Generalized Jordan Triple (σ, τ)-Higher Derivation on Triangular Algebras

Mohammad Ashraf ${ }^{\text {a }}$, Aisha Jabeen ${ }^{\text {a }}$, Mohd Shuaib Akhtar ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Aligarh Muslim University, Aligarh,202002, India

Abstract

Let \mathcal{R} be a commutative ring with unity, $\mathfrak{X}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of unital algebras \mathcal{A}, \mathcal{B} and $(\mathcal{A}, \mathcal{B})$-bimodule \mathcal{M} which is faithful as a left \mathcal{A}-module and also as a right \mathcal{B}-module. Let σ and τ be two automorphisms of \mathfrak{A}. A family $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ of \mathcal{R}-linear mappings δ_{n} : $\mathfrak{A} \rightarrow \mathfrak{A}$ is said to be a generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A} if there exists a Jordan triple (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{H} such that $\delta_{0}=I_{\mathfrak{A}}$, the identity map of \mathfrak{A} and $\delta_{n}(X Y X)=$ $\sum_{i+j+k=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k} \tau^{i}(Y)\right) d_{k}\left(\tau^{n-k}(X)\right)$ holds for all $X, Y \in \mathfrak{H}$ and each $n \in \mathbb{N}$. In this article, we study generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A} and prove that every generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A} is a generalized (σ, τ)-higher derivation on \mathfrak{A}.

1. Introduction

Let \mathcal{R} be a commutative ring with unity and \mathcal{A} be an unital algebra over \mathcal{R} and $Z(\mathcal{A})$ be the center of \mathcal{A}. Recall that an \mathcal{R}-linear map $d: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation (resp. Jordan derivation) on \mathcal{A} if $d(x y)=d(x) y+x d(y)\left(\right.$ resp. $\left.d\left(x^{2}\right)=d(x) x+x d(x)\right)$ holds for all $x, y \in \mathcal{A}$. An \mathcal{R}-linear map $d: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a Jordan triple derivation on \mathcal{A} if $d(x y x)=d(x) y x+x d(y) x+x y d(x)$ holds for all $x, y \in \mathcal{A}$. An \mathcal{R}-linear $\operatorname{map} \delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a generalized derivation (resp. generalized Jordan derivation) on \mathcal{A} if there exists a derivation (resp. Jordan derivation) d on \mathcal{A} such that $\delta(x y)=\delta(x) y+x d(y)$ (resp. $\left.\delta\left(x^{2}\right)=\delta(x) x+x d(x)\right)$ holds for all $x, y \in \mathcal{A}$. Clearly, every generalized derivation on \mathcal{A} is a generalized Jordan derivation on \mathcal{A} but the converse need not be true in general. Zhu and Xiong [16] proved that every generalized Jordan derivation from a 2-torsion free semiprime ring with identity into itself is a generalized derivation.

The concept of derivation was extended in various directions to different rings and algebras. Let σ, τ be two endomorphisms on a ring \mathcal{R}. An additive map $\delta: \mathcal{R} \rightarrow \mathcal{R}$ is called a generalized (σ, τ)-derivation (resp. generalized Jordan (σ, τ)-derivation) on \mathcal{R} if there exists a (σ, τ)-derivation (resp. Jordan (σ, τ)-derivation) d such that $\delta(x y)=\delta(x) \tau(y)+\sigma(x) d(y)$ (resp. $\left.\delta\left(x^{2}\right)=\delta(x) \tau(x)+\sigma(x) d(x)\right)$ holds for all $x, y \in \mathcal{R}$ and δ is said to be a generalized Jordan triple (σ, τ)-derivation on \mathcal{R} if there exists a Jordan triple (σ, τ)-derivation d such that $\delta(x y x)=\delta(x) \tau(y) \tau(x)+\sigma(x) d(y) \tau(x)+\sigma(x) \sigma(y) d(x)$ holds for all $x, y \in \mathcal{R}$. It is easy to observe that a generalized ($I_{\mathcal{R}}, I_{\mathcal{R}}$)-derivation, generalized Jordan $\left(I_{\mathcal{R}}, I_{\mathcal{R}}\right)$-derivation and generalized Jordan triple $\left(I_{\mathcal{R}}, I_{\mathcal{R}}\right)$-derivation is

[^0]simply a generalized derivation, generalized Jordan derivation and generalized Jordan triple derivation on \mathcal{R} respectively.

Let \mathbb{N} be the set of all nonegative integers. Following Hasse and Schmidt [12], a family $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ of additive mappings $d_{n}: \mathcal{R} \rightarrow \mathcal{R}$ such that $d_{0}=I_{\mathcal{R}}$, the identity map on \mathcal{R}, is said to be a higher derivation (resp. Jordan higher derivation) on \mathcal{R} if $d_{n}(x y)=\sum_{i+j=n} d_{i}(x) d_{j}(y)$ (resp. $\left.d_{n}\left(x^{2}\right)=\sum_{i+j=n} d_{i}(x) d_{j}(x)\right)$ holds for all $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$. Furthermore, motivated by the concept of generalized derivation Cortes and Haetinger [8] introduced the notion of generalized higher derivation. A family $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ of additive mappings $\delta_{n}: \mathcal{R} \rightarrow \mathcal{R}$ such that $\delta_{0}=I_{\mathcal{R}}$, the identity map on \mathcal{R}, is said to be a generalized higher derivation (resp. generalized Jordan higher derivation) on \mathcal{R} if there exists a higher derivation (resp. Jordan higher derivation) $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathcal{R} such that $\delta_{n}(x y)=\sum_{i+j=n} \delta_{i}(x) d_{j}(y)\left(\right.$ resp. $\left.\delta_{n}\left(x^{2}\right)=\sum_{i+j=n} \delta_{i}(x) d_{j}(x)\right)$ holds for all $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$.

