Filomat 33:8 (2019), 2285–2294 https://doi.org/10.2298/FIL1908285

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Jordan Triple (σ , τ)-Higher Derivation on Triangular Algebras

Mohammad Ashraf^a, Aisha Jabeen^a, Mohd Shuaib Akhtar^a

^aDepartment of Mathematics, Aligarh Muslim University, Aligarh, 202002, India

Abstract. Let \mathcal{R} be a commutative ring with unity, $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of unital algebras \mathcal{A}, \mathcal{B} and $(\mathcal{A}, \mathcal{B})$ -bimodule \mathcal{M} which is faithful as a left \mathcal{A} -module and also as a right \mathcal{B} -module. Let σ and τ be two automorphisms of \mathfrak{A} . A family $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ of \mathcal{R} -linear mappings $\delta_n : \mathfrak{A} \to \mathfrak{A}$ is said to be a generalized Jordan triple (σ, τ) -higher derivation on \mathfrak{A} if there exists a Jordan triple (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} such that $\delta_0 = I_{\mathfrak{A}}$, the identity map of \mathfrak{A} and $\delta_n(XYX) = \sum_{\substack{i \neq j \neq k=n}} \delta_i(\sigma^{n-i}(X))d_j(\sigma^k\tau^i(Y))d_k(\tau^{n-k}(X))$ holds for all $X, Y \in \mathfrak{A}$ and each $n \in \mathbb{N}$. In this article, we study concerdized Jordan triple (σ, τ) higher derivation on \mathfrak{A} and prove that every generalized Jordan triple

generalized Jordan triple (σ , τ)-higher derivation on \mathfrak{A} and prove that every generalized Jordan triple (σ , τ)-higher derivation on \mathfrak{A} is a generalized (σ , τ)-higher derivation on \mathfrak{A} .

1. Introduction

Let \mathcal{R} be a commutative ring with unity and \mathcal{A} be an unital algebra over \mathcal{R} and $Z(\mathcal{A})$ be the center of \mathcal{A} . Recall that an \mathcal{R} -linear map $d : \mathcal{A} \to \mathcal{A}$ is called a derivation (resp. Jordan derivation) on \mathcal{A} if d(xy) = d(x)y + xd(y) (resp. $d(x^2) = d(x)x + xd(x)$) holds for all $x, y \in \mathcal{A}$. An \mathcal{R} -linear map $d : \mathcal{A} \to \mathcal{A}$ is said to be a Jordan triple derivation on \mathcal{A} if d(xyx) = d(x)yx + xd(y)x + xyd(x) holds for all $x, y \in \mathcal{A}$. An \mathcal{R} -linear map $\delta : \mathcal{A} \to \mathcal{A}$ is called a generalized derivation (resp. generalized Jordan derivation) on \mathcal{A} if there exists a derivation (resp. Jordan derivation) d on \mathcal{A} such that $\delta(xy) = \delta(x)y + xd(y)$ (resp. $\delta(x^2) = \delta(x)x + xd(x)$) holds for all $x, y \in \mathcal{A}$. Clearly, every generalized derivation on \mathcal{A} is a generalized Jordan derivation on \mathcal{A} but the converse need not be true in general. Zhu and Xiong [16] proved that every generalized Jordan derivation from a 2-torsion free semiprime ring with identity into itself is a generalized derivation.

The concept of derivation was extended in various directions to different rings and algebras. Let σ , τ be two endomorphisms on a ring \mathcal{R} . An additive map $\delta : \mathcal{R} \to \mathcal{R}$ is called a generalized (σ , τ)-derivation (resp. generalized Jordan (σ , τ)-derivation) on \mathcal{R} if there exists a (σ , τ)-derivation (resp. Jordan (σ , τ)-derivation) *d* such that $\delta(xy) = \delta(x)\tau(y) + \sigma(x)d(y)$ (resp. $\delta(x^2) = \delta(x)\tau(x) + \sigma(x)d(x)$) holds for all $x, y \in \mathcal{R}$ and δ is said to be a generalized Jordan triple (σ , τ)-derivation on \mathcal{R} if there exists a Jordan triple (σ , τ)-derivation *d* such that $\delta(xy) = \delta(x)\tau(y)\tau(x) + \sigma(x)\sigma(y)d(x)$ holds for all $x, y \in \mathcal{R}$. It is easy to observe that a generalized ($I_{\mathcal{R}}, I_{\mathcal{R}}$)-derivation, generalized Jordan ($I_{\mathcal{R}}, I_{\mathcal{R}}$)-derivation and generalized Jordan triple ($I_{\mathcal{R}}, I_{\mathcal{R}}$)-derivation is

²⁰¹⁰ Mathematics Subject Classification. Primary 16W25; Secondary 15A78

Keywords. Triangular algebra; (σ , τ)-higher derivation; Jordan (σ , τ)-higher derivation

Received: 02 August 2018; Accepted: 21 October 2018

Communicated by Dragan S. Djordjević

Email addresses: mashraf80@hotmail.com (Mohammad Ashraf), ajabeen329@gmail.com (Aisha Jabeen),

mshuaibakhtar@gmail.com (Mohd Shuaib Akhtar)

simply a generalized derivation, generalized Jordan derivation and generalized Jordan triple derivation on \mathcal{R} respectively.

Let \mathbb{N} be the set of all nonegative integers. Following Hasse and Schmidt [12], a family $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ of additive mappings $d_n : \mathcal{R} \to \mathcal{R}$ such that $d_0 = I_{\mathcal{R}}$, the identity map on \mathcal{R} , is said to be a higher derivation (resp. Jordan higher derivation) on \mathcal{R} if $d_n(xy) = \sum_{i+j=n} d_i(x)d_j(y)$ (resp. $d_n(x^2) = \sum_{i+j=n} d_i(x)d_j(x)$) holds for all

 $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$. Furthermore, motivated by the concept of generalized derivation Cortes and Haetinger [8] introduced the notion of generalized higher derivation. A family $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ of additive mappings $\delta_n : \mathcal{R} \to \mathcal{R}$ such that $\delta_0 = I_{\mathcal{R}}$, the identity map on \mathcal{R} , is said to be a generalized higher derivation (resp. generalized Jordan higher derivation) on \mathcal{R} if there exists a higher derivation (resp. Jordan higher derivation) $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathcal{R} such that $\delta_n(xy) = \sum_{i+j=n} \delta_i(x)d_j(y)$ (resp. $\delta_n(x^2) = \sum_{i+j=n} \delta_i(x)d_j(x)$) holds for all

 $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$.

