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Abstract. We give operator analogues of some classical inequalities, including Čebyšev type inequality for
synchronous and convex functions of selfadjoint operators in Reproducing Kernel Hilbert Spaces (RKHSs).
We obtain some Berezin number inequalities for the product of operators. Also, we prove the Berezin
number inequality for the commutator of two operators.

1. Introduction

Let a = (a1, . . . , an) , b = (b1, . . . , bn) and p =
(
p1, . . . , pn

)
with Pn =

n∑
i=1

pi be the real sequences. Then the

Čebyšev functional is defined by

Tn
(
p; a, b

)
:= Pn

n∑
i=1

piaibi −

n∑
i=1

piai

n∑
i=1

pibi.

In 1882-1883, Čebyšev [5, 6] proved that if a and b are monotonic in the same (opposite) sense and p is
non-negative, then

Tn
(
p; a, b

)
≥ (≤) 0. (1)

Hardy et al. [19] in their book in 1934 mentioned the inequality (1) in the more general setting of synchronous
sequences, i.e., if a, b are synchronous (asynchronous), this means that(

ai − a j

) (
bi − b j

)
≥ (≤) 0,

for each i, j ∈ {1, . . . ,n}, then the (1) is valid.
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For all of Čebyšev inequalities and their valuable applications see [10–12, 24–27] and the references
therein.

The functions f , 1 : [a, b]→ R are called synchronous (asynchronous) on the interval [a, b] provided that
they hold the following condition:(

f (t) − f (s)
) (
1 (t) − 1 (s)

)
≥ (≤) 0, (2)

for each t, s ∈ [a, b] .
Let A be a selfadjoint linear operator on a complex Hilbert space H. The Gelfand map establishes a ∗-

isometrically isomorphism Φ between the set C
(
Gp (A)

)
of all continuous functions defined on the spectrum

of A, denoted by Gp (A), and the C∗-algebra C∗ (A) generated by A and the identity operator 1H on H as
follows [14]:

For any f , 1 ∈ C
(
Gp (A)

)
and any α, β ∈ Cwe have

(i) Φ
(
α f + β1

)
= αΦ

(
f
)

+ βΦ
(
1
)

;
(ii) Φ

(
f1

)
= Φ

(
f
)
Φ

(
1
)

and Φ
(

f
)

= Φ
(

f
)∗ ;

(iii)
∥∥∥Φ (

f
)∥∥∥ =

∥∥∥ f
∥∥∥ = sup

t∈Gp(A)

∣∣∣ f (t)
∣∣∣ ;

(iv) Φ
(

f0
)

= 1H and Φ
(

f1
)

= A, where f0 (t) = 1 and f1 (t) = t, for t ∈ Gp (A) .
With this notation we define f (A) = Φ

(
f
)

for all f ∈ C
(
Gp (A)

)
and we call it the continuous functional

calculus for a selfadjoint operator A. If A is a selfadjoint operator and f is a real-valued continuous function
on Gp (A), then f (t) ≥ 0 for any t ∈ Gp (A) implies that f (A) ≥ 0. Moreover, if both f and 1 are real-valued
functions on Gp (A) then the following important property holds:

f (t) ≥ 1 (t) for any t ∈ Gp (A) implies that f (A) ≥ 1 (A)

in the operator order of B (H) .
Recall that a reproducing kernel Hilbert space (shorty, RKHS) is the Hilbert spaceH = H(Ω) of complex-

valued functions on some set Ω such that:
(a) the evaluation functional f → f (λ) is continuos for each λ ∈ Ω;
(b) for any λ ∈ Ω there exists fλ ∈ H such that fλ(λ) , 0.
Then by the classical Riesz representation theorem for each λ ∈ Ω there exists a unique function kλ ∈ H

such that f (λ) =
〈

f , kλ
〉

for all f ∈ H . The function kλ is called the reproducing kernel of the spaceH . It is
well known that (see [2, 28])

kλ (z) =

∞∑
n=0

en (λ)en (z)

for any orthonormal basis {en (z)}n≥0 of the spaceH (Ω) . Let k̂λ =
kλ
‖kλ‖

denote the normalized reproducing

kernel of the space H (note that by (b), we surely have kλ , 0). For a bounded linear operator A on the
RKHSH , its Berezin symbol Ã is defined by the formula (see [3])

Ã(λ) :=
〈
Âkλ, k̂λ

〉
H

(λ ∈ Ω).