Motivated by the notion of (σ, τ)-derivation the first author together with Khan and Haetinger [2] introduced the concept of (σ, τ)-derivation as follows : A family of $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ of additive mappings $d_{n}: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a (σ, τ)-higher derivation (resp. Jordan (σ, τ)-higher derivation) on \mathcal{R} if $d_{0}=I_{\mathcal{R}}$, the identity map of \mathcal{R} and $d_{n}(x y)=\sum_{i+j=n} d_{i}\left(\sigma^{n-i}(x)\right) d_{j}\left(\tau^{n-j}(y)\right)\left(\right.$ resp. $\left.d_{n}\left(x^{2}\right)=\sum_{i+j=n} d_{i}\left(\sigma^{n-i}(x)\right) d_{j}\left(\tau^{n-j}(x)\right)\right)$ holds for all $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$. Following [2], a family $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ of additive mappings $\delta_{n}: \mathcal{R} \rightarrow \mathcal{R}$ such that $\delta_{0}=I_{\mathcal{R}}$, the identity map of \mathcal{R}, is said to be a generalized (σ, τ)-higher derivation (resp. generalized Jordan (σ, τ)-higher derivation) on \mathcal{R} if there exists a (σ, τ)-higher derivation (resp. Jordan (σ, τ)-higher derivation) $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathcal{R} such that $\delta_{n}(x y)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(x)\right) d_{j}\left(\tau^{n-j}(y)\right)\left(\right.$ resp. $\left.\delta_{n}\left(x^{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(x)\right) d_{j}\left(\tau^{n-j}(x)\right)\right)$ holds for all $x, y \in \mathcal{R}$ and for each $n \in \mathbb{N}$. Also, they obtained that under certain assumptions, if \mathcal{R} is a prime ring of characteristic different from 2 , then every generalized Jordan (σ, τ)-higher derivation on \mathcal{R} is a generalized (σ, τ)-higher derivation on \mathcal{R}, where σ, τ are commuting endomorphisms of \mathcal{R}.

The \mathcal{R}-algebra $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})=\left\{\left.\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right) \right\rvert\, a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}\right\}$ under the usual matrix operations is called a triangular algebra, where \mathcal{A} and \mathcal{B} are unital algebras over \mathcal{R} and \mathcal{M} is an $(\mathcal{A}, \mathcal{B})$-bimodule. The notion of triangular algebra was first introduced by Chase [4] in 1960. Further, in the year 2000, Cheung [5] initiated the study of linear maps on triangular algebras. He described Lie derivations, commuting maps and automorphisms of triangular algebras [6, 7]. Recently, Han and Wei [11] studied generalized Jordan (σ, τ)-derivation on the triangular algebras \mathfrak{H} and obtained that if \mathfrak{A} is a triangular algebra consisting of unital algebra \mathcal{A}, \mathcal{B} and $(\mathcal{A}, \mathcal{B})$-bimodule \mathcal{M} which is faithful as a left \mathcal{A}-module and also faithful as a right \mathcal{B}-module, then the following statements are equivalent $(i) \delta$ is a generalized Jordan (σ, τ)-derivation on \mathfrak{A}, (ii) δ is a generalized Jordan triple (σ, τ)-derivation on \mathfrak{A}, (iii) δ is a generalized (σ, τ)-derivation on \mathfrak{Y}. Motivated by [2, 11], our main purpose is to study generalized (σ, τ)-higher derivations on triangular algebras. In fact, we obtain the condition on a triangular algebra \mathfrak{A} under which every generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A} is a generalized (σ, τ)-higher derivation on \mathfrak{A}.

In the last section of this article we shall give some applications of our results in a special case viz. nest algebra.

2. Preliminaries

Throughout, this paper we shall use the following notions: Let \mathcal{A} and \mathcal{B} be unital algebras over \mathcal{R} and let \mathcal{M} be $(\mathcal{A}, \mathcal{B})$-bimodule which is faithful as a left \mathcal{A}-module, that is, for $A \in \mathcal{A}, A \mathcal{M}=0$ implies $A=0$ and also as a right \mathcal{B}-module, that is, for $B \in \mathcal{B}, \mathcal{M} B=0$ implies $B=0$. The triangular algebra $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is 2-torsion free. The center of \mathfrak{A} is $Z(\mathfrak{A})=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a m=m b\right.$ for all $\left.m \in \mathcal{M}\right\}$. Define two natural projections $\pi_{\mathcal{A}}: \mathfrak{A} \rightarrow \mathcal{A}$ and $\pi_{\mathcal{B}}: \mathfrak{A} \rightarrow \mathcal{B}$ by $\pi_{\mathcal{A}}\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right)=a$ and $\pi_{\mathcal{B}}\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right)=b$. Moreover, $\pi_{\mathcal{A}}(Z(\mathfrak{H})) \subseteq Z(\mathcal{A})$ and $\pi_{\mathcal{B}}(Z(\mathfrak{H})) \subseteq Z(\mathcal{B})$ and there exists a unique algebraic isomorphism $\xi: \pi_{\mathcal{A}}(Z(\mathfrak{H})) \rightarrow \pi_{\mathcal{B}}(Z(\mathfrak{H}))$ such that $a m=m \xi(a)$ for all $a \in \pi_{\mathcal{A}}(Z(\mathfrak{l})), m \in \mathcal{M}$.