Motivated by the notion of (σ, τ) -derivation the first author together with Khan and Haetinger [2] introduced the concept of (σ, τ) -derivation as follows : A family of $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ of additive mappings $d_n : \mathcal{R} \to \mathcal{R}$ is said to be a (σ, τ) -higher derivation (resp. Jordan (σ, τ) -higher derivation) on \mathcal{R} if $d_0 = I_{\mathcal{R}}$, the identity map of \mathcal{R} and $d_n(xy) = \sum_{i+j=n} d_i(\sigma^{n-i}(x))d_j(\tau^{n-j}(y))$ (resp. $d_n(x^2) = \sum_{i+j=n} d_i(\sigma^{n-i}(x))d_j(\tau^{n-j}(x))$) holds for all $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$. Following [2], a family $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ of additive mappings $\delta_n : \mathcal{R} \to \mathcal{R}$ such that $\delta_0 = I_{\mathcal{R}}$, the identity map of \mathcal{R} , is said to be a generalized (σ, τ) -higher derivation (resp. generalized Jordan

 $\delta_0 = I_R$, the identity map of \mathcal{R} is said to be a generalized (σ, τ) -higher derivation (resp. generalized joidant (σ, τ) -higher derivation) on \mathcal{R} if there exists a (σ, τ) -higher derivation (resp. Jordan (σ, τ) -higher derivation) $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathcal{R} such that $\delta_n(xy) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(x))d_j(\tau^{n-j}(y))$ (resp. $\delta_n(x^2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(x))d_j(\tau^{n-j}(x))$) holds for all $x \neq \mathcal{L}$ and for each $n \in \mathbb{N}$. Also, they obtained that under certain accurate prime ring of

for all $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$. Also, they obtained that under certain assumptions, if \mathcal{R} is a prime ring of characteristic different from 2, then every generalized Jordan (σ , τ)-higher derivation on \mathcal{R} is a generalized (σ , τ)-higher derivation on \mathcal{R} , where σ , τ are commuting endomorphisms of \mathcal{R} .

The
$$\mathcal{R}$$
-algebra $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B}) = \left\{ \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} | a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B} \right\}$ under the usual matrix operations

is called a triangular algebra, where \mathcal{A} and \mathcal{B} are unital algebras over \mathcal{R} and \mathcal{M} is an $(\mathcal{A}, \mathcal{B})$ -bimodule. The notion of triangular algebra was first introduced by Chase [4] in 1960. Further, in the year 2000, Cheung [5] initiated the study of linear maps on triangular algebras. He described Lie derivations, commuting maps and automorphisms of triangular algebras [6, 7]. Recently, Han and Wei [11] studied generalized Jordan (σ, τ) -derivation on the triangular algebras \mathfrak{A} and obtained that if \mathfrak{A} is a triangular algebra consisting of unital algebra \mathcal{A}, \mathcal{B} and $(\mathcal{A}, \mathcal{B})$ -bimodule \mathcal{M} which is faithful as a left \mathcal{A} -module and also faithful as a right \mathcal{B} -module, then the following statements are equivalent (*i*) δ is a generalized Jordan (σ, τ)-derivation on \mathfrak{A} , (*ii*) δ is a generalized Jordan triple (σ, τ)-derivation on \mathfrak{A} , (*iii*) δ is a generalized (σ, τ)-derivation on \mathfrak{A} . Motivated by [2, 11], our main purpose is to study generalized (σ, τ)-higher derivations on triangular algebras. In fact, we obtain the condition on a triangular algebra \mathfrak{A} under which every generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A} is a generalized (σ, τ)-higher derivation on \mathfrak{A} .

In the last section of this article we shall give some applications of our results in a special case viz. nest algebra.

2. Preliminaries

Throughout, this paper we shall use the following notions: Let \mathcal{A} and \mathcal{B} be unital algebras over \mathcal{R} and let \mathcal{M} be $(\mathcal{A}, \mathcal{B})$ -bimodule which is faithful as a left \mathcal{A} -module, that is, for $A \in \mathcal{A}$, $A\mathcal{M} = 0$ implies A = 0 and also as a right \mathcal{B} -module, that is, for $B \in \mathcal{B}$, $\mathcal{M}B = 0$ implies B = 0. The triangular algebra $\mathfrak{A} = 1$ and also as a right \mathcal{B} -module, that is, for $B \in \mathcal{B}$, $\mathcal{M}B = 0$ implies B = 0. The triangular algebra $\mathfrak{A} = 1$ and $\mathfrak{A} = 0$ in the center of \mathfrak{A} is $Z(\mathfrak{A}) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle| am = mb$ for all $m \in \mathcal{M} \right\}$. Define two natural projections $\pi_{\mathcal{A}} : \mathfrak{A} \to \mathcal{B}$ by $\pi_{\mathcal{A}} \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} = a$ and $\pi_{\mathcal{B}} \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} = b$. Moreover, $\pi_{\mathcal{A}}(Z(\mathfrak{A})) \subseteq Z(\mathcal{A})$ and $\pi_{\mathcal{B}}(Z(\mathfrak{A})) \subseteq Z(\mathcal{B})$ and there exists a unique algebraic isomorphism $\xi : \pi_{\mathcal{A}}(Z(\mathfrak{A})) \to \pi_{\mathcal{B}}(Z(\mathfrak{A}))$ such that $am = m\xi(a)$ for all $a \in \pi_{\mathcal{A}}(Z(\mathfrak{A})), m \in \mathcal{M}$.

