difficulties and challenges we need the following two Lemmas. The moment inequality of Lemma 2.1 is
obtained by Wang and Lu [26] and it is a basic tool for studying the limit theory of the partial sums of
ρ−-mixed random variables. Lemma 2.2 plays a key role in proving Theorem 1.1. The proof of Lemma 2.2
is very difficult and tedious, so the proof of Lemma 2.2 is given in Appendix. In the appendix, in order to
prove Lemma 2.2, Lemmas 3.1 to 3.4 are required.

Lemma 2.1. ([26]) Let {Xi; i ≥ 1} be a sequence of ρ−-mixing random variables with zero means and such that
E|Xi|

p < ∞, i = 1, 2, . . . and p ≥ 2. Then for Sn =
∑n

i=1 Xi,

E

(
max
1≤ j≤n

|S j|
p
)
≤ cp

 n∑
i=1

E|Xi|
p +

 n∑
i=1

EX2
i


p/2 ,

where cp > 0 only depends on p.
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Lemma 2.2. Suppose that the assumptions of Theorem 1.1 hold. Then:

S̄n,n − ES̄n,n

Bn

d
−→ N , as n→∞, (8)

lim
n→∞

1
Dn

n∑
k=1

dkI
{

S̄k,k − ES̄k,k

Bk
≤ x

}
= Φ(x) a.s. for any x ∈ R, (9)

lim
n→∞

1
Dn

n∑
k=1

dk

I

 k⋃
i=1

(|Xi − µ| >
√

k)

 − EI

 k⋃
i=1

(|Xi − µ| >
√

k)


 = 0 a.s., (10)

lim
n→∞

1
Dn

n∑
k=1

dk

 f

 V̄2
k,l

kδ2
k,l

 − E f

 V̄2
k,l

kδ2
k,l

 = 0 a.s., l = 1, 2 (11)

where Bk , dk and Dn are defined by (4)-(6), respectively, Φ(x) is the standard normal distribution function, and f is
a bounded function with bounded continuous derivatives.

Proof of Theorem 1.1. Let Z j = T j/( j( j + 1)µ/2); then (7) is equivalent to

lim
n→∞

1
Dn

n∑
k=1

dkI


√

3µ
√

10βVk

k∑
i=1

ln Zi ≤ x

 = Φ(x) a.s. for any x ∈ R, (12)

where Φ(x) is the standard normal distribution function.

Let q be a real number q ∈ (4/3, 2). By condition (2) and (3), using the Marcinkiewicz-Zygmund strong
law of large numbers for ρ−-mixing sequences (see Lemma 2.7 in Tan et al. [25]), we have

Sk − µk = o(k1/q) a.s. k→∞.

Thus,

|Zi − 1| =

∣∣∣∑i
j=1 S j − i(i + 1)µ/2

∣∣∣
i(i + 1)µ/2

≤

∑i
j=1 |S j − µ j|

i(i + 1)µ/2
≤

∑i
j=1 j1/q

i(i + 1)µ/2
≤ c

i1/q+1

i2
= ci1/q−1

→ 0 a.s.

Hence let ak =:
√

10(1 ± ε)k/3βδk for any given 0 < ε < 1, by | ln(1 + x) − x| = O(x2) for |x| < 1/2, and
δ2

k → E(X − µ)2 > 0 as k→∞,∣∣∣∣∣∣∣ 1
ak

k∑
i=1

ln Zi −
1
ak

k∑
i=1

(Zi − 1)

∣∣∣∣∣∣∣ ≤ c
1
√

k

k∑
i=1

(Zi − 1)2
≤

c
√

k

k∑
i=1

i2(1/q−1)

≤ c
1

k3/2−2/q → 0 a.s. k→∞,

from 3/2 − 2/q > 0.
Therefore, for any δ > 0 and almost every event ω, there exists k0 = k0(ω, δ, x) such that for k > k0,

 µak

k∑
i=1

(Zi − 1) ≤ x − δ

 ⊆
 µak

k∑
i=1

ln Zi ≤ x

 ⊆
 µak

k∑
i=1

(Zi − 1) ≤ x + δ

 . (13)
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By (2.30) of [29], under the condition |X j − µ| ≤
√

k, 1 ≤ j ≤ k, we have

µ
k∑

i=1

(Zi − 1) = S̄k,k. (14)

Thus, by (13) and (14) for any given 0 < ε < 1, δ > 0, we have for x ≥ 0 and k > k0,
√

3µ
√

10βVk

k∑
i=1

ln Zi ≤ x

 ⊆


√

3µ
√

10βVk

k∑
i=1

ln Zi ≤ x,∀1 ≤ i ≤ k, |Xi − µ| ≤
√

k, V̄2
k ≤ (1 + ε)kδ2

k

⋃{
V̄2

k > (1 + ε)kδ2
k

}⋃{
∃1 ≤ i ≤ k, |Xi − µ| >

√

k
}

⊆


√

3µ

βδk
√

10(1 + ε)k

k∑
i=1

(Zi − 1) ≤ x + δ,∀1 ≤ i ≤ k, |Xi − µ| ≤
√

k

⋃{
V̄2

k > (1 + ε)kδ2
k

}⋃ k⋃
i=1

(|Xi − µ| >
√

k)


⊆


√

3S̄k,k

βδk
√

10(1 + ε)k
≤ x + δ

⋃{
V̄2

k > (1 + ε)kδ2
k

}⋃ k⋃
i=1

(|Xi − µ| >
√

k)

 ,
where V̄2

k =:
∑k

j=1 X̄2
j,k

. Hence, combine (4)

I


√

3µ
√

10βVk

k∑
i=1

ln Zi ≤ x

 ≤ I

 S̄k,k√
(1 + ε)Bk

≤ x + δ

 + I
(
V̄2

k > (1 + ε)kδ2
k

)
+ I

 k⋃
i=1

(|Xi − µ| >
√

k)

 , for x ≥ 0.