Let $1_{\mathcal{A}}$ (resp. $1_{\mathcal{B}}$) be the identity of the algebra \mathcal{A} (resp. \mathcal{B}) and let I be the identity of triangular algebra $\mathfrak{A}, e=\left(\begin{array}{cc}1_{\mathcal{A}} & 0 \\ 0 & 0\end{array}\right), f=I-e=\left(\begin{array}{cc}0 & 0 \\ 0 & 1_{\mathcal{B}}\end{array}\right)$ and $\mathfrak{H}_{11}=e \mathfrak{H} e, \mathfrak{A}_{12}=e \mathfrak{A} f, \mathfrak{A}_{22}=f \mathfrak{H} f$. Thus $\mathfrak{H}=e \mathfrak{A} e+e \mathfrak{A} f+f \mathfrak{A} f=\mathfrak{A}_{11}+\mathfrak{A}_{12}+\mathfrak{H}_{22}$, where \mathfrak{A}_{11} is subalgebra of \mathfrak{H} isomorphic to $\mathcal{A}, \mathfrak{H}_{22}$ is subalgebra of \mathfrak{A} isomorphic to \mathcal{B} and \mathfrak{A}_{12} is $\left(\mathfrak{H}_{11}, \mathfrak{U}_{22}\right)$-bimodule isomorphic to \mathcal{M}. Also, $\pi_{\mathcal{A}}(Z(\mathfrak{H}))$ and $\pi_{\mathcal{B}}(Z(\mathfrak{H}))$ are isomorphic to $e Z(\mathfrak{H}) e$ and $f Z(\mathfrak{L}) f$ respectively. Then there is an algebra isomorphisms $\xi: e Z(\mathfrak{H}) e \rightarrow f Z(\mathfrak{H}) f$ such that $a m=m \xi(a)$ for all $m \in e \mathfrak{A} f$.

Let \mathbb{N} be the set of all nonnegative integers, σ, τ be automorphisms of triangular algebra \mathfrak{A} and $\mathfrak{D}=$ $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ be the family of \mathcal{R}-linear maps $d_{n}: \mathfrak{H} \rightarrow \mathfrak{Y}$ such that $d_{0}=I_{\mathfrak{A}}$. Then \mathfrak{D} is said to be a (σ, τ) higher derivation(resp. Jordan (σ, τ)-higher derivation) on \mathfrak{A} if $\left.d_{n}(X Y)=\sum_{i+j=n} d_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(Y)\right)\right)$ (resp. $\left.d_{n}\left(X^{2}\right)=\sum_{i+j=n} d_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)\right)$ for all $X, Y \in \mathfrak{A}$ and for each $n \in \mathbb{N}$ and \mathfrak{D} is said to be a Jordan triple (σ, τ)-higher derivation on \mathfrak{A} if $d_{n}(X Y X)=\sum_{i+j+k=n} d_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k}\left(\tau^{i}(Y)\right)\right) d_{k}\left(\tau^{n-k}(X)\right)$ for all $X, Y \in \mathfrak{A}$ and for each $n \in \mathbb{N}$. Obviously, every (σ, τ)-higher derivation is a Jordan (σ, τ)-higher derivation on \mathfrak{A} and every Jordan (σ, τ)-higher derivation is a Jordan triple (σ, τ)-higher derivation on \mathfrak{A} but the converse statements are not true in general. First two authors together with Parveen [3] proved the following result:

Theorem 2.1. Let $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra where \mathcal{A} and \mathcal{B} have only trivial idempotents, σ, τ be automorphisms of \mathfrak{A} such that $\sigma \tau=\tau \sigma$ and let $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ be the family of \mathcal{R}-linear maps $d_{n}: \mathfrak{M} \rightarrow \mathfrak{M}$ such that $d_{0}=I_{\mathfrak{A}}$. Then the following statements are equivalent:
(i) \mathfrak{D} is a (σ, τ)-higher derivation on \mathfrak{A},
(ii) \mathfrak{D} is a Jordan (σ, τ)-higher derivation on \mathfrak{A},
(iii) \mathfrak{D} is a Jordan triple (σ, τ)-higher derivation on \mathfrak{A}.

Motivated by the notion of generalized higher derivation on triangular algebra \mathfrak{M}, we introduce the notion of generalized (σ, τ)-higher derivation on \mathfrak{H}.

Let $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ be the family of \mathcal{R}-linear maps $\delta_{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ such that $\delta_{0}=I_{\mathfrak{A}}$, the identity map of \mathfrak{A}. Then $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is said to be a
(i) generalized (σ, τ)-higher derivation on \mathfrak{A} if there exists a (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A} and

$$
\delta_{n}(X Y)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(Y)\right)
$$

for all $X, Y \in \mathfrak{Z}$ and for each $n \in \mathbb{N}$,
(ii) generalized Jordan (σ, τ)-higher derivation on \mathfrak{A} if there exists a Jordan (σ, τ)-higher derivation $\mathfrak{D}=$ $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A} and

$$
\delta_{n}\left(X^{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)
$$

for all $X \in \mathfrak{A}$ and for each $n \in \mathbb{N}$,
(iii) generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{Z} if there exists a Jordan triple (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A} and

$$
\delta_{n}(X Y X)=\sum_{i+j+k=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k}\left(\tau^{i}(Y)\right)\right) d_{k}\left(\tau^{n-k}(X)\right)
$$

for all $X, Y \in \mathfrak{A}$ and for each $n \in \mathbb{N}$.

It can be easily seen that every generalized (σ, τ)-higher derivation is a generalized Jordan (σ, τ)-higher derivation on \mathfrak{A} and every generalized Jordan (σ, τ)-higher derivation is a generalized Jordan triple (σ, τ) higher derivation on \mathfrak{A}. But the converse need not be true in general. In fact, if $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a generalized (σ, τ)-higher derivation associated with (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A}, then $\delta_{n}(X Y)=$ $\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(Y)\right)$ for all $X, Y \in \mathfrak{A}$. Replacing Y by X, we obtain $\delta_{n}\left(X^{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)$ for all $X \in \mathfrak{A}$ and for each $n \in \mathbb{N}$. That is $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ)-higher derivation on \mathfrak{A}. Again, replacing Y by $Y X$, we obtain
$\delta_{n}(X Y X)=\sum_{i+j+k=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k}\left(\tau^{i}(Y)\right)\right) d_{k}\left(\tau^{n-k}(X)\right)$ for all $X, Y \in \mathfrak{A}$ and for each $n \in \mathbb{N}$. That is $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A}.