Let $1_{\mathcal{A}}$ (resp. $1_{\mathcal{B}}$) be the identity of the algebra \mathcal{A} (resp. \mathcal{B}) and let I be the identity of triangular algebra \mathfrak{A} , $e = \begin{pmatrix} 1_{\mathcal{A}} & 0 \\ 0 & 0 \end{pmatrix}$, $f = I - e = \begin{pmatrix} 0 & 0 \\ 0 & 1_{\mathcal{B}} \end{pmatrix}$ and $\mathfrak{A}_{11} = e\mathfrak{A}e$, $\mathfrak{A}_{12} = e\mathfrak{A}f$, $\mathfrak{A}_{22} = f\mathfrak{A}f$. Thus $\mathfrak{A} = e\mathfrak{A}e + e\mathfrak{A}f + f\mathfrak{A}f = \mathfrak{A}_{11} + \mathfrak{A}_{12} + \mathfrak{A}_{22}$, where \mathfrak{A}_{11} is subalgebra of \mathfrak{A} isomorphic to \mathcal{A} , \mathfrak{A}_{22} is subalgebra of \mathfrak{A} isomorphic to \mathcal{B} and \mathfrak{A}_{12} is $(\mathfrak{A}_{11}, \mathfrak{A}_{22})$ -bimodule isomorphic to \mathcal{M} . Also, $\pi_{\mathcal{A}}(Z(\mathfrak{A}))$ and $\pi_{\mathcal{B}}(Z(\mathfrak{A}))$ are isomorphic to $eZ(\mathfrak{A})e$ and $fZ(\mathfrak{A})f$ respectively. Then there is an algebra isomorphisms $\xi : eZ(\mathfrak{A})e \to fZ(\mathfrak{A})f$ such that $am = m\xi(a)$ for all $m \in e\mathfrak{A}f$.

Let \mathbb{N} be the set of all nonnegative integers, σ, τ be automorphisms of triangular algebra \mathfrak{A} and $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ be the family of \mathcal{R} -linear maps $d_n : \mathfrak{A} \to \mathfrak{A}$ such that $d_0 = I_{\mathfrak{A}}$. Then \mathfrak{D} is said to be a (σ, τ) -higher derivation (resp. Jordan (σ, τ) -higher derivation) on \mathfrak{A} if $d_n(XY) = \sum_{i+j=n} d_i(\sigma^{n-i}(X))d_j(\tau^{n-j}(Y))$)(resp.

 $d_n(X^2) = \sum_{i+j=n} d_i(\sigma^{n-i}(X))d_j(\tau^{n-j}(X))) \text{ for all } X, Y \in \mathfrak{A} \text{ and for each } n \in \mathbb{N} \text{ and } \mathfrak{D} \text{ is said to be a Jordan triple}$

 (σ, τ) -higher derivation on \mathfrak{A} if $d_n(XYX) = \sum_{i+j+k=n} d_i(\sigma^{n-i}(X))d_j(\sigma^k(\tau^i(Y)))d_k(\tau^{n-k}(X))$ for all $X, Y \in \mathfrak{A}$ and for each $n \in \mathbb{N}$. Obviously, every (σ, τ) -higher derivation is a Jordan (σ, τ) -higher derivation on \mathfrak{A} and every

each $n \in \mathbb{N}$. Obviously, every (σ, τ) -higher derivation is a Jordan (σ, τ) -higher derivation on \mathfrak{A} and every Jordan (σ, τ) -higher derivation on \mathfrak{A} but the converse statements are not true in general. First two authors together with Parveen [3] proved the following result:

Theorem 2.1. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra where \mathcal{A} and \mathcal{B} have only trivial idempotents, σ, τ be automorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$ and let $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ be the family of \mathcal{R} -linear maps $d_n : \mathfrak{A} \to \mathfrak{A}$ such that $d_0 = I_{\mathfrak{A}}$. Then the following statements are equivalent:

- (*i*) \mathfrak{D} *is a* (σ , τ)*-higher derivation on* \mathfrak{A} *,*
- (*ii*) \mathfrak{D} *is a Jordan* (σ , τ)*-higher derivation on* \mathfrak{A} *,*
- (iii) \mathfrak{D} is a Jordan triple (σ, τ) -higher derivation on \mathfrak{A} .

Motivated by the notion of generalized higher derivation on triangular algebra \mathfrak{A} , we introduce the notion of generalized (σ , τ)-higher derivation on \mathfrak{A} .

Let $\Delta = {\delta_n}_{n \in \mathbb{N}}$ be the family of \mathcal{R} -linear maps $\delta_n : \mathfrak{A} \to \mathfrak{A}$ such that $\delta_0 = I_{\mathfrak{A}}$, the identity map of \mathfrak{A} . Then $\Delta = {\delta_n}_{n \in \mathbb{N}}$ is said to be a

(*i*) generalized (σ, τ) -higher derivation on \mathfrak{A} if there exists a (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} and

$$\delta_n(XY) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(X))d_j(\tau^{n-j}(Y))$$

for all $X, Y \in \mathfrak{A}$ and for each $n \in \mathbb{N}$,

(*ii*) generalized Jordan (σ , τ)-higher derivation on \mathfrak{A} if there exists a Jordan (σ , τ)-higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} and

$$\delta_n(X^2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(X)) d_j(\tau^{n-j}(X))$$

for all $X \in \mathfrak{A}$ and for each $n \in \mathbb{N}$,

(*iii*) generalized Jordan triple (σ, τ) -higher derivation on \mathfrak{A} if there exists a Jordan triple (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} and

$$\delta_n(XYX) = \sum_{i+j+k=n} \delta_i(\sigma^{n-i}(X)) d_j(\sigma^k(\tau^i(Y))) d_k(\tau^{n-k}(X))$$

for all $X, Y \in \mathfrak{A}$ and for each $n \in \mathbb{N}$.