The Berezin symbol is a function that is bounded by the numerical radius of the operator.
Berezin set and Berezin number of operator A are defined by respectively (see Karaev [20, 21])

Ber (A) := Ran1e
(
Ã
)

=
{
Ã (λ) : λ ∈ Ω

}
and ber (A) := sup

{∣∣∣∣Ã (λ)
∣∣∣∣ : λ ∈ Ω

}
.

Recall that W (A) :=
{〈

A f , f
〉

:
∥∥∥ f

∥∥∥
H

= 1
}

is the numerical range of the operator A and

w (A) := sup
{∣∣∣〈A f , f

〉∣∣∣ :
∥∥∥ f

∥∥∥
H

= 1
}



M.T. Garayev, U. Yamancı / Filomat 33:8 (2019), 2307–2316 2309

is the numerical radius of A. It is trivial that

Ber (A) ⊂W (A) and ber (A) ≤ w (A) ≤ ‖A‖

for any A ∈ B (H) . For other recent results on the Berezin set, Berezin number, numerical radius and
numerical range see [1, 4, 7–9, 13, 17, 18, 23, 29, 32] and the references therein.

A fundamental inequality for the numerical radius is the power inequality

w (An) ≤ w (A)n , n ≥ 1,

(see [18]). So, the following questions are natural:
Is it true that the above inequality is also provided for Berezin number of operators? This question has been solved

negatively by L. A. Coburu ”Berezin transform and Weyl-type unitary operators on the Bergman space”, Proc. Amer.
Math. Soc, 140 (2012), 3445–3451.

For which operator classes, there exists a number C > 0 such that

ber (A)n
≤ C (ber (An)) for all n? (P)

But, an example with a nonzero nilpotent operator shows that there exists operators for which inequality
(P) does not hold. It was given some predictions for the constant C by using Hardy-Hilbert type inequalities
[15, 16, 30, 31].

In the present paper, we give some inequalities similar to (P) by using Čebyšev type inequality for
synchronous and convex functions of selfadjoint operators in Reproducing Kernel Hilbert Spaces (RKHSs).
We obtain some Berezin number inequalities for the product of operators. Further, we consider four
operators and prove a Berezin number inequality for the sum of products. We prove an inequality for the
Berezin number of the commutator [A,B] := AB − BA of operators A and B.

2. Čebyšev’s type inequalities

In the following result, we give an inequality of Čebyšev type for functions of selfadjoint operators
acting on a RKHSH = H(Ω).

Theorem 2.1. LetH = H(Ω) be a RKHS, A ∈ B (H) be a selfadjoint operator with Gp (A) ⊆ [m,M] for some real
numbers m < M. If f , 1 : [m,M]→ R are continuous and synchronous on [m,M], then
(i)

˜f (A) 1 (A) (λ) + ˜f (A) 1 (A)
(
η
)
≥ f̃ (A) (λ) 1̃ (A)

(
η
)

+ f̃ (A)
(
η
)
1̃ (A) (λ)

for all λ, η ∈ Ω;
(ii)

[
ber

(
f (A)

)]2
≤ ber

(
f 2 (A)

)
; in particular, we have

ber (A)2
≤ ber

(
A2

)
.