Similarly, we have for any given 0 < ε < 1 and x < 0,

I


√

3µ
√

10βVk

k∑
i=1

ln Zi ≤ x

 ≤ I

 S̄k,k√
(1 − ε)Bk

≤ x + δ

 + I
(
V̄2

k < (1 − ε)kδ2
k

)
+ I

 k⋃
i=1

(|Xi − µ| >
√

k)

 .
Furthermore, we get

I


√

3µ
√

10βVk

k∑
i=1

ln Zi ≤ x

 ≥ I

 S̄k,k√
(1 − ε)Bk

≤ x − δ

 − I
(
V̄2

k < (1 − ε)kδ2
k

)
− I

 k⋃
i=1

(|Xi − µ| >
√

k)

 , for x ≥ 0,

I


√

3µ
√

10βVk

k∑
i=1

ln Zi ≤ x

 ≥ I

 S̄k,k√
(1 + ε)Bk

≤ x − δ

 − I
(
V̄2

k > (1 + ε)kδ2
k

)
− I

 k⋃
i=1

(|Xi − µ| >
√

k)

 , for x < 0.

Hence, in order to establish (12), it suffices to prove

lim
n→∞

1
Dn

n∑
k=1

dkI
(

S̄k,k

Bk
≤ x

)
= Φ(x) a.s. for any x ∈ R, (15)

lim
n→∞

1
Dn

n∑
k=1

dkI

 k⋃
i=1

(|Xi − µ| >
√

k)

 = 0 a.s., (16)

lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k > (1 + ε)kδ2

k) = 0 a.s. for any 0 < ε < 1, (17)
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lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k < (1 − ε)kδ2

k) = 0 a.s. for any 0 < ε < 1. (18)

Next, we prove (15)-(18) with Lemma 2.2, first we prove (15). By E(Xi − µ) = 0 and E(X − µ)2 < ∞,
similar to (2.37) of [29], we have |ES̄k,k| = o(

√
k), as k→∞. This, and the fact that Bk = O(

√
k), when k→∞,

implies for any x ∈ R and α > 0

I
(

S̄k,k − ES̄k,k

Bk
≤ x − α

)
≤ I

(
S̄k,k

Bk
≤ x

)
≤ I

(
S̄k,k − ES̄k,k

Bk
≤ x + α

)
.

Thus, by (9) in Lemma 2.2, we get as n→∞,

Φ(x − α) ←
1

Dn

n∑
k=1

dkI
(

S̄k,k − ES̄k,k

Bk
≤ x − α

)

≤
1

Dn

n∑
k=1

dkI
(

S̄k,k

Bk
≤ x

)

≤
1

Dn

n∑
k=1

dkI
(

S̄k,k − ES̄k,k

Bk
≤ x + α

)
→ Φ(x + α) a.s.

Letting α→ 0 in the above formula, by the continuity of Φ, we obtain that (15) holds.

Now, we prove (16). Note that E(X − µ)2 < ∞ implies kP(|X − µ| >
√

k)→ 0 as k→ ∞. Thus, by (10) in
Lemma 2.2 and the Toeplitz lemma,

0 ≤
1

Dn

n∑
k=1

dkI

 k⋃
i=1

(|Xi − µ| >
√

k)


∼

1
Dn

n∑
k=1

dkE

I

 k⋃
i=1

(|Xi − µ| >
√

k)




=
1

Dn

n∑
k=1

dkP

 k⋃
i=1

(|Xi − µ| >
√

k)


≤

1
Dn

n∑
k=1

dkkP(|X − µ| >
√

k)

→ 0 a.s. as n→∞.

That is, (16) holds.

Finally, we prove (17) and (18). If {Xi; i ≥ 1} is a sequence of ρ−-mixing random variables, and { fi; i ≥ 1}
is a sequence of increasing (or decreasing) functions, then from Property P2 in [35], { fi(Xi); i ≥ 1} is also
a sequence of ρ−-mixing random variables. And so for each fixed n, {X̄i,n; 1 ≤ i ≤ n} is also a sequence of
ρ−-mixing random variables from X̄i,n being increasing on Xi. However, X̄2

i,n is not monotonous about X̄i,n,
so we consider X̄2

i,nI(X̄i,n ≥ 0) and X̄2
i,nI(X̄i,n < 0) respectively. For each fixed n, {X̄2

i,nI(X̄i,n ≥ 0); 1 ≤ i ≤ n} and
{X̄2

i,nI(X̄i,n < 0); 1 ≤ i ≤ n} are also two sequences of ρ−-mixing random variables from X̄2
i,nI(X̄i,n ≥ 0) and