It can be easily seen that every generalized (σ, τ) -higher derivation is a generalized Jordan (σ, τ) -higher derivation on \mathfrak{A} and every generalized Jordan (σ, τ) -higher derivation is a generalized Jordan triple (σ, τ) -higher derivation on \mathfrak{A} . But the converse need not be true in general. In fact, if $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ is a generalized (σ, τ) -higher derivation associated with (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} , then $\delta_n(XY) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(X))d_j(\tau^{n-j}(Y))$ for all $X, Y \in \mathfrak{A}$. Replacing Y by X, we obtain $\delta_n(X^2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(X))d_j(\tau^{n-j}(X))$ for all $X, Y \in \mathfrak{A}$. That is $\Lambda = \{\delta_n\}_{n \in \mathbb{N}}$ is a generalized lordan (σ, τ) -higher derivation on \mathfrak{A} .

for all $X \in \mathfrak{A}$ and for each $n \in \mathbb{N}$. That is $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ)-higher derivation on \mathfrak{A} . Again, replacing Y by YX, we obtain

 $\delta_n(XYX) = \sum_{i+j+k=n}^{\infty} \delta_i(\sigma^{n-i}(X)) d_j(\sigma^k(\tau^i(Y))) d_k(\tau^{n-k}(X)) \text{ for all } X, Y \in \mathfrak{A} \text{ and for each } n \in \mathbb{N}. \text{ That is } \Delta = \{\delta_n\}_{n \in \mathbb{N}} \text{ is } A \in \mathbb{N} \text{ and for each } n \in \mathbb{N}. \text{ That is } \Delta = \{\delta_n\}_{n \in \mathbb{N}} \text{ is } A \in \mathbb{N} \text{ and for each } n \in \mathbb{N}. \text{ That is } \Delta = \{\delta_n\}_{n \in \mathbb{N}} \text{ is } A \in \mathbb{N} \text{ and for each } n \in \mathbb{N}. \text{ That is } \Delta = \{\delta_n\}_{n \in \mathbb{N}} \text{ is } A \in \mathbb{N} \text{ and for each } n \in \mathbb{N}. \text{ and for each } n \in \mathbb{N} \text{ and for each } n \in \mathbb{N}. \text{ a$

a generalized Jordan triple (σ , τ)-higher derivation on \mathfrak{A} .

In the present paper, our objective is to prove every generalized Jordan (triple) (σ , τ)-higher derivation is a generalized (σ , τ)-higher derivation on \mathfrak{A} . In fact, our results generalize [3, Theorem 3.7, Theorem 3.8] and [11, Proposition 4.1, Theorem 4.3].

3. Main Results

The main result of the present paper states as follows:

Theorem 3.1. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents, σ, τ be automorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$ and let $\Delta = {\delta_n}_{n \in \mathbb{N}}$ be the family of \mathcal{R} -linear maps $\delta_n : \mathfrak{A} \to \mathfrak{A}$ on \mathfrak{A} such that $\delta_0 = I_{\mathfrak{A}}$. Then the following statements are equivalent:

- (*i*) Δ *is a generalized* (σ , τ)*-higher derivation on* \mathfrak{A} *,*
- (ii) Δ is a generalized Jordan (σ , τ)-higher derivation on \mathfrak{A} ,
- (iii) Δ is a generalized Jordan triple (σ , τ)-higher derivation on \mathfrak{A} .

In order to prove our main results, we begin with the following sequence of lemmas:

Lemma 3.2. [14, Theorem 1] Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents. Then an \mathcal{R} -linear map $\sigma : \mathfrak{A} \to \mathfrak{A}$ is an automorphism of \mathfrak{A} if and only if it has the form

$$\sigma \left(\begin{array}{cc} a & m \\ 0 & b \end{array} \right) = \left(\begin{array}{cc} \theta(a) & \theta(a)m' - m'\eta(b) + \nu(m) \\ 0 & \eta(b) \end{array} \right),$$

where $\theta : \mathcal{A} \to \mathcal{A}$ and $\eta : \mathcal{B} \to \mathcal{B}$ are automorphisms, m' is a fixed element in \mathcal{M} and $v : \mathcal{M} \to \mathcal{M}$ is an \mathcal{R} -linear bijective mapping such that $v(am) = \theta(a)v(m), v(mb) = v(m)\eta(b)$ for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $m \in \mathcal{M}$.

Obviously, for any $\begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \in \mathfrak{A}$, we have

$$\sigma(e) = \begin{pmatrix} 1 & m \\ 0 & 0 \end{pmatrix} = e_m \quad , \quad \sigma(f) = \begin{pmatrix} 0 & -m \\ 0 & 1 \end{pmatrix} = f_{-m}.$$
(1)

Lemma 3.3. [3, Lemma 3.3] Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} . Let $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ be a Jordan (σ, τ)-higher derivation on \mathfrak{A} . Then for all $m \in \mathcal{M}$ and for each fixed $n \in \mathbb{N}$

- (i) $\sigma^n(e) = e_m$ and $\sigma^n(f) = f_{-m}$,
- (*ii*) $d_n(I) = 0$, where I is the identity element of \mathfrak{A} ,
- (*iii*) $d_n(e), d_n(f) \in \mathcal{M}$.

Lemma 3.4. [1, Theorem 3.2] Suppose that $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is a triangular algebra having algebras \mathcal{A}, \mathcal{B} with only trivial idempotents and an $(\mathcal{A}, \mathcal{B})$ -bimodule \mathcal{M} . Let σ and τ be two automorphisms of \mathfrak{A} and a multiplicative map $\delta : \mathfrak{A} \to \mathfrak{A}$ be a generalized Jordan (σ, τ) - derivation (not necessarily linear) on \mathfrak{A} associated with a multiplicative Jordan (σ, τ) -derivation d on \mathfrak{A} . Then δ is an additive generalized (σ, τ) -derivation on \mathfrak{A} .