Proof. (i) Since f , 1 are synchronous, we get from (2)

f (t) 1 (t) + f (s) 1 (s) ≥ f (t) 1 (s) + f (s) 1 (t) (3)

for each t, s ∈ [m,M] .
Applying the functional calculus for the inequality (3), we obtain that

f (A) 1 (A) + f (s) 1 (s) 1H ≥ f (A) 1 (s) + f (s) 1 (A)

and hence〈(
f (A) 1 (A) + f (s) 1 (s) 1H

)
k̂λ, k̂λ

〉
≥

〈(
f (A) 1 (s) + f (s) 1 (A)

)
k̂λ, k̂λ

〉
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for all λ ∈ Ω and s ∈ [m,M] .
Apply again the functional calculus for the above inequality, then we get that〈(〈

f (A) 1 (A) k̂λ, k̂λ
〉

1H + f (A) 1 (A)
)

k̂η, k̂η
〉

≤

〈(〈
f (A) k̂λ, k̂λ

〉
1 (A) +

〈
1 (A) k̂λ, k̂λ

〉
f (A)

)
k̂η, k̂η

〉
and therefore

˜f (A) 1 (A) (λ) + ˜f (A) 1 (A)
(
η
)
≥ f̃ (A) (λ) 1̃ (A)

(
η
)

+ f̃ (A)
(
η
)
1̃ (A) (λ) (4)

for all λ, µ ∈ Ω. So we get the (i).
(ii) In particular, for 1 = f and µ = η in inequality (4), we obtain[

f̃ (A) (λ)
]2
≤ f̃ 2 (A) (λ)

for all λ ∈ Ω. Since
[

f̃ (A) (λ)
]2
≥ 0 and f̃ 2 (A) (λ) ≥ 0, by taking supremum on the last inequality, we obtain[

ber
(

f (A)
)]2
≤ ber

(
f 2 (A)

)
;

in particular, for f (x) = x, we get

ber (A)2
≤ ber

(
A2

)
.

Theorem 2.2. LetH = H(Ω) be a RKHS, A ∈ B (H) be a selfadjoint operator with Gp (A) ⊆ [m,M] for some real
numbers m < M and f , 1 : [m,M]→ R be continuous, synchronous. If f , 1 are also convex, then
(i)

f
(
B̃
(
η
))
1
(
Ã (λ)

)
+ f

(
Ã (λ)

)
1
(
B̃
(
η
))
≤ ˜f (B) 1 (B)

(
η
)

+ f̃ (A) (λ) 1̃ (A) (λ)

for all λ, µ ∈ Ω;
(ii)

[
f (ber (A))

]2
≤

ber
(

f 2 (A)
)

+
[
ber

(
f (A)

)]2

2
.

Proof. (i) Since f , 1 are synchronous and m ≤
〈
Âkλ, k̂λ

〉
≤M for any λ ∈ Ω, then we get[

f (t) − f
(〈

Âkλ, k̂λ
〉)] [
1 (t) − 1

(〈
Âkλ, k̂λ

〉)]
≥ 0

for all λ ∈ Ω and t ∈ [m,M].
Using the functional calculus for the above inequality, we obtain that〈[

f (B) − f
(〈

Âkλ, k̂λ
〉)] [
1 (B) − 1

(〈
Âkλ, k̂λ

〉)]
k̂η, k̂η

〉
≥ 0

for any B ∈ B (H) with Gp (B) ⊆ [m,M] and all λ, µ ∈ Ω. So, we have from the above inequality〈
f (B) k̂η, k̂η

〉
1
(〈

Âkλ, k̂λ
〉)

+ f
(〈

Âkλ, k̂λ
〉) 〈
1 (B) k̂η, k̂η

〉
≤

〈
f (B) 1 (B) k̂η, k̂η

〉
+ f

(〈
Âkλ, k̂λ

〉)
1
(〈

Âkλ, k̂λ
〉)
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which is equivalent to

f̃ (B)
(
η
)
1
(
Ã (λ)

)
+ f

(
Ã (λ)

)
1̃ (B)

(
η
)
≤ ˜f (B) 1 (B)

(
η
)

+ f
(
Ã (λ)