In the present paper, our objective is to prove every generalized Jordan (triple) (σ, τ)-higher derivation is a generalized (σ, τ)-higher derivation on \mathfrak{A}. In fact, our results generalize [3, Theorem 3.7, Theorem 3.8] and [11, Proposition 4.1, Theorem 4.3].

3. Main Results

The main result of the present paper states as follows:
Theorem 3.1. Let $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents , σ, τ be automorphisms of \mathfrak{A} such that $\sigma \tau=\tau \sigma$ and let $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ be the family of \mathcal{R}-linear maps $\delta_{n}: \mathfrak{A} \rightarrow \mathfrak{H}$ on \mathfrak{H} such that $\delta_{0}=I_{\mathfrak{A}}$. Then the following statements are equivalent:
(i) Δ is a generalized (σ, τ)-higher derivation on \mathfrak{A},
(ii) Δ is a generalized Jordan (σ, τ)-higher derivation on \mathfrak{U},
(iii) Δ is a generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A}.

In order to prove our main results, we begin with the following sequence of lemmas:
Lemma 3.2. [14, Theorem 1] Let $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents. Then an \mathcal{R}-linear map $\sigma: \mathfrak{H} \rightarrow \mathfrak{A}$ is an automorphism of \mathfrak{A} if and only if it has the form

$$
\sigma\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
\theta(a) & \theta(a) m^{\prime}-m^{\prime} \eta(b)+v(m) \\
0 & \eta(b)
\end{array}\right)
$$

where $\theta: \mathcal{A} \rightarrow \mathcal{A}$ and $\eta: \mathcal{B} \rightarrow \mathcal{B}$ are automorphisms, m^{\prime} is a fixed element in \mathcal{M} and $v: \mathcal{M} \rightarrow \mathcal{M}$ is an \mathcal{R}-linear bijective mapping such that $v(a m)=\theta(a) v(m), v(m b)=v(m) \eta(b)$ for all $a \in \mathcal{A}, b \in \mathcal{B}$ and $m \in \mathcal{M}$.
Obviously, for any $\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right) \in \mathfrak{A}$, we have

$$
\sigma(e)=\left(\begin{array}{cc}
1 & m \tag{1}\\
0 & 0
\end{array}\right)=e_{m} \quad, \quad \sigma(f)=\left(\begin{array}{cc}
0 & -m \\
0 & 1
\end{array}\right)=f_{-m} .
$$

Lemma 3.3. [3, Lemma 3.3] Let $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A}. Let $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ be a Jordan (σ, τ)-higher derivation on \mathfrak{A}. Then for all $m \in \mathcal{M}$ and for each fixed $n \in \mathbb{N}$
(i) $\sigma^{n}(e)=e_{m}$ and $\sigma^{n}(f)=f_{-m}$,
(ii) $d_{n}(I)=0$, where I is the identity element of \mathfrak{A},
(iii) $d_{n}(e), d_{n}(f) \in \mathcal{M}$.

Lemma 3.4. [1, Theorem 3.2] Suppose that $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is a triangular algebra having algebras \mathcal{A}, \mathcal{B} with only trivial idempotents and an $(\mathcal{A}, \mathcal{B})$-bimodule \mathcal{M}. Let σ and τ be two automorphisms of \mathfrak{A} and a multiplicative map $\delta: \mathfrak{A} \rightarrow \mathfrak{A}$ be a generalized Jordan (σ, τ)- derivation (not necessarily linear) on \mathfrak{A} associated with a multiplicative Jordan (σ, τ)-derivation d on \mathfrak{A}. Then δ is an additive generalized (σ, τ)-derivation on \mathfrak{A}.

Lemma 3.5. Let $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents; σ, τ be endomorphisms of \mathfrak{A} such that $\sigma \tau=\tau \sigma$ and $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ be a generalized Jordan (σ, τ)-higher derivation associated with a Jordan (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A}. Then for all $X, Y, Z \in \mathfrak{H}$ and for each fixed $n \in \mathbb{N}$
(i) $\delta_{n}(X Y+Y X)=\sum_{i+j=n}\left\{\delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(Y)\right)+\delta_{i}\left(\sigma^{n-i}(Y)\right) d_{j}\left(\tau^{n-j}(X)\right)\right\}$,
(ii) $\delta_{n}(X Y X)=\sum_{i+j+k=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k} \tau^{i}(Y)\right) d_{k}\left(\tau^{n-k}(X)\right)$,
(iii) $\delta_{n}(X Y Z+Z Y X)=\sum_{i+j+k=n}\left\{\delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k} \tau^{i}(Y)\right) d_{k}\left(\tau^{n-k}(Z)\right)\right.$

$$
\left.+\delta_{i}\left(\sigma^{n-i}(Z)\right) d_{j}\left(\sigma^{k} \tau^{i}(Y)\right) d_{k}\left(\tau^{n-k}(X)\right)\right\}
$$