X̄2
i,nI(X̄i,n < 0) being increasing and decreasing on X̄i,n respectively. Let

V̄2
k,1 =:

k∑
j=1

X̄2
j,kI(X̄ j,k ≥ 0), V̄2

k,2 =:
k∑

j=1
X̄2

j,kI(X̄ j,k < 0), δ2
k,1 =: EX̄2

1,kI(X̄1,k ≥ 0), δ2
k,2 =: EX̄2

1,kI(X̄1,k < 0).
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Obviously,

δ2
k = δ2

k,1 + δ2
k,2, V̄2

k = V̄2
k,1 + V̄2

k,2, EV̄2
k = kδ2

k = kδ2
k,1 + kδ2

k,2.

It follows that

I(V̄2
k > (1 + ε)kδ2

k) = I(V̄2
k − EV̄2

k > εkδ2
k) ≤ I(V̄2

k,1 − EV̄2
k,1 > εkδ2

k/2) + I(V̄2
k,2 − EV̄2

k,2 > εkδ2
k/2)

≤ I(V̄2
k,1 > (1 + ε/2)kδ2

k,1) + I(V̄2
k,2 > (1 + ε/2)kδ2

k,2).

Therefore, by the arbitrariness of ε > 0, in order to prove (17), it suffices to show that,

lim
n→∞

1
Dn

n∑
k=1

dkI(V̄2
k,l > (1 + ε)kδ2

k,l) = 0 a.s. for l = 1, 2. (19)

Note that for each fixed n, {X̄2
i,nI(X̄i,n ≥ 0) − EX̄2

i,nI(X̄i,n ≥ 0); 1 ≤ i ≤ n} is a sequence of ρ−-mixing
random variables with mean zero. From Lemma 2.1, the Markov inequality, the cr inequality, EV̄2

k,1 = kδ2
k,1,

δ2
k,1 → E(X − µ)2I(X − µ ≥ 0) as k→∞, and condition P(X ≥ µ) > 0 in (2) implies E(X − µ)2I(X − µ ≥ 0) > 0,

we get

P
(
V̄2

k,1 > (1 + ε/2)kδ2
k,1

)
= P

(
V̄2

k,1 − EV̄2
k,1 > εkδ2

k,1/2
)
≤ c
E(V̄2

k,1 − EV̄2
k,1)2

k2

= ck−2E

 k∑
i=1

(
X̄2

i,kI(X̄i,k ≥ 0) − EX̄2
i,kI(X̄i,k ≥ 0)

)
2

≤ ck−2
k∑

i=1

E
(
X̄2

i,kI(X̄i,k ≥ 0) − EX̄2
i,kI(X̄i,k ≥ 0)

)2

≤ ck−1EX̄4
1,kI(X̄1,k ≥ 0)

≤ ck−1
(
E(X − µ)4I(0 ≤ X − µ ≤

√

k) + k2P(|X − µ| >
√

k)
)
. (20)

Since E(X − µ)2 < ∞ implies x2P(|X − µ| > x) = o(1), as x→∞, we have kP(|X − µ| >
√

k)→ 0. Hence

E(X − µ)4I(0 ≤ X − µ ≤
√

k) =

∫
∞

0
P

(
|X − µ|I(0 ≤ X − µ ≤

√

k) > t
)

4t3dt

≤ c
∫ √

k

0
P(|X − µ| > t)t3dt =

∫ √
k

0
o(1)tdt

= o(1)k.

From this, and (20) yields,

P
(
V̄2

k,1 > (1 + ε/2)kδ2
k,1

)
→ 0, as k→∞.

For a given ε > 0, let f denote a bounded function with bounded continuous derivatives, such that

I(x > 1 + ε) ≤ f (x) ≤ I(x > 1 + ε/2).
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Therefore, it follows from (11) in Lemma 2.2 and the Toeplitz lemma that,

0 ≤
1

Dn

n∑
k=1

dkI
(
V̄2

k,1 > (1 + ε)kδ2
k,1

)
≤

1
Dn

n∑
k=1

dk f

 V̄2
k,1

kδ2
k,1


∼

1
Dn

n∑
k=1

dkE f

 V̄2
k,1

kδ2
k,1

 ≤ 1
Dn

n∑
k=1

dkEI
(
V̄2

k,1 > (1 + ε/2)kδ2
k,1

)
=

1
Dn

n∑
k=1

dkP(V̄2
k,1 > (1 + ε/2)kδ2

k,1)

→ 0 a.s. as n→∞

Hence, (19) holds for l = 1. Using similar methods to those used in the proof of (19) for l = 1, we can prove
that (19) holds for l = 2. Consequently, (17) holds. Moreover, applying identical methods to those used in
the proof of (17), we can prove (18).

This completes the proof of Theorem 1.1.