)
1
(
Ã (λ)

)
for all λ, µ ∈ Ω. Since f and 1 are convex, we have that

f
(
B̃
(
η
))
1
(
Ã (λ)

)
+ f

(
Ã (λ)

)
1
(
B̃
(
η
))
≤ f̃ (B)

(
η
)
1
(
Ã (λ)

)
+ f

(
Ã (λ)

)
1̃ (B)

(
η
)

(5)

and

˜f (B) 1 (B)
(
η
)

+ f
(
Ã (λ)

)
1
(
Ã (λ)

)
≤ ˜f (B) 1 (B)

(
η
)

+ f̃ (A) (λ) 1̃ (A) (λ) (6)

for all λ, µ ∈ Ω. Then we get from the (5) and (6)

f
(
B̃
(
η
))
1
(
Ã (λ)

)
+ f

(
Ã (λ)

)
1
(
B̃
(
η
))
≤ ˜f (B) 1 (B)

(
η
)

+ f̃ (A) (λ) 1̃ (A) (λ)

for all λ, µ ∈ Ω.
(ii) Now by replacing A = B, λ = µ and f = 1 above the inequality

2
[

f
(
Ã (λ)

)]2
≤ f̃ 2 (A) (λ) +

[
f̃ (A) (λ)

]2

and hence

[
f
(
Ã (λ)

)]2
≤

f̃ 2 (A) (λ) +
[

f̃ (A) (λ)
]2

2

for all selfadjoint operator A and λ ∈ Ω. Since
[

f
(
Ã (λ)

)]2
≥ 0 and

[
f̃ (A) (λ)

]2
≥ 0, by taking supremum on

the last inequality, we obtain that

[
f (ber (A))

]2
≤

ber
(

f 2 (A)
)

+
[
ber

(
f (A)

)]2

2

for all selfadjoint operator A. This proves the theorem.

3. Inequalities for a product of two operators

In this section, we give some power inequalities for Berezin number of operators. Before giving results,
we need the following well-known results (see [19, 22]).

Lemma 3.1. For a, b ≥ 0, 0 ≤ α ≤ 1 and p, q > 1 with
1
p

+
1
q

= 1, we have:

(a) aαb1−α
≤ αa + (1 − α) b ≤ [αar + (1 − α) br]

1
r for r ≥ 1;

(b) ab ≤
ap

p
+

bq

q
≤

(
apr

p
+

bqr

q

)1
r for r ≥ 1.

Lemma 3.2 (McCarty inequality). Let A ∈ B (H) , A ≥ 0 and let x ∈ H be any unit vector. Then
(a) 〈Ax, x〉r ≤ 〈Arx, x〉 for r ≥ 1;
(b) 〈Arx, x〉 ≤ 〈Ax, x〉r for 0 < r ≤ 1.

Now we are ready to state our results.
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Theorem 3.3. Let A,B ∈ B (H) be a positive operator and r ≥ 1. Then we have

berr (B∗A) ≤
1
2

ber
(
|A|2r + |B|2r

)
.

Proof. Using the Schwarz inequality, we get∣∣∣∣(̃B∗A) (λ)
∣∣∣∣ =

∣∣∣∣〈B∗Âkλ, k̂λ
〉∣∣∣∣ ≤ ∥∥∥∥Âkλ

∥∥∥∥ ∥∥∥∥B̂kλ
∥∥∥∥ (7)

=
(
(̃A∗A) (λ)

)1/2 (
(̃B∗B) (λ)

)1/2

for all λ ∈ Ω.
Applying the arithmetic-geometric mean inequality and the convexity of the function f (t) = tr, r ≥ 1,

we obtain that

(
(̃A∗A) (λ)

)1/2 (
(̃B∗B) (λ)

)1/2
≤

1
2

(
(̃A∗A) (λ)

)1/2
+

1
2

(
(̃B∗B) (λ)

)1/2
≤


(
(̃A∗A) (λ)