Lemma 3.5. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents ; σ, τ be endomorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$ and $\Delta = \{\delta_n\}_{n\in\mathbb{N}}$ be a generalized Jordan (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n\in\mathbb{N}}$ on \mathfrak{A} . Then for all $X, Y, Z \in \mathfrak{A}$ and for each fixed $n \in \mathbb{N}$

$$\begin{aligned} (i) \ \delta_n(XY + YX) &= \sum_{i+j=n} \{ \delta_i(\sigma^{n-i}(X)) d_j(\tau^{n-j}(Y)) + \delta_i(\sigma^{n-i}(Y)) d_j(\tau^{n-j}(X)) \}, \\ (ii) \ \delta_n(XYX) &= \sum_{i+j+k=n} \delta_i(\sigma^{n-i}(X)) d_j(\sigma^k \tau^i(Y)) d_k(\tau^{n-k}(X)), \\ (iii) \ \delta_n(XYZ + ZYX) &= \sum_{i+j+k=n} \{ \delta_i(\sigma^{n-i}(X)) d_j(\sigma^k \tau^i(Y)) d_k(\tau^{n-k}(Z)) \\ &+ \delta_i(\sigma^{n-i}(Z)) d_j(\sigma^k \tau^i(Y)) d_k(\tau^{n-k}(X)) \}. \end{aligned}$$

Proof. (*i*) By our hypothesis for $X \in \mathfrak{A}$, $n \in \mathbb{N}$, we have

$$\delta_n(X^2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(X)) d_j(\tau^{n-j}(X)).$$

Now replace X by X + Y in the above relation to get

$$\delta_{n}((X + Y)^{2}) = \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(X + Y))d_{j}(\tau^{n-j}(X + Y))$$

$$= \sum_{i+j=n} \delta_{i}\{\sigma^{n-i}(X) + \sigma^{n-i}(Y)\}d_{j}\{\tau^{n-j}(X) + \tau^{n-j}(Y)\}$$

$$= \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(X))d_{j}(\tau^{n-j}(X)) + \delta_{i}(\sigma^{n-i}(X))d_{j}(\tau^{n-j}(Y))$$

$$+ \delta_{i}(\sigma^{n-i}(Y))d_{j}(\tau^{n-j}(X)) + \delta_{i}(\sigma^{n-i}(Y))d_{j}(\tau^{n-j}(Y)).$$
(2)

Also,

$$\begin{split} \delta_n((X+Y)^2) &= \delta_n(X^2) + \delta_n(XY+YX) + \delta_n(Y^2) \\ &= \sum_{i+j=n} \delta_i(\sigma^{n-i}(X)) d_j(\tau^{n-j}(X)) + \delta_n(XY+YX) + \sum_{i+j=n} \delta_i(\sigma^{n-i}(Y)) d_j(\tau^{n-j}(Y)) \end{split}$$
(3)

On comparing (2) and (3), we obtain the required result. (*ii*) Now, replacing Y by XY + YX in (*i*), we find that

$$\delta_{n}(X(XY + YX) + (XY + YX)X) = \sum_{i+j=n} \{\delta_{i}(\sigma^{n-i}(X))d_{j}(\tau^{n-j}(XY + YX)) + \delta_{i}(\sigma^{n-i}(XY + YX))d_{j}(\tau^{n-j}(X))\}$$

$$= \sum_{i+r+s=n} \{\delta_{i}(\sigma^{n-i}(X))d_{r}(\sigma^{s}\tau^{i}(X))d_{s}(\tau^{n-s}(Y))\}$$

$$+ 2\sum_{i+j+k=n} \{\delta_{i}(\sigma^{n-i}(X))d_{j}(\sigma^{k}\tau^{i}(Y))d_{k}(\tau^{n-k}(X))\}$$

$$+ \sum_{r+s+j=n} \{\delta_{r}(\sigma^{n-r}(Y))d_{s}(\sigma^{j}\tau^{r}(X))d_{j}(\tau^{n-j}(X))\}.$$
(4)

On the other hand,

$$\delta_{n}(X(XY + YX) + (XY + YX)X) = \sum_{i+j=n} \{\delta_{i}(\sigma^{n-i}(X^{2}))d_{j}(\tau^{n-j}(Y)) + \delta_{i}(\sigma^{n-i}(Y))d_{j}(\tau^{n-j}(X^{2}))\} + 2\delta_{n}(XYX) = \sum_{r+s+j=n} \delta_{r}(\sigma^{n-r}(X))d_{s}(\sigma^{j}\tau^{r}(X))d_{j}(\tau^{n-j}(Y)) + \sum_{i+r+s=n} \{\delta_{i}(\sigma^{n-i}(Y))d_{r}(\sigma^{s}\tau^{i}(X))d_{s}(\tau^{n-s}(X))\} + 2\delta_{n}(XYX).$$
(5)

Combining (4), (5) and using Theorem 2.1, we get the required result. (*iii*) Linearizing *X* in (*ii*), we have

$$\begin{split} \delta_n(XYZ + ZYX) &= \sum_{\substack{i+j+k=n \\ +\delta_i(\sigma^{n-i}(Z))d_j(\sigma^k\tau^i(Y))d_k(\tau^{n-k}(Z))} \\ &+ \delta_i(\sigma^{n-i}(Z))d_j(\sigma^k\tau^i(Y))d_k(\tau^{n-k}(X)) \rbrace \end{split}$$

for all *X*, *Y*, *Z* \in \mathfrak{A} and for each fixed $n \in \mathbb{N}$. \Box

Following the above notations we prove that:

Lemma 3.6. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} . Let $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ be a generalized Jordan (σ, τ) -higher derivation associated with a Jordan (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} . Then $\delta_n(e) \in \mathcal{A} + \mathcal{M}$ and $\delta_n(f) \in \mathcal{B} + \mathcal{M}$ for each fixed $n \in \mathbb{N}$.

Proof. By Lemma 3.4, we have $\delta(e) \in \mathcal{A} + \mathcal{M}$. Now suppose that $\delta_r(e) \in \mathcal{A} + \mathcal{M}$ for all 1 < r < n. Using method of induction and by the definition of generalized Jordan (σ , τ)-higher derivation, we have

$$\begin{split} \delta_n(e) &= \delta_n(e^2) \\ &= \sum_{i+j=n} \delta_i(\sigma^{n-i}(e)) d_j(\tau^{n-j}(e)) \\ &= \delta_n(e)\tau^n(e) + \delta_{n-1}(\sigma(e)) d_1(\tau^{n-1}(e)) + \delta_{n-2}(\sigma^2(e)) d_2(\tau^{n-2}(e)) \\ &+ \dots + \delta_1(\sigma^{n-1}(e)) d_{n-1}(\tau^1(e)) + \sigma^n(e) d_n(e) \\ &= \delta_n(e)\tau^n(e) + \sigma^n(e) d_n(e). \end{split}$$

Put $\delta_n(e) = \begin{pmatrix} a & m \\ 0 & b \end{pmatrix}$ where $a \in \mathcal{A}, m \in \mathcal{M}$ and $b \in \mathcal{B}$ and using Lemma 3.3 in the above expression, we obtain that b = 0. This implies that $\delta_n(e) \in \mathcal{A} + \mathcal{M}$. Similarly, we can prove that $\delta_n(f) \in \mathcal{B} + \mathcal{M}$. \Box

Lemma 3.7. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$. If $\Delta = \{\delta_n\}_{n\in\mathbb{N}}$ is a generalized Jordan (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n\in\mathbb{N}}$ on \mathfrak{A} , then for each $n \in \mathbb{N}$

(*i*) $\delta_n(\mathcal{M}) \subseteq \mathcal{M}$, (*ii*) $\delta_n(\mathcal{A}) \subseteq \mathcal{A} + \mathcal{M}$, (*iii*) $\delta_n(\mathcal{B}) \subseteq \mathcal{B} + \mathcal{M}$.