The idea of proving Theorem 1.1 is to transform almost sure central limit theorem (ASCLT) for self-
normalized products of sums of partial sums into ASCLT for self-normalized partial sums. Then the ASCLT
for self-normalized partial sums is transformed into the ASCLT for partial sums and the ASCLT for three
tail sequences, that is, the proof (12) is converted into the proof (15)-(18). Finally, the four ASCLT are proved
by Lemma 2.2. In addition, it is important to point out the following two points. First, in order to ensure
that the sequence of truncated random variables is still ρ−-mixed, the truncated function must be monotone
and cannot be truncated as a sequence of independent random variables. Second, the proof of (17) needs
to be translated into a proof of (19). Because V̄2

k =:
∑k

j=1 X̄2
j,k, and X̄2

j,k is not monotone about X̄2
j,k and cannot

guarantee that {X̄2
j,k; 1 ≤ j ≤ k} is still a ρ−-mixed sequence. Therefore, the moment inequality of Lemma 2.1

cannot be used for {X̄2
j,k; 1 ≤ j ≤ k}. The conversion of V̄2

k to V̄2
k,1 and V̄2

k,2 is precisely because X̄2
j,kI(X̄ j,k ≥ 0)

and X̄2
j,kI(X̄ j,k < 0) in V̄2

k,1 =:
∑k

j=1 X̄2
j,kI(X̄ j,k ≥ 0) and V̄2

k,2 =:
∑k

j=1 X̄2
j,kI(X̄ j,k < 0) are monotone with respect to

X̄2
j,k, so {X̄2

j,kI(X̄ j,k ≥ 0); 1 ≤ j ≤ k} and {X̄2
j,kI(X̄ j,k < 0); 1 ≤ j ≤ k} are still ρ−-mixed sequences for which the

moment inequality of Lemma 2.1 can be used. For the sequence of independent random variables, we can
prove (17) directly, which is the difference between ρ−-mixed sequence and independent sequence.

3. Appendix

As it has been mentioned, we give the proof of Lemma 2.2 in this part of our paper. In order to prove
Lemma 2.2, the following four Lemmas are required. Lemma 3.1 can be directly verified, Lemma 3.2 is due
to Zhang [35] and it is mainly used to prove the (8) of Lemma 2.2. Lemma 3.3 is due to Zhang [36] and it is
mainly used to estimate the covariance of functions of random variables. Lemma 3.4 is of our authorship
and it is a powerful tool to prove almost sure central limit theorem. In this paper, Lemma 3.4 is mainly
used to prove (9)-(11) of Lemma 2.2.

Lemma 3.1. (i) ci,n ≤ 2bi,n, where bi,n =:
n∑

j=i

1
j ;

(ii)
n∑

i=1
b2

i,n = 2n − b1,n ∼ 2n;

(iii)
n∑

i=1
c2

i,n = 10n
3 − 4b1,n + 10n

3(n+1) ∼
10n

3 .

Lemma 3.2. ([36]) Let {Xni; 1 ≤ i ≤ n,n ≥ 1} be an array random variables with zero means and EX2
ni < ∞ for

each i = 1, 2, . . . ,n. Assume that for fixed n, {Xni; 1 ≤ i ≤ n} is a sequence of ρ−-mixing random variables. Let
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{ani; 1 ≤ i ≤ n,n ≥ 1} be an array of real numbers with ani = ±1 for each i = 1, 2, . . . ,n. Denote A2
n =: Var

(
n∑

i=1
aniXni

)
and suppose that

sup
n≥1

1
A2

n

n∑
i=1

EX2
ni < ∞,

lim sup
n→∞

1
A2

n

∑
1≤i, j≤n,|i− j|≥k

(
Cov(Xni,Xnj)

)−
→ 0, as k→∞,

where a− =: max(−a, 0), and the following Lindeberg condition is satisfied:

1
A2

n

n∑
i=1

EX2
niI{|Xni| ≥ εAn} → 0 as n→∞ for every ε > 0.

Then
1

An

n∑
i=1

aniXni
d
−→ N , as n→∞,

where d
−→ denotes the convergence in distribution.

Lemma 3.3. ([35]) Suppose that f (x) and 1(x) are real, bounded and absolutely continuous functions on R with
| f ′(x)| ≤ c1 and |1′(x)| ≤ c2. Then for any random variables X and Y,

|Cov( f (X), 1(Y))| ≤ c1c2
{
|Cov(X,Y)| + 8ρ−(X,Y)||X||2,1||Y||2,1

}
,

where ||X||2,1 =:
∫
∞

0 P
1/2(|X| > x)dx.

Lemma 3.4. Let {ξ, ξn; n ≥ 1} be a sequence of uniformly bounded random variables. If there exist constants c > 0
and δ > 0 such that

E(ξkξ j) ≤ c
(

k
j

)δ
+ cρ−(k), for 1 ≤ 2k < j, (21)

and
∑
∞

k=1
ρ−(k)

k < ∞, then

lim
n→∞

1
Dn

n∑
k=1

dkξk = 0 a.s., (22)

where dk and Dn are defined by (5) and (6).