)r
+

(
(̃B∗B) (λ)

)r

2


1/r

for all λ ∈ Ω.
Using Lemma 3.2 for r ≥ 1, we obtain

(
(̃A∗A) (λ)

)r
+

(
(̃B∗B) (λ)

)r

2


1/r

≤


(
˜(A∗A)r (λ)

)
+

(
˜(B∗B)r (λ)

)
2


1/r

=


(

˜(A∗A)r + (B∗B)r (λ)
)

2


1/r

(8)

for all λ ∈ Ω. Therefore, we obtain from (7) and (8) that∣∣∣∣(̃B∗A) (λ)
∣∣∣∣r ≤ 1

2

(
˜(A∗A)r + (B∗B)r (λ)

)
≤

1
2

(
˜

|A|2r + |B|2r (λ)
)

and hence∣∣∣∣(̃B∗A) (λ)
∣∣∣∣r ≤ 1

2
sup
λ∈Ω

(
˜

|A|2r + |B|2r (λ)
)

=
1
2

ber
(
|A|2r + |B|2r

)
for all λ ∈ Ω. This implies that

berr (B∗A) ≤
1
2

ber
(
|A|2r + |B|2r

)
.

This completes the proof.

In the following theorem, we consider a different approach to obtain Berezin number inequality.

Theorem 3.4. Let A,B ∈ B (H) be a positive operator, α ∈ (0, 1) and r ≥ 1. Then we have

ber2r (B∗A) ≤
[
αber

(
|A|

2r
α

)
+ (1 − α) ber

(
|B|

2r
1−α

)]
.

Proof. From Schwarz inequality, we obtain∣∣∣∣(̃B∗A) (λ)
∣∣∣∣2 ≤ (̃A∗A) (λ) (̃B∗B) (λ) =

˜(
(A∗A)

1
α

)α
(λ)

˜(
(B∗B)

1
1−α

)1−α
(λ)

for all λ ∈ Ω.
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Then we get from Lemma 3.2 for 0 < α < 1

˜(
(A∗A)

1
α

)α
(λ)

˜(
(B∗B)

1
1−α

)1−α
(λ) ≤

[
˜

(A∗A)
1
α (λ)

]α [
˜

(B∗B)
1

1−α (λ)
]1−α

for all λ ∈ Ω.
Therefore, we obtain from Lemma 3.1 (a) that[

˜
(A∗A)

1
α (λ)

]α [
˜

(B∗B)
1

1−α (λ)
]1−α

≤ α
˜

(A∗A)
1
α (λ) + (1 − α)

˜
(B∗B)

1
1−α (λ)

≤

[
α
(
˜

(A∗A)
1
α (λ)

)r

+ (1 − α)
(
˜

(B∗B)
1

1−α (λ)
)r] 1

r

≤

[
α ˜(A∗A)

r
α (λ) + (1 − α) ˜(B∗B)

r
1−α (λ)

] 1
r

and then∣∣∣∣(̃B∗A) (λ)
∣∣∣∣2r
≤

[
α ˜(A∗A)

r
α (λ) + (1 − α) ˜(B∗B)

r
1−α (λ)

]
≤

[
α

˜
|A|

2r
α (λ) + (1 − α) ˜|B|

2r
1−α (λ)

]
for all λ ∈ Ω.

Taking the supremum over λ ∈ Ω above inequality, we obtain

ber2r (B∗A) ≤
[
αber

(
|A|

2r
α

)
+ (1 − α) ber

(
|B|

2r
1−α

)]
.

This proves the theorem.

Now we give an inequality for the sum of two products.

Theorem 3.5. Let A,B,C,D ∈ B (H) be four positive operators and r, s ≥ 1. Then

ber2

(
(B∗A + D∗C)

2

)
≤ ber

1
r

(
|A|2r + |C|2r

2

)
ber

1
s

(
|B|2s + |D|2s

2

)
.