Proof. (i) In order to prove our lemma we follow induction method. From Lemma 3.4, we have

$$\delta_1(\mathcal{M}) \subseteq \mathcal{M}, \delta_1(\mathcal{R}) \subseteq \mathcal{R} + \mathcal{M}, \delta_1(\mathcal{B}) \subseteq \mathcal{B} + \mathcal{M}.$$

Assume that our lemma holds for component index *i*, where 1 < i < n, i.e.,

$$\delta_i(\mathcal{M}) \subseteq \mathcal{M}, \delta_i(\mathcal{R}) \subseteq \mathcal{R} + \mathcal{M}, \delta_i(\mathcal{B}) \subseteq \mathcal{B} + \mathcal{M}$$

2290

(6)

Now

$$\begin{split} \delta_n(m) &= \delta_n(me + em) \\ &= \sum_{i+j=n} \delta_i(\sigma^{n-i}(m))d_j(\tau^{n-j}(e)) + \sum_{i+j=n} \delta_i(\sigma^{n-i}(e))d_j(\tau^{n-j}(m)) \\ &= \delta_n(m)\tau^n(e) + \delta_{n-1}(\sigma(m))d_1(\tau^{n-1}(e)) + \delta_{n-2}(\sigma^2(m))d_2(\tau^{n-2}(e)) \\ &+ \dots + \delta_1(\sigma^{n-1}(m))d_{n-1}(\tau^1(e)) + \sigma^n(m)d_n(e) + \delta_n(e)\tau^n(m) \\ &+ \delta_{n-1}(\sigma(e))d_1(\tau^{n-1}(m)) + \delta_{n-2}(\sigma^2(e))d_2(\tau^{n-2}(m)) \\ &+ \dots + \delta_1(\sigma^{n-1}(e))d_{n-1}(\tau^1(m)) + \sigma^n(e)d_n(m). \end{split}$$

Put $\delta_n(m) = \begin{pmatrix} a_1 & m_1 \\ 0 & b_1 \end{pmatrix}$ where $a_1 \in \mathcal{A}, m_1 \in \mathcal{M}$ and $b_1 \in \mathcal{B}$. Now using Lemmas 3.3 and 3.6 in the above expression, we obtain that $b_1 = 0$. On the other way using m = mf + fm, we have $a_1 = 0$. This implies that $\delta_n(\mathcal{M}) \subseteq \mathcal{M}$.

(*ii*) For any $a \in \mathcal{A}$, we have

$$0 = \delta_n(af + fa)$$

= $\sum_{i+j=n} \delta_i(\sigma^{n-i}(a))d_j(\tau^{n-j}(f)) + \sum_{i+j=n} \delta_i(\sigma^{n-i}(f))d_j(\tau^{n-j}(a))$
= $\delta_n(a)\tau^n(f) + \delta_{n-1}(\sigma(a))d_1(\tau^{n-1}(f)) + \delta_{n-2}(\sigma^2(a))d_2(\tau^{n-2}(f))$
+ $\cdots + \delta_1(\sigma^{n-1}(a))d_{n-1}(\tau^1(f)) + \sigma^n(a)d_n(f) + \delta_n(f)\tau^n(a)$
+ $\delta_{n-1}(\sigma(f))d_1(\tau^{n-1}(a)) + \delta_{n-2}(\sigma^2(f))d_2(\tau^{n-2}(a))$
+ $\cdots + \delta_1(\sigma^{n-1}(f))d_{n-1}(\tau^1(a)) + \sigma^n(f)d_n(a).$

Put $\delta_n(a) = \begin{pmatrix} a_2 & m_2 \\ 0 & b_2 \end{pmatrix}$ where $a_2 \in \mathcal{A}, m_2 \in \mathcal{M}$ and $b_2 \in \mathcal{B}$ and using Lemmas 3.3 and 3.6 in the above expression, we obtain that $b_2 = 0$. This implies that $\delta_n(\mathcal{A}) \subseteq \mathcal{A} + \mathcal{M}$. (*iii*) Similar to (*ii*). \Box

Lemma 3.8. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$. If $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ) -higher derivation associated with a Jordan (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} , then for all $a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}$ and for each $n \in \mathbb{N}$

(i)
$$\delta_n(am) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(a))d_j(\tau^{n-j}(m)),$$

(ii) $\delta_n(mb) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(m))d_j(\tau^{n-j}(b)).$

Proof. (*i*) For any $a \in \mathcal{A}$ and $m \in \mathcal{M}$ using Lemma 3.7, we have

$$\begin{split} \delta_n(am) &= \delta_n(am + ma) \\ &= \sum_{i+j=n} \delta_i(\sigma^{n-i}(a))d_j(\tau^{n-j}(m)) + \sum_{i+j=n} \delta_i(\sigma^{n-i}(m))d_j(\tau^{n-j}(a)) \\ &= \delta_n(a)\tau^n(m) + \delta_{n-1}(\sigma(a))d_1(\tau^{n-1}(m)) + \delta_{n-2}(\sigma^2(a))d_2(\tau^{n-2}(m)) \\ &+ \dots + \delta_1(\sigma^{n-1}(a))d_{n-1}(\tau^1(m)) + \sigma^n(a)d_n(m) + \delta_n(m)\tau^n(a) \\ &+ \delta_{n-1}(\sigma(m))d_1(\tau^{n-1}(a)) + \delta_{n-2}(\sigma^2(m))d_2(\tau^{n-2}(a)) \\ &+ \dots + \delta_1(\sigma^{n-1}(m))d_{n-1}(\tau^1(a)) + \sigma^n(m)d_n(a) \\ &= \sum_{i+j=n} \delta_i(\sigma^{n-i}(a))d_j(\tau^{n-j}(m)). \end{split}$$