Proof. (i) By our hypothesis for $X \in \mathfrak{A}, n \in \mathbb{N}$, we have

$$
\delta_{n}\left(X^{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)
$$

Now replace X by $X+Y$ in the above relation to get

$$
\begin{align*}
\delta_{n}\left((X+Y)^{2}\right)= & \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X+Y)\right) d_{j}\left(\tau^{n-j}(X+Y)\right) \\
= & \sum_{i+j=n} \delta_{i}\left\{\sigma^{n-i}(X)+\sigma^{n-i}(Y)\right\} d_{j}\left\{\tau^{n-j}(X)+\tau^{n-j}(Y)\right\} \\
= & \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)+\delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(Y)\right) \\
& +\delta_{i}\left(\sigma^{n-i}(Y)\right) d_{j}\left(\tau^{n-j}(X)\right)+\delta_{i}\left(\sigma^{n-i}(Y)\right) d_{j}\left(\tau^{n-j}(Y)\right) \tag{2}
\end{align*}
$$

Also,

$$
\begin{align*}
& \delta_{n}\left((X+Y)^{2}\right) \\
& \quad=\delta_{n}\left(X^{2}\right)+\delta_{n}(X Y+Y X)+\delta_{n}\left(Y^{2}\right) \\
& \quad=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)+\delta_{n}(X Y+Y X)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(Y)\right) d_{j}\left(\tau^{n-j}(Y)\right) \tag{3}
\end{align*}
$$

On comparing (2) and (3), we obtain the required result.
(ii) Now, replacing Y by $X Y+Y X$ in (i), we find that

$$
\begin{align*}
& \delta_{n}(X(X Y+Y X)+(X Y+Y X) X) \\
&= \sum_{i+j=n}\left\{\delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X Y+Y X)\right)+\delta_{i}\left(\sigma^{n-i}(X Y+Y X)\right) d_{j}\left(\tau^{n-j}(X)\right)\right\} \\
&= \sum_{i+r+s=n}\left\{\delta_{i}\left(\sigma^{n-i}(X)\right) d_{r}\left(\sigma^{s} \tau^{i}(X)\right) d_{s}\left(\tau^{n-s}(Y)\right)\right\} \\
& \quad+2 \sum_{i+j+k=n}\left\{\delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k} \tau^{i}(Y)\right) d_{k}\left(\tau^{n-k}(X)\right)\right\} \\
& \quad+\sum_{r+s+j=n}\left\{\delta_{r}\left(\sigma^{n-r}(Y)\right) d_{s}\left(\sigma^{j} \tau^{r}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)\right\} . \tag{4}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \delta_{n}(X(X Y+Y X)+(X Y+Y X) X) \\
&= \sum_{i+j=n}\left\{\delta_{i}\left(\sigma^{n-i}\left(X^{2}\right)\right) d_{j}\left(\tau^{n-j}(Y)\right)+\delta_{i}\left(\sigma^{n-i}(Y)\right) d_{j}\left(\tau^{n-j}\left(X^{2}\right)\right)\right\}+2 \delta_{n}(X Y X) \\
&= \sum_{r+s+j=n} \delta_{r}\left(\sigma^{n-r}(X)\right) d_{s}\left(\sigma^{j} \tau^{r}(X)\right) d_{j}\left(\tau^{n-j}(Y)\right) \\
&+\sum_{i+r+s=n}\left\{\delta_{i}\left(\sigma^{n-i}(Y)\right) d_{r}\left(\sigma^{s} \tau^{i}(X)\right) d_{s}\left(\tau^{n-s}(X)\right)\right\}+2 \delta_{n}(X Y X) \tag{5}
\end{align*}
$$

Combining (4) , (5) and using Theorem 2.1, we get the required result.
(iii) Linearizing X in (ii), we have
for all $X, Y, Z \in \mathfrak{A}$ and for each fixed $n \in \mathbb{N}$.
Following the above notations we prove that:
Lemma 3.6. Let $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A}. Let $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ be a generalized Jordan (σ, τ)-higher derivation associated with a Jordan (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A}. Then $\delta_{n}(e) \in \mathcal{A}+\mathcal{M}$ and $\delta_{n}(f) \in \mathcal{B}+\mathcal{M}$ for each fixed $n \in \mathbb{N}$.

Proof. By Lemma 3.4, we have $\delta(e) \in \mathcal{A}+\mathcal{M}$. Now suppose that $\delta_{r}(e) \in \mathcal{A}+\mathcal{M}$ for all $1<r<n$. Using method of induction and by the definition of generalized Jordan (σ, τ)-higher derivation, we have

$$
\begin{aligned}
\delta_{n}(e) & =\delta_{n}\left(e^{2}\right) \\
& =\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(e)\right) d_{j}\left(\tau^{n-j}(e)\right) \\
& =\delta_{n}(e) \tau^{n}(e)+\delta_{n-1}(\sigma(e)) d_{1}\left(\tau^{n-1}(e)\right)+\delta_{n-2}\left(\sigma^{2}(e)\right) d_{2}\left(\tau^{n-2}(e)\right) \\
& +\cdots+\delta_{1}\left(\sigma^{n-1}(e)\right) d_{n-1}\left(\tau^{1}(e)\right)+\sigma^{n}(e) d_{n}(e) \\
& =\delta_{n}(e) \tau^{n}(e)+\sigma^{n}(e) d_{n}(e) .
\end{aligned}
$$

Put $\delta_{n}(e)=\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right)$ where $a \in \mathcal{A}, m \in \mathcal{M}$ and $b \in \mathcal{B}$ and using Lemma 3.3 in the above expression, we obtain that $b=0$. This implies that $\delta_{n}(e) \in \mathcal{A}+\mathcal{M}$. Similarly, we can prove that $\delta_{n}(f) \in \mathcal{B}+\mathcal{M}$.

Lemma 3.7. Let $\mathfrak{H}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{H} such that $\sigma \tau=\tau \sigma$. If $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ)-higher derivation associated with a Jordan (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A}, then for each $n \in \mathbb{N}$
(i) $\delta_{n}(\mathcal{M}) \subseteq \mathcal{M}$,
(ii) $\delta_{n}(\mathcal{A}) \subseteq \mathcal{A}+\mathcal{M}$,
(iii) $\delta_{n}(\mathcal{B}) \subseteq \mathcal{B}+\mathcal{M}$.