Proof. From the proof of Theorem 1 in Wu [27], in order to prove (22), it suffices to prove that there
exists a constant λ > 0 such that

E

 n∑
k=1

dkξk


2

≤ c
D2

n

(ln Dn)1+λ
. (23)

Note that

E

 n∑
k=1

dkξk


2

≤ 2
∑

1≤k≤ j≤n,2k≥ j

dkd jE(ξkξ j) + 2
∑

1≤k≤ j≤n,2k< j

dkd jE(ξkξ j)

=: T1 + T2. (24)



Q. Wu, Y. Jiang / Filomat 33:8 (2019), 2471–2488 2481

By E(ξkξ j) ≤ c for any k, j ≥ 1, and (6)

T1 ≤ c
n∑

k=1

min(2k,n)∑
j=k

dkd j ≤ max
1≤k≤n

L(k)
n∑

k=1

dk

2k∑
j=k

1
j
≤ c

D2
n

(ln Dn)1+θ
. (25)

Using the property of slowly varying function:
∑
∞

j=k L( j)/ j1+δ
≤ ck−δL(k), (21) and condition

∑
∞

k=1(ρ−(k))/k <
∞,

T2 ≤ c
∑

1≤k≤ j≤n,2k< j

dkd j

(k
j

)δ
+ ρ−(k)


≤ c

n∑
k=1

L(k)
k1−δ

n∑
j=k

L( j)
j1+δ

+ max
1≤k≤n

L(k)
n∑

j=1

d j

n∑
k=1

ρ−(k)
k

≤ c max
1≤k≤n

L(k)
n∑

k=1

dk ≤ c
D2

n

(ln Dn)1+θ
.

This, combining with (24) and (25) implies that (23) holds.

Proof of Lemma 2.2. Firstly, we prove (8). For fixed n, {ci,nX̄i,n; 1 ≤ i ≤ n} is a sequence of ρ−-mixing
random variables. Let ain ≡ 1 in Lemma 3.2, using Lemma 3.2 for {ci,n(X̄i,n − EX̄i,n); 1 ≤ i ≤ n}, thus, by (4):
σn ∼ Bn as n→∞, in order to prove (8), it suffices to show that

sup
n≥1

1
σ2

n

n∑
i=1

c2
i,nE(X̄i,n − EX̄i,n)2 < ∞, (26)

lim sup
n→∞

1
σ2

n

∑
1≤i, j≤n,|i− j|≥k

(
Cov(ci,nX̄i,n, c j,nX̄ j,n)

)−
→ 0, as k→∞, (27)

and for every ε > 0,

1
σ2

n

n∑
i=1

Ec2
i,nX̄2

i,nI{|ci,nX̄i,n| ≥ εσn} → 0, as n→∞. (28)

By δ2
n =: EX̄2

i,n = EX̄2
1,n → E(X1 − µ)2 > 0 as n→∞, conditions (2) and (4): σ2

n ∼ cn, and Lemma 3.1 (iii),

sup
n≥1

1
σ2

n

n∑
i=1

c2
i,nE(X̄i,n − EX̄i,n)2

≤ sup
n≥1

cn
σ2

n
< ∞.

That is, (26) holds.
In order to estimate ||Xi||2,1, we first prove that for any r.v. X > 0 and a increasing slowly varying function

at infinity h,

E(X2h(X)) < ∞⇐⇒
∫
∞

1
xh(x)P(X > x)dx < ∞. (29)

Let f (x) = x2h(x), x ≥ 0, and f−1 be its inverse function. By Karamata’s representation in Seneta [23], we
have h(x) ∼ c exp

(∫ x

1
b(u)

u du
)
, where lim

x→∞
b(x) = 0. This implies that f ′(x) ∼ 2xh(x) + xh(x)b(x) ∼ 2xh(x).

Therefore,

E(X2h(X)) ∼

∫
∞

1
P(X2h(X) > x)dx =

∫
∞

1
P(X > f−1(x))dx =

∫
∞

1
P(X > y) f ′(y)dy (let y = f−1(x))

∼ 2
∫
∞

1
yh(y)P(X > y)dy.
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This implies that (29) holds.
From (2), (29) and Cauchy-Scharz inequality, for any i ≥ 1,

||Xi||2,1 ≤ 1 +

∫
∞

1
P1/2(X > x)dx = 1 +

∫
∞

1

√
xh(x)P(X > x)

1√
xh(x)

dx

≤ 1 +

√∫
∞

1
xh(x)P(X > x)dx

√∫
∞

1

1
xh(x)

dx

≤ c. (30)

By Lemma 3.1 (iii), (4), the stationarity assumption on the {Xi}, and Lemma 3.3 is applied with: f (x) =:
√

kI(x − µ < −
√

k) + (x − µ)I(|x − µ| ≤
√

k) +
√

kI(x − µ >
√

k), 1(y) =:
√

jI(y − µ < −
√

j) + (y − µ)I(|y − µ| ≤√
j) +

√
jI(y − µ >

√
j), we get

0 ≤
1
σ2

n

∑
1≤i, j≤n,|i− j|≥k

(
Cov(ci,nX̄i,n, c j,nX̄ j,n)

)−
≤

c
σ2

n

∑
1≤i, j≤n,|i− j|≥k

ci,nc j,n

(
|Cov(Xi,X j)| + ρ−(|i − j|)||Xi||2,1||X j||2,1

)
≤

c
n

∑
1≤i, j≤n, j−i≥k

c2
i,n

(
|Cov(X1,X j−i+1)| + ρ−( j − i)

)
≤

c
n

n∑
i=1

c2
i,n

∑
m≥k

(|Cov(X1,Xm)| + ρ−(m))

≤ c
∑
m≥k

(
|Cov(X1,Xm)| + ρ−(m)

)
.