(*ii*) Similar to (*i*). \Box

2291

Lemma 3.9. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$. If $\Delta = \{\delta_n\}_{n\in\mathbb{N}}$ is a generalized Jordan (σ, τ) -higher derivation associated with a Jordan (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n\in\mathbb{N}}$ on \mathfrak{A} , then for all $a_1, a_2 \in \mathcal{A}, b_1, b_2 \in \mathcal{B}$ and for each $n \in \mathbb{N}$

(i)
$$\delta_n(a_1a_2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(a_1))d_j(\tau^{n-j}(a_2)),$$

(ii) $\delta_n(b_1b_2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(b_1))d_j(\tau^{n-j}(b_2)).$

Proof. From Lemma 3.8 for any $a_1, a_2 \in \mathcal{A}$ and $m \in \mathcal{M}$, we obtain that

$$\delta_n(a_1a_2m) = \sigma^n(a_1a_2)d_n(m) + \delta_n(a_1a_2)\tau^n(m) + \sum_{\substack{i+j=n\\i,j< n}} \delta_i(\sigma^{n-i}(a_1a_2))d_j(\tau^{n-j}(m)) + \delta_n(a_1a_2)\tau^n(m) + \delta_n(a_1a_2)$$

On the other hand,

$$\begin{split} \delta_n(a_1 a_2 m) &= \sigma^n(a_1) d_n(a_2 m) + \delta_n(a_1) \tau^n(a_2 m) + \sum_{\substack{i+j=n\\i,j$$

From last two expressions, it follows that

$$\{\delta_n(a_1a_2) - \delta_n(a_1)\tau^n(a_2) - \sigma^n(a_1)d_n(a_2) - \sum_{\substack{i+j=n\\i,j< n}} \delta_i(\sigma^{n-i}(a_1))d_j(\tau^{n-j}(a_2))\}\tau^n(m).$$
(7)

Since \mathcal{M} is faithful left \mathcal{R} -module, using (7) we find that

$$\delta_n(a_1a_2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(a_1))d_j(\tau^{n-j}(a_2))$$

for all $a_1, a_2 \in \mathcal{A}$. (*ii*) Similar to (*i*). \Box

Theorem 3.10. Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$. If $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ) -higher derivation associated with a Jordan (σ, τ) -higher derivation $\mathfrak{D} = \{d_n\}_{n \in \mathbb{N}}$ on \mathfrak{A} , then Δ is a generalized (σ, τ) -higher derivations on \mathfrak{A} .

Proof. For any $X, Y \in \mathfrak{A}$. Suppose that $X = a_1 + m_1 + b_1$ and $Y = a_2 + m_2 + b_2$, where $a_1, a_2 \in \mathcal{A}, m_1, m_2 \in \mathcal{M}$ and $b_1, b_2 \in \mathcal{B}$. Using Lemmas 3.8 and 3.9, we have

$$\delta_{n}(XY) = \delta_{n}((a_{1} + m_{1} + b_{1})(a_{2} + m_{2} + b_{2}))$$

$$= \delta_{n}(a_{1}a_{2} + a_{1}m_{2} + m_{1}b_{2} + b_{1}b_{2})$$

$$= \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(a_{1}))d_{j}(\tau^{n-j}(a_{2})) + \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(a_{1}))d_{j}(\tau^{n-j}(m_{2}))$$

$$+ \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(m_{1}))d_{j}(\tau^{n-j}(b_{2})) + \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(b_{1}))d_{j}(\tau^{n-j}(b_{2}))$$
(8)

On the other hand, using Lemmas 3.3, 3.5 and 3.6, we arrive at

$$\sum_{i+j=n} \delta_{i}(\sigma^{n-i}(X))d_{j}(\tau^{n-j}(Y))$$

$$= \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(a_{1}+m_{1}+b_{1}))d_{j}(\tau^{n-j}(a_{2}+m_{2}+b_{2}))$$

$$= \sum_{i+j=n} \{\delta_{i}(\sigma^{n-i}(a_{1})) + \delta_{i}(\sigma^{n-i}(m_{1})) + \delta_{i}(\sigma^{n-i}(b_{1}))\}$$

$$= \{d_{j}(\tau^{n-j}(a_{2})) + d_{j}(\tau^{n-j}(m_{2})) + d_{j}(\tau^{n-j}(b_{2}))\}$$

$$= \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(a_{1}))d_{j}(\tau^{n-j}(a_{2})) + \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(a_{1}))d_{j}(\tau^{n-j}(m_{2}))$$

$$+ \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(m_{1}))d_{j}(\tau^{n-j}(b_{2})) + \sum_{i+j=n} \delta_{i}(\sigma^{n-i}(b_{1}))d_{j}(\tau^{n-j}(b_{2})).$$
(9)

Since from Theorem 2.1 every Jordan (σ , τ)-higher derivation on \mathfrak{A} is a (σ , τ)-higher derivation on \mathfrak{A} . So that (8) and (9) implies that Δ is a generalized (σ , τ)-higher derivation with associated (σ , τ)-higher derivation on \mathfrak{A} .

Now we are in position to prove our main result:

Proof. [Proof of Theorem 3.1] (*i*) \Leftrightarrow (*ii*) It is obvious by Theorem 3.10.