Proof. (i) In order to prove our lemma we follow induction method. From Lemma 3.4, we have

$$
\delta_{1}(\mathcal{M}) \subseteq \mathcal{M}, \delta_{1}(\mathcal{A}) \subseteq \mathcal{A}+\mathcal{M}, \delta_{1}(\mathcal{B}) \subseteq \mathcal{B}+\mathcal{M}
$$

Assume that our lemma holds for component index i, where $1<i<n$, i.e.,

$$
\begin{equation*}
\delta_{i}(\mathcal{M}) \subseteq \mathcal{M}, \delta_{i}(\mathcal{A}) \subseteq \mathcal{A}+\mathcal{M}, \delta_{i}(\mathcal{B}) \subseteq \mathcal{B}+\mathcal{M} \tag{6}
\end{equation*}
$$

Now

$$
\begin{aligned}
\delta_{n}(m)= & \delta_{n}(m e+e m) \\
= & \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(m)\right) d_{j}\left(\tau^{n-j}(e)\right)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(e)\right) d_{j}\left(\tau^{n-j}(m)\right) \\
= & \delta_{n}(m) \tau^{n}(e)+\delta_{n-1}(\sigma(m)) d_{1}\left(\tau^{n-1}(e)\right)+\delta_{n-2}\left(\sigma^{2}(m)\right) d_{2}\left(\tau^{n-2}(e)\right) \\
& +\cdots+\delta_{1}\left(\sigma^{n-1}(m)\right) d_{n-1}\left(\tau^{1}(e)\right)+\sigma^{n}(m) d_{n}(e)+\delta_{n}(e) \tau^{n}(m) \\
& +\delta_{n-1}(\sigma(e)) d_{1}\left(\tau^{n-1}(m)\right)+\delta_{n-2}\left(\sigma^{2}(e)\right) d_{2}\left(\tau^{n-2}(m)\right) \\
& +\cdots+\delta_{1}\left(\sigma^{n-1}(e)\right) d_{n-1}\left(\tau^{1}(m)\right)+\sigma^{n}(e) d_{n}(m) .
\end{aligned}
$$

Put $\delta_{n}(m)=\left(\begin{array}{cc}a_{1} & m_{1} \\ 0 & b_{1}\end{array}\right)$ where $a_{1} \in \mathcal{A}, m_{1} \in \mathcal{M}$ and $b_{1} \in \mathcal{B}$. Now using Lemmas 3.3 and 3.6 in the above expression, we obtain that $b_{1}=0$. On the other way using $m=m f+f m$, we have $a_{1}=0$. This implies that $\delta_{n}(\mathcal{M}) \subseteq \mathcal{M}$.
(ii) For any $a \in \mathcal{A}$, we have

$$
\begin{aligned}
0= & \delta_{n}(a f+f a) \\
= & \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(a)\right) d_{j}\left(\tau^{n-j}(f)\right)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(f)\right) d_{j}\left(\tau^{n-j}(a)\right) \\
= & \delta_{n}(a) \tau^{n}(f)+\delta_{n-1}(\sigma(a)) d_{1}\left(\tau^{n-1}(f)\right)+\delta_{n-2}\left(\sigma^{2}(a)\right) d_{2}\left(\tau^{n-2}(f)\right) \\
& +\cdots+\delta_{1}\left(\sigma^{n-1}(a)\right) d_{n-1}\left(\tau^{1}(f)\right)+\sigma^{n}(a) d_{n}(f)+\delta_{n}(f) \tau^{n}(a) \\
& +\delta_{n-1}(\sigma(f)) d_{1}\left(\tau^{n-1}(a)\right)+\delta_{n-2}\left(\sigma^{2}(f)\right) d_{2}\left(\tau^{n-2}(a)\right) \\
& +\cdots+\delta_{1}\left(\sigma^{n-1}(f)\right) d_{n-1}\left(\tau^{1}(a)\right)+\sigma^{n}(f) d_{n}(a) .
\end{aligned}
$$

Put $\delta_{n}(a)=\left(\begin{array}{cc}a_{2} & m_{2} \\ 0 & b_{2}\end{array}\right)$ where $a_{2} \in \mathcal{A}, m_{2} \in \mathcal{M}$ and $b_{2} \in \mathcal{B}$ and using Lemmas 3.3 and 3.6 in the above expression, we obtain that $b_{2}=0$. This implies that $\delta_{n}(\mathcal{A}) \subseteq \mathcal{A}+\mathcal{M}$.
(iii) Similar to (ii).

Lemma 3.8. Let $\mathfrak{H}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} such that $\sigma \tau=\tau \sigma$. If $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ) higher derivation associated with a Jordan (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A}, then for all $a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}$ and for each $n \in \mathbb{N}$
(i) $\delta_{n}(a m)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(a)\right) d_{j}\left(\tau^{n-j}(m)\right)$,
(ii) $\delta_{n}(m b)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(m)\right) d_{j}\left(\tau^{n-j}(b)\right)$.