This implies that (27) holds from (1) and (3).
By Lemma 3.1 (i), |X̄i,n| ≤ |Xi| and EX̄2

i,n ≤ EX2 < ∞, for any 1 ≤ i ≤ n,n ≥ 1,

EX̄2
i,nI(|ci,nX̄i,n| > εσn) ≤ EX2I

(
|X| > εσn/c1,n ≥ c

√
n/ ln n

)
→ 0, as n→∞.

Hence, by the Toeplitz lemma and Lemma 3.1 (iii), Lindeberg condition (28)

1
σ2

n

n∑
i=1

c2
i,nEX̄2

i,nI(|ci,nX̄2
i,n| > εσn)→ 0, as n→∞

holds.
Now, we prove (9). (8) implies that for any function 1 ∈ A, whereA denotes the class of bounded function
with bounded continuous derivatives,

lim
n→∞

1
Dn

n∑
k=1

dkE1

(
S̄k,k − ES̄k,k

Bk

)
= E1(N).

On the other hand, it follows from Theorem 7.1 of Billingsley [5] and Section 2 of Peligrad and Shao
[20] that (11) is equivalent to

lim
n→∞

1
Dn

n∑
k=1

dk1

(
S̄k,k − ES̄k,k

Bk

)
= E1(N) a.s.

Hence, in order to prove (9), it suffices to show that
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lim
n→∞

1
Dn

n∑
k=1

dk

(
1

(
S̄k,k − ES̄k,k

Bk

)
− E1

(
S̄k,k − ES̄k,k

Bk

))
= 0 a.s., (31)

for any 1 ∈ A.

Let for k ≥ 1,

ξk = 1

(
S̄k,k − ES̄k,k

Bk

)
− E1

(
S̄k,k − ES̄k,k

Bk

)
.

Observe that, for any 1 ≤ 2k < j, we get,

|Eξkξ j| =

∣∣∣∣∣∣Cov
(
1

(
S̄k,k − ES̄k,k

Bk

)
, 1

(
S̄ j, j − ES̄ j, j

B j

))∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣Cov

1 ( S̄k,k − ES̄k,k

Bk

)
, 1

(
S̄ j, j − ES̄ j, j

B j

)
− 1


∑ j

i=2k+1 ci, j(X̄i, j − EX̄i, j)

B j



∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣Cov

1 ( S̄k,k − ES̄k,k

Bk

)
, 1


∑ j

i=2k+1 ci, j(X̄i, j − EX̄i, j)

B j



∣∣∣∣∣∣∣

=: I1 + I2. (32)

Clearly, since 1 is a bounded Lipschitz function, there exists a constant c > 0 such that |1(x)| ≤ c, and
|1(x) − 1(y)| ≤ c|x − y|, for any x, y ∈ R. For fixed j, as {ci, jX̄i, j; 1 ≤ i ≤ j} is a sequence of ρ−-mixing random
variables, as well as Lemma 3.1 (i) (ii), Lemma 2.1, ln x ≤ β−1xβ, β > 0, x ≥ 1 and condition δ2

n → E(X − µ)2,
EX̄2

i, j ≤ E(X − µ)2, 0 < E(X − µ)2 < ∞ and (4): B j ∼ c
√

j, we obtain that

I1 ≤ c
E

∣∣∣∑2k
i=1 ci, j(X̄i, j − EX̄i, j)

∣∣∣√
j

≤ c

√
E

(∑2k
i=1 ci, j(X̄i, j − EX̄i, j)

)2√
j

≤ c

√∑2k
i=1 b2

i, jEX̄2
i, j√

j
≤ c

√∑2k
i=1(bi,k + bk+1, j)2√

j

≤ c

√∑2k
i=1 b2

i,2k +
∑2k

i=1 b2
k+1, j√

j
≤ c

√
k + k ln2( j/k)√

j

≤ c
(

k
j

)1/4

. (33)

Note that 1 is a bounded function with bounded continuous derivatives, so, from Lemma 3.3,

I2 ≤ c

∣∣∣∣∣∣∣Cov

 S̄k,k − ES̄k,k
√

k
,

∑ j
i=2k+1 ci, j(X̄i, j − EX̄i, j)√

j


∣∣∣∣∣∣∣

+8ρ−(k)

∣∣∣∣∣∣
∣∣∣∣∣∣ S̄k,k − ES̄k,k

√
k

∣∣∣∣∣∣
∣∣∣∣∣∣
2,1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑ j

i=2k+1 ci, j(X̄i, j − EX̄i, j)√
j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2,1

=: I21 + I22. (34)
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Thus, From (1), (3), (30), the stationarity of {Xi}, Lemma 3.1 (i), (iii), and Lemma 3.3, we have