Proof. We get from Schwarz inequality that∣∣∣∣〈(B∗A + D∗C) k̂λ, k̂µ
〉∣∣∣∣2 =

∣∣∣∣〈B∗Âkλ, k̂µ
〉

+
〈
D∗Ĉkλ, k̂µ

〉∣∣∣∣2 (9)

≤

[∣∣∣∣〈B∗Âkλ, k̂µ
〉∣∣∣∣ +

∣∣∣∣〈D∗Ĉkλ, k̂µ
〉∣∣∣∣]2

≤

[(
Ã∗A (λ)

)1/2 (
B̃∗B

(
µ
))1/2

+
(
C̃∗C (λ)

)1/2 (
D̃∗D

(
µ
))1/2

]1/2

for all λ, µ ∈ Ω.
Using the following elementary inequality for a, b, c, d ∈ R

(ab + cd)2
≤

(
a2 + c2

) (
b2 + d2

)
,

we have[(
Ã∗A (λ)

)1/2 (
B̃∗B

(
µ
))1/2

+
(
C̃∗C (λ)

)1/2 (
D̃∗D

(
µ
))1/2

]2
(10)

≤

[
Ã∗A (λ) + C̃∗C (λ)

] [
B̃∗B

(
µ
)

+ D̃∗D
(
µ
)]

for all λ, µ ∈ Ω.
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As in proof of Theorem 3.3, using the arithmetic-geometric mean inequality and the convexity of the
function, we get[

Ã∗A (λ) + C̃∗C (λ)
] [

B̃∗B
(
µ
)

+ D̃∗D
(
µ
)]

(11)

≤ 4

 ˜(A∗A)r + (C∗C)r

2
(λ)

1/r  ˜(B∗B)s + (D∗D)s

2
(
µ
)1/s

≤ 4

 ˜
|A|2r + |C|2r

2
(λ)


1/r  ˜
|B|2s + |D|2s

2
(
µ
)

1/s

for all λ, µ ∈ Ω and r, s ≥ 1.
Thus, we obtain by (9) − (11)

∣∣∣∣∣∣
〈

(B∗A + D∗C)
2

k̂λ, k̂µ

〉∣∣∣∣∣∣2 ≤
 ˜
|A|2r + |C|2r

2
(λ)


1/r  ˜
|B|2s + |D|2s

2
(
µ
)

1/s

for all λ, µ ∈ Ω. Now by replacing λ = µ and taking the supremum over λ ∈ Ω above inequality, we obtain

ber2

(
(B∗A + D∗C)

2

)
≤ ber

1
r

(
|A|2r + |C|2r

2

)
ber

1
s

(
|B|2s + |D|2s

2

)
.

This completes the proof.

Before giving our next result, we set ‖A‖ber := sup
λ∈Ω

∥∥∥∥Âkλ
∥∥∥∥ and m (A) := inf

λ∈Ω

∣∣∣∣Ã (λ)
∣∣∣∣ .

The following theorem proves a new inequality for the Berezin number of the commutator AB − BA for
any two operators A and B.

Theorem 3.6. Let A,B ∈ H = H (Ω) be two operators. Then

ber ([A,B]) ≤ ber (A) ber (B) +

√(
‖A∗‖2ber −m (A)2

) (
‖B‖2ber −m (B)2

)
. (12)

Proof. Indeed, for every λ ∈ Ω we have:

[̃A,B] (λ) =
〈
(AB − BA) k̂λ, k̂λ

〉
=

〈
AB̂kλ, k̂λ

〉
−

〈
BÂkλ, k̂λ

〉
=

〈
B̂kλ,A∗̂kλ

〉
−

〈
Âkλ,B∗̂kλ

〉
=

〈(
B̂kλ − B̃ (λ) k̂λ

)
+ B̃ (λ) k̂λ,

(
A∗̂kλ − Ã∗ (λ) k̂λ

)
+ Ã∗ (λ) k̂λ

〉
−

〈(
Âkλ − Ã (λ) k̂λ

)
+ Ã (λ) k̂λ,

(
B∗̂kλ − B̃∗ (λ) k̂λ

)
+ B̃∗ (λ) k̂λ

〉
=

〈
B̂kλ − B̃ (λ) k̂λ,A∗̂kλ − Ã∗ (λ) k̂λ

〉
+ Ã (λ)