(*ii*) \Leftrightarrow (*iii*) It can be easily seen that every generalized Jordan (σ , τ)-higher derivation on \mathfrak{A} is a generalized Jordan triple (σ , τ)-higher derivation on \mathfrak{A} by Lemma 3.5(*ii*). Conversely, by the definition of generalized Jordan triple (σ , τ)-higher derivation on \mathfrak{A} , we have

$$\delta_n(XYX) = \sum_{i+j+k=n} \delta_i(\sigma^{n-i}(X)) d_j(\sigma^k \tau^i(Y)) d_k(\tau^{n-k}(X))$$

for all $X, Y \in \mathfrak{A}$. Replace Y by I, the identity map of \mathfrak{A} , in the above expression, we arrive at

$$\delta_n(XIX) = \sum_{\substack{i+j+k=n\\j\neq 0}} \delta_i(\sigma^{n-i}(X)) d_j(\sigma^k \tau^i(I)) d_k(\tau^{n-k}(X))$$
$$= \sum_{\substack{i+j+k=n\\j\neq 0}} \delta_i(\sigma^{n-i}(X)) d_j(\sigma^k \tau^i(I)) d_k(\tau^{n-k}(X))$$
$$+ \sum_{\substack{i+k=n\\i+k=n}} \delta_i(\sigma^{n-i}(X)) (\sigma^k \tau^i(I)) d_k(\tau^{n-k}(X)).$$

This implies that

$$\delta_n(X^2) = \sum_{i+j=n} \delta_i(\sigma^{n-i}(X)) d_j(\tau^{n-j}(X))$$

for all $X \in \mathfrak{A}$. Since from Theorem 2.1 every Jordan triple (σ, τ) -higher derivation on \mathfrak{A} is a Jordan (σ, τ) -higher derivation on \mathfrak{A} . Therefore, Δ is a generalized Jordan (σ, τ) -higher derivation with associated Jordan (σ, τ) -higher derivation on \mathfrak{A} .

In particular, for n = 1, we find that the following result due to Han and Wei [11].

Corollary 3.11. [11, Theorem 4.3] Let $\mathfrak{A} = Tri(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M} , where \mathcal{A} and \mathcal{B} have only trivial idempotents, σ, τ be automorphisms of \mathfrak{A} such that $\sigma\tau = \tau\sigma$ and let δ be an \mathcal{R} -linear map on \mathfrak{A} . Then the following statements are equivalent:

- (*i*) δ is a generalized (σ , τ)-derivation on \mathfrak{A} ,
- (*ii*) δ *is a generalized Jordan* (σ , τ)*-derivation on* \mathfrak{A} *,*
- (iii) δ is a generalized Jordan triple (σ , τ)-derivation on \mathfrak{A} .

2293

4. Applications

As an immediate consequence we will apply Theorem 3.1 to a classical example of triangular algebra viz. nest algebras. By Theorem 3.1, we have the following results:

If we choose the identity map in place of σ and τ in Theorem 3.1, we obtain the following corollary. Note that similar result still holds if the condition that \mathcal{A} and \mathcal{B} have only trivial idempotents is deleted.

Corollary 4.1. [15, Theorem 4.7] Let $\mathfrak{A} = (\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra and $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ be a family of \mathcal{R} -linear maps $\delta_n : \mathfrak{A} \to \mathfrak{A}$ such that $\delta_0 = I_{\mathfrak{A}}$. Then the following statements are equivalent:

- (i) Δ is a generalized higher derivation on \mathfrak{A} ,
- (ii) Δ is a generalized Jordan higher derivation on \mathfrak{A} ,
- (iii) Δ is a generalized Jordan triple higher derivation on \mathfrak{A} .

Corollary 4.2. [15, Corollary 4.8] For any one of the following two cases:

- (a) Assume, N is a nest on a Banach space X, Alg(N) is the nest algebra associated with N and $\Delta = {\delta_n}_{n \in \mathbb{N}}$ is a sequence of linear mappings of Alg(N). Suppose that there exists a non-trivial element in N which is complemented in X,
- (b) Let N be a nest on a complex Hilbert space H, Alg(N) be the nest algebra associated with N and $\Delta = \{\delta_n\}_{n \in \mathbb{N}}$ be a sequence of linear mappings of Alg(N).

Then the following statements are equivalent:

- (*i*) Δ *is a generalized higher derivation on Alg*(N),
- (ii) Δ is a generalized Jordan higher derivation on Alq(N),
- (iii) Δ is a generalized Jordan triple higher derivation on Alg(N).

References

- [1] A. N. Al-Kenani, M. Ashraf and A. Jabeen, *Nonlinear generalized Jordan* (σ , τ)-*derivation on triangular algebras*, Special Matrices 6 (2018), 216-228.
- [2] M. Ashraf, A. Khan and C. Haetinger, On (σ , τ)-higher derivations in prime rings, Internat. Elect. J. Algebra, 8 (2010), 65-79.
- [3] M. Ashraf, A. Jabeen and N. Parveen, On Jordan triple (σ , τ)-higher derivations of triangular algebras, Special Matrices 6 (2018), 383-393.
- [4] S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J., 18 (1961), 13-25.
- [5] W. S. Cheung, *Maps on triangular algebras*, Ph.D. Dissertation, University of Victoria, 2000.
- [6] W. S. Cheung, Commuting maps of triangular algebras, J. Lond. Math. Soc., 63 (2001), 117-127.
- [7] W. S. Cheung, Lie derivation of triangular algebras, Linear Multilinear Algebra, 51 (2003), 299-310.
- [8] W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turk. J. Math., 29 (2005), 1-10.
- [9] M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaest. Math., 25(2) (2002), 249-257.
- [10] C. Haetinger, Derivações de ordem superior em anéis primos e semiprimos, Ph.D Thesis, IMUFRGS, UFRGS-Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2000.
- [11] D. Han and F. Wei, Jordan (α , β)-derivations on triangular algebras and related mappings, Linear Algebra Appl., **434(1)** (2011), 259-284.
- [12] H. Hasse and F. K. Schimdt, Noch eine Begründung ger Theorie der höhr Differential quotenten in einem algebraischen Fünktiosenkörper einer Unbestimten, J. Reine. Angen. Math., 177 (1937), 215-237.
- [13] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
- [14] R. Khazal, S. Dăscălescu and L. V. Wyk, Isomorphism of generalized triangular matrix rings and recovery of tiles, Int. J. Math. Math. Sci., 9 (2003), 533-538.
- [15] F. Wei and Z. K. Xiao, Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl., 435 (2011), 1034-1054.
- [16] J. Zhu and C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica, 41 (1998), 795-800 (in Chinese).