I21 ≤
c√
kj

k∑
l=1

cl,k

j∑
i=2k+1

ci, j

∣∣∣Cov(X̄l,k, X̄i, j)
∣∣∣

≤
c√
kj

k∑
l=1

cl,k

j∑
i=2k+1

ci, j
{
|Cov(Xl,Xi)| + ρ−(i − l)||Xi||2,1||Xl||2,1

}
≤

c√
kj

k∑
l=1

cl,k

j−l∑
m=2k−l+1

cm+l−1, j
{
|Cov(X1,Xm+1)| + ρ−(m)

}
≤

c√
kj

k∑
l=1

cl,k

j∑
m=k

ck, j
{
|Cov(X1,Xm+1)| + ρ−(m)

}
≤

c√
kj

 k∑
l=1

c2
l,k


1/2  k∑

l=1

12


1/2

ln
j
k

∞∑
m=1

{
|Cov(X1,Xm+1)| + ρ−(m)

}
≤ c

(
k
j

)1/4

. (35)

On the other hand, by following inequality (cf. Ledoux and Talagrand [17], p. 251)

||X||2,1 ≤
r

r − 2
||X||r (r > 2). (36)

Since
∫
∞

1
dt

th(t) < ∞ and h is increasing. By Cauchy criterion, for ε = 1, there is a constant M > 0 such that

1 >

x∫
√

x

dt
th(t)

≥
1

h(x)

x∫
√

x

dt
t

=
ln x

2h(x)
for all x > M.

Hence, E(X2 ln X) ≤ cE(X2h(X)) < ∞. Combining with (36), Lemma 3.1 (iii) and Lemma 2.1, for 2 < r < 3,
we have∣∣∣∣∣∣

∣∣∣∣∣∣ S̄k,k − ES̄k,k
√

k

∣∣∣∣∣∣
∣∣∣∣∣∣
2,1

≤ c
(
E|S̄k,k − ES̄k,k|

r)1/r

√
k

≤ ck−1/2

 k∑
i=1

cr
i,kE|X̄i,k|

r +

 k∑
i=1

c2
i,kEX̄2

i,k


r/2

1/r

≤ ck−1/2

lnr−2 k
k∑

i=1

c2
i,kE(X̄2

1,k ln |X̄1,k|)
k(r−2)/2

ln k
+ kr/2


1/r

≤ ck−1/2
(
kr/2 lnr−3 k + kr/2

)1/r

≤ c,

and ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑ j

i=2k+1 ci, j(X̄i, j − EX̄i, j)√
j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2,1

≤ cj−1/2

E
 j∑

i=2k+1

ci, j(X̄i, j − EX̄i, j)


r

1/r

≤ cj−1/2


j∑

i=2k+1

cr
i, jE|X̄i, j|

r +

 j∑
i=2k+1

c2
i, jEX̄2

i, j


r/2

1/r
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≤ cj−1/2

lnr−2 j
j∑

i=1

c2
i, jE(X̄2

i, j ln |X̄i, j|)
j(r−2)/2

ln j
+ jr/2


1/r

≤ c.

Hence, I22 ≤ cρ−(k), this combining with (32)-(35), we get |Eξkξ j| ≤ c((k/ j)1/4 + ρ−(k)) for 1 ≤ 2k < j.
Hence, by Lemma 3.4, (31) holds.

Next, we prove (10). Let

Zk = I

 k⋃
i=1

(|Xi − µ| >
√

k)

 − EI

 k⋃
i=1

(|Xi − µ| >
√

k)

 for any k ≥ 1.

For 1 ≤ 2k < j,

E(ZkZ j) = Cov

I

 k⋃
i=1

(|Xi − µ| >
√

k)

 , I
 j⋃

i=1

(|Xi − µ| >
√

j)




= Cov

I

 k⋃
i=1

(|Xi − µ| >
√

k)

 , I
 j⋃

i=1

(|Xi − µ| >
√

j)

 − I

 j⋃
i=2k+1

(|Xi − µ| >
√

j)




+Cov

I

 k⋃
i=1

(|Xi − µ| >
√

k)

 , I
 j⋃

i=2k+1

(|Xi − µ| >
√

j)




=: I3 + I4. (37)

It is known that I(A ∪ B) − I(B) ≤ I(A) for any sets A and B, we get

I3 ≤ E

∣∣∣∣∣∣∣I
 j⋃

i=1

(|Xi − µ| >
√

j)

 − I

 j⋃
i=2k+1

(|Xi − µ| >
√

j)


∣∣∣∣∣∣∣

≤ EI

 2k⋃
i=1

(|Xi − µ| >
√

j)

 ≤ ckP(|X − µ| >
√

j)

≤ c
k
j
. (38)

From the definition of ρ−(k), we have

I4 ≤ ρ−(k)

√√√
Var

I

 k⋃
i=1

(|Xi − µ| >
√

k)


 Var

I

 j⋃
i=2k+1

(|Xi − µ| >
√

j)




≤ ρ−(k)

√√√
E

I

 k⋃
i=1

(|Xi − µ| >
√

k)


E

I

 j⋃
i=2k+1

(|Xi − µ| >
√

j)




≤ ρ−(k)

√√√
k∑

i=1

P(|Xi − µ| >
√

k)
j∑

i=2k+1

P(|Xi − µ| >
√

j)

≤ ρ−(k)

√
k
E(X − µ)2

k
j
E(X − µ)2

j

≤ cρ−(k).
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This implies E(ZkZ j) ≤ c(k/ j + ρ−(k)) for 1 ≤ 2k < j from (37) and (38). Hence, by Lemma 3.4, (10) holds.