〈
B̂kλ − B̃ (λ) k̂λ, k̂λ

〉
+ B̃ (λ)

〈̂
kλ,A∗̂kλ − Ã∗ (λ) k̂λ

〉
+ Ã (λ) B̃ (λ)

= Ã (λ) B̃ (λ) +
〈
B̂kλ − B̃ (λ) k̂λ,A∗̂kλ − Ã∗ (λ) k̂λ

〉
.

Thus

[̃A,B] (λ) = Ã (λ) B̃ (λ) +
〈
B̂kλ − B̃ (λ) k̂λ,A∗̂kλ − Ã∗ (λ) k̂λ

〉
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for all λ ∈ Ω. Then∣∣∣[̃A,B] (λ)
∣∣∣ ≤ ∣∣∣∣Ã (λ)

∣∣∣∣ ∣∣∣B̃ (λ)
∣∣∣ +

∥∥∥∥B̂kλ − B̃ (λ) k̂λ
∥∥∥∥ ∥∥∥∥A∗̂kλ − Ã∗ (λ) k̂λ

∥∥∥∥
=

∣∣∣∣Ã (λ)
∣∣∣∣ ∣∣∣B̃ (λ)

∣∣∣ +
(∥∥∥∥A∗̂kλ

∥∥∥∥2
−

∣∣∣∣Ã (λ)
∣∣∣∣2)1/2 (∥∥∥∥B̂kλ

∥∥∥∥2
−

∣∣∣B̃ (λ)
∣∣∣2)1/2

≤ ber (A) ber (B) +
[(
‖A∗‖2ber − inf

λ∈Ω

∣∣∣∣Ã (λ)
∣∣∣∣2) (‖B‖2ber − inf

λ∈Ω

∣∣∣B̃ (λ)
∣∣∣2)]1/2

= ber (A) ber (B) +

√(
‖A∗‖2ber −m (A)2

) (
‖B‖2ber −m (B)2

)
for all λ ∈ Ω, and hence

ber ([A,B]) ≤ ber (A) ber (B) +

√(
‖A∗‖2ber −m (A)2

) (
‖B‖2ber −m (B)2

)
,

as desired.

Corollary 3.7. If A ∈ B (H (Ω)), then

ber (A)2
≥ ber ([A,A∗]) + m (A)2

− ‖A∗‖2ber .

The following proposition gives in case B = A∗ and A is hyponormal better estimate than the estimate
(12).

Proposition 3.8. If A ∈ B (H (Ω)) is a hyponormal operator (i.e., [A,A∗] ≥ 0), then

ber ([A,A∗]) ≤ ‖A∗‖2ber −m (A)2 .

Proof. In fact, it follows from hyponormality of A that

0 ≤ ˜[A,A∗] (λ) =
∥∥∥∥A∗̂kλ

∥∥∥∥2
−

∥∥∥∥Âkλ
∥∥∥∥2

≤

∥∥∥∥A∗̂kλ
∥∥∥∥2
−

∣∣∣∣Ã (λ)
∣∣∣∣2 ≤ ∥∥∥∥A∗̂kλ

∥∥∥∥2
− inf
µ∈Ω

∣∣∣∣Ã (
µ
)∣∣∣∣2 ≤ ‖A∗‖2ber −m (A)2

for all λ ∈ Ω. Hence

ber ([A,A∗]) ≤ ‖A∗‖2ber −m (A)2 ,

as desired.
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[26] B.G. Pachpatte, New Čebyšev type inequalities involving functions of two and three variables, Soochow J. Math., 33 (2007),

569-577.
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