Proof. (i) For any $a \in \mathcal{A}$ and $m \in \mathcal{M}$ using Lemma 3.7, we have

$$
\begin{aligned}
\delta_{n}(a m)= & \delta_{n}(a m+m a) \\
= & \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(a)\right) d_{j}\left(\tau^{n-j}(m)\right)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(m)\right) d_{j}\left(\tau^{n-j}(a)\right) \\
= & \delta_{n}(a) \tau^{n}(m)+\delta_{n-1}(\sigma(a)) d_{1}\left(\tau^{n-1}(m)\right)+\delta_{n-2}\left(\sigma^{2}(a)\right) d_{2}\left(\tau^{n-2}(m)\right) \\
& +\cdots+\delta_{1}\left(\sigma^{n-1}(a)\right) d_{n-1}\left(\tau^{1}(m)\right)+\sigma^{n}(a) d_{n}(m)+\delta_{n}(m) \tau^{n}(a) \\
& +\delta_{n-1}(\sigma(m)) d_{1}\left(\tau^{n-1}(a)\right)+\delta_{n-2}\left(\sigma^{2}(m)\right) d_{2}\left(\tau^{n-2}(a)\right) \\
& +\cdots+\delta_{1}\left(\sigma^{n-1}(m)\right) d_{n-1}\left(\tau^{1}(a)\right)+\sigma^{n}(m) d_{n}(a) \\
= & \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(a)\right) d_{j}\left(\tau^{n-j}(m)\right) .
\end{aligned}
$$

(ii) Similar to (i).

Lemma 3.9. Let $\mathfrak{H}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} such that $\sigma \tau=\tau \sigma$. If $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ) higher derivation associated with a Jordan (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{U}, then for all $a_{1}, a_{2} \in \mathcal{A}, b_{1}, b_{2} \in \mathcal{B}$ and for each $n \in \mathbb{N}$
(i) $\delta_{n}\left(a_{1} a_{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2}\right)\right)$,
(ii) $\delta_{n}\left(b_{1} b_{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(b_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(b_{2}\right)\right)$.

Proof. From Lemma 3.8 for any $a_{1}, a_{2} \in \mathcal{A}$ and $m \in \mathcal{M}$, we obtain that

$$
\delta_{n}\left(a_{1} a_{2} m\right)=\sigma^{n}\left(a_{1} a_{2}\right) d_{n}(m)+\delta_{n}\left(a_{1} a_{2}\right) \tau^{n}(m)+\sum_{\substack{i+j=n \\ i, j<n}} \delta_{i}\left(\sigma^{n-i}\left(a_{1} a_{2}\right)\right) d_{j}\left(\tau^{n-j}(m)\right)
$$

On the other hand,

$$
\begin{aligned}
\delta_{n}\left(a_{1} a_{2} m\right)= & \sigma^{n}\left(a_{1}\right) d_{n}\left(a_{2} m\right)+\delta_{n}\left(a_{1}\right) \tau^{n}\left(a_{2} m\right)+\sum_{\substack{i+j=n \\
i, j<n}} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2} m\right)\right) \\
= & \sigma^{n}\left(a_{1} a_{2}\right) d_{n}(m)+\sigma^{n}\left(a_{1}\right) d_{n}\left(a_{2}\right) \tau^{n}(m)+\delta_{n}\left(a_{1}\right) \tau^{n}\left(a_{2} m\right) \\
& +\sigma^{n}\left(a_{1}\right) \sum_{\substack{i+j=n \\
i, j<n}} \delta_{i}\left(\sigma^{n-i}\left(a_{2}\right)\right) d_{j}\left(\tau^{n-j}(m)\right)+\sum_{\substack{i+j=n \\
i, j<n}} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2} m\right)\right) .
\end{aligned}
$$

From last two expressions, it follows that

$$
\begin{equation*}
\left\{\delta_{n}\left(a_{1} a_{2}\right)-\delta_{n}\left(a_{1}\right) \tau^{n}\left(a_{2}\right)-\sigma^{n}\left(a_{1}\right) d_{n}\left(a_{2}\right)-\sum_{\substack{i+j=n \\ i, j<n}} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2}\right)\right)\right\} \tau^{n}(m) \tag{7}
\end{equation*}
$$

Since \mathcal{M} is faithful left \mathcal{A}-module, using (7) we find that

$$
\delta_{n}\left(a_{1} a_{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2}\right)\right)
$$

for all $a_{1}, a_{2} \in \mathcal{A}$.
(ii) Similar to (i).

Theorem 3.10. Let $\mathfrak{H}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents and σ, τ be automorphisms of \mathfrak{A} such that $\sigma \tau=\tau \sigma$. If $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a generalized Jordan (σ, τ)-higher derivation associated with a Jordan (σ, τ)-higher derivation $\mathfrak{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ on \mathfrak{A}, then Δ is a generalized (σ, τ)-higher derivations on \mathfrak{A}.

Proof. For any $X, Y \in \mathfrak{M}$. Suppose that $X=a_{1}+m_{1}+b_{1}$ and $Y=a_{2}+m_{2}+b_{2}$, where $a_{1}, a_{2} \in \mathcal{A}, m_{1}, m_{2} \in \mathcal{M}$ and $b_{1}, b_{2} \in \mathcal{B}$. Using Lemmas 3.8 and 3.9, we have

$$
\begin{align*}
\delta_{n}(X Y)= & \delta_{n}\left(\left(a_{1}+m_{1}+b_{1}\right)\left(a_{2}+m_{2}+b_{2}\right)\right) \\
= & \delta_{n}\left(a_{1} a_{2}+a_{1} m_{2}+m_{1} b_{2}+b_{1} b_{2}\right) \\
= & \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2}\right)\right)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(m_{2}\right)\right) \\
& +\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(m_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(b_{2}\right)\right)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(b_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(b_{2}\right)\right) \tag{8}
\end{align*}
$$

On the other hand, using Lemmas 3.3, 3.5 and 3.6, we arrive at

$$
\begin{align*}
& \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(Y)\right) \\
& =\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(a_{1}+m_{1}+b_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2}+m_{2}+b_{2}\right)\right) \\
& =\sum_{i+j=n}\left\{\delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right)+\delta_{i}\left(\sigma^{n-i}\left(m_{1}\right)\right)+\delta_{i}\left(\sigma^{n-i}\left(b_{1}\right)\right)\right\} \\
& \left.=\sum_{j}\left(\tau^{n-j}\left(a_{2}\right)\right)+d_{j}\left(\tau^{n-j}\left(m_{2}\right)\right)+d_{j}\left(\tau^{n-j}\left(b_{2}\right)\right)\right\} \\
& \quad \sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(a_{2}\right)\right)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(a_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(m_{2}\right)\right) \\
& \quad+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(m_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(b_{2}\right)\right)+\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}\left(b_{1}\right)\right) d_{j}\left(\tau^{n-j}\left(b_{2}\right)\right) \tag{9}
\end{align*}
$$

Since from Theorem 2.1 every Jordan (σ, τ)-higher derivation on \mathfrak{A} is a (σ, τ)-higher derivation on \mathfrak{A}. So that (8) and (9) implies that Δ is a generalized (σ, τ)-higher derivation with associated (σ, τ)-higher derivation on \mathfrak{H}.

Now we are in position to prove our main result:
Proof. [Proof of Theorem 3.1] (i) \Leftrightarrow (ii) It is obvious by Theorem 3.10.
(ii) $\Leftrightarrow($ iii $)$ It can be easily seen that every generalized Jordan (σ, τ)-higher derivation on \mathfrak{A} is a generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{A} by Lemma $3.5(i i)$. Conversely, by the definition of generalized Jordan triple (σ, τ)-higher derivation on \mathfrak{H}, we have

$$
\delta_{n}(X Y X)=\sum_{i+j+k=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k} \tau^{i}(Y)\right) d_{k}\left(\tau^{n-k}(X)\right)
$$

for all $X, Y \in \mathfrak{H}$. Replace Y by I, the identity map of \mathfrak{A}, in the above expression, we arrive at

$$
\begin{aligned}
\delta_{n}(X I X)= & \sum_{\substack{i+j+k=n}} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k} \tau^{i}(I)\right) d_{k}\left(\tau^{n-k}(X)\right) \\
= & \sum_{\substack{i+j+k=n \\
j \neq 0}} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\sigma^{k} \tau^{i}(I)\right) d_{k}\left(\tau^{n-k}(X)\right) \\
& +\sum_{i+k=n} \delta_{i}\left(\sigma^{n-i}(X)\right)\left(\sigma^{k} \tau^{i}(I)\right) d_{k}\left(\tau^{n-k}(X)\right)
\end{aligned}
$$

This implies that

$$
\delta_{n}\left(X^{2}\right)=\sum_{i+j=n} \delta_{i}\left(\sigma^{n-i}(X)\right) d_{j}\left(\tau^{n-j}(X)\right)
$$

for all $X \in \mathfrak{A}$. Since from Theorem 2.1 every Jordan triple (σ, τ)-higher derivation on \mathfrak{A} is a Jordan $(\sigma, \tau)-$ higher derivation on \mathfrak{A}. Therefore, Δ is a generalized Jordan (σ, τ)-higher derivation with associated Jordan (σ, τ)-higher derivation on \mathfrak{A}.

In particular, for $n=1$, we find that the following result due to Han and Wei [11].
Corollary 3.11. [11, Theorem 4.3] Let $\mathfrak{A}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra consisting of \mathcal{A}, \mathcal{B} and \mathcal{M}, where \mathcal{A} and \mathcal{B} have only trivial idempotents, σ, τ be automorphisms of \mathfrak{A} such that $\sigma \tau=\tau \sigma$ and let δ be an \mathcal{R}-linear map on \mathfrak{A}. Then the following statements are equivalent:
(i) δ is a generalized (σ, τ)-derivation on \mathfrak{A},
(ii) δ is a generalized Jordan (σ, τ)-derivation on \mathfrak{A},
(iii) δ is a generalized Jordan triple (σ, τ)-derivation on \mathfrak{A}.

4. Applications

As an immediate consequence we will apply Theorem 3.1 to a classical example of triangular algebra viz. nest algebras. By Theorem 3.1, we have the following results:
If we choose the identity map in place of σ and τ in Theorem 3.1, we obtain the following corollary. Note that similar result still holds if the condition that \mathcal{A} and \mathcal{B} have only trivial idempotents is deleted.

Corollary 4.1. [15, Theorem 4.7] Let $\mathfrak{A}=(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra and $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ be a family of \mathcal{R}-linear maps $\delta_{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ such that $\delta_{0}=I_{\mathfrak{n}}$. Then the following statements are equivalent:
(i) Δ is a generalized higher derivation on \mathfrak{A},
(ii) Δ is a generalized Jordan higher derivation on \mathfrak{A},
(iii) Δ is a generalized Jordan triple higher derivation on \mathfrak{N}.

Corollary 4.2. [15, Corollary 4.8] For any one of the following two cases:
(a) Assume, \mathcal{N} is a nest on a Banach space $X, \operatorname{Alg}(\mathcal{N})$ is the nest algebra associated with \mathcal{N} and $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is a sequence of linear mappings of $\operatorname{Alg}(\mathcal{N})$. Suppose that there exists a non-trivial element in \mathcal{N} which is complemented in X,
(b) Let \mathcal{N} be a nest on a complex Hilbert space $H, A \lg (\mathcal{N})$ be the nest algebra associated with \mathcal{N} and $\Delta=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of linear mappings of $\operatorname{Alg}(\mathcal{N})$.

Then the following statements are equivalent:
(i) Δ is a generalized higher derivation on $\operatorname{Alg}(\mathcal{N})$,
(ii) Δ is a generalized Jordan higher derivation on $\operatorname{Alg}(\mathcal{N})$,
(iii) Δ is a generalized Jordan triple higher derivation on $