Finally, we prove (11). Let

ηk = f

 V̄2
k,1

kδ2
k,1

 − E f

 V̄2
k,1

kδ2
k,1

 for any k ≥ 1.

Since f is a bounded function with bounded continuous derivatives, so, from Lemma 3.3, δ2
j,1 →

E(X − µ)2I(X − µ ≥ 0), 0 < E(X − µ)2I(X − µ ≥ 0) < ∞, and
∑
∞

m=2 |Cov(X1,Xm)| < ∞, we have, for 1 ≤ 2k < j,

|Eηkη j| =

∣∣∣∣∣∣∣Cov

 f

 V̄2
k,1

kδ2
k,1

 , f

 V̄2
j,1

jδ2
j,1



∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣Cov

 f

 V̄2
k,1

kδ2
k,1

 , f

 V̄2
j,1

jδ2
j,1

 − f


∑ j

i=2k+1 X̄2
i, jI(X̄i, j ≥ 0)

jδ2
j,1



∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣Cov

 f

 V̄2
k,1

kδ2
k,1

 , f


∑ j

i=2k+1 X̄2
i, jI(X̄i, j ≥ 0)

jδ2
j,1



∣∣∣∣∣∣∣∣

≤ c
E

(∑2k
i=1 X̄2

i, jI(X̄i, j ≥ 0)
)

j
+ c

∣∣∣∣∣∣∣∣Cov

 V̄2
k,1

k
,

∑ j
i=2k+1 X̄2

i, jI(X̄i, j ≥ 0)

j


∣∣∣∣∣∣∣∣

+8ρ−(k)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ V̄

2
k,1

k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2,1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑ j

i=2k+1 X̄2
i, jI(X̄i, j ≥ 0)

j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2,1

=: I5 + I6 + I7. (39)

Obviously, I5 ≤ ck/ j, following estimates I6. From (30), (1), (3), and Lemma 3.3 is applied with:
f (x) =: (x − µ)2I(0 ≤ x − µ ≤

√
k) + kI(x − µ >

√
k), 1(y) =: (y − µ)2I(0 ≤ y − µ ≤

√
j) + jI(y − µ >

√
j), the

stationarity assumption on the {Xi}, it follows that

I6 ≤
c
kj

k∑
l=1

j∑
i=2k+1

∣∣∣∣Cov
(
X̄2

l,kI(X̄l,k ≥ 0), X̄2
i, jI(X̄i, j ≥ 0)

)∣∣∣∣
≤

c√
kj

k∑
l=1

j∑
i=2k+1

(
|Cov(Xl,Xi)| + ρ−(i − l)||Xl||2,1||Xi||2,1

)
≤

c√
kj

k∑
l=1

j−l∑
m=2k−l+1

(
|Cov(X1,Xm+1)| + ρ−(m)

)
≤

c
√

k√
j

∞∑
m=1

(
|Cov(X1,Xm+1)| + ρ−(m)

)
≤ c

(
k
j

)1/2

. (40)
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By the cr inequality and Lemma 2.1,

EV̄2r
k,1 = E

 k∑
l=1

X̄2
l,kI(X̄l,k ≥ 0)


r

≤ cE

 k∑
l=1

(
X̄2

l,kI(X̄l,k ≥ 0) − EX̄2
l,kI(X̄l,k ≥ 0)

)
r

+

 k∑
l=1

EX̄2
l,kI(X̄l,k ≥ 0)


r

≤ c
k∑

l=1

EX̄2r
l,kI(X̄l,k ≥ 0) +

 k∑
l=1

EX̄4
l,k


r/2

+ kr

≤ ck(2r−2)/2
k∑

l=1

EX̄2
l,k +

k
k∑

l=1

EX̄2
l,k


r/2

+ kr

≤ ckr.

Thus, let r > 2, by (36)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ V̄

2
k,1

k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2,1

≤ ck−1
(
EV̄2r

k,1

)1/r
≤ c, (41)

and∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑ j

i=2k+1 X̄2
i, jI(X̄i, j ≥ 0)

j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2,1

≤ cj−1

E
 j∑

i=2k+1

X̄2
i, jI(X̄i, j ≥ 0)


r

1/r

≤ cj−1

E
 j∑

i=2k+1

(
X̄2

i, jI(X̄i, j ≥ 0) − EX̄2
i, jI(X̄i, j ≥ 0)

)
r

+

 j∑
i=2k+1

EX̄2
i, jI(X̄i, j ≥ 0)


r

1/r

≤ cj−1


j∑

i=2k+1

E|X̄i, j|
2r +

 j∑
i=2k+1

EX̄4
i, j


r/2

+ jr


1/r

≤ c.

Thus,combining this with (39)-(41), we have |Eηkη j| ≤ c((k/ j)1/2 +ρ−(k)) for 1 ≤ 2k < j. Hence, by Lemma
3.4, (11) holds for l = 1. Using similar methods to those used in the proof of (11) for l = 1, we can prove that
(11) holds for l = 2. Consequently (11) holds. This completes the proof of Lemma 2.2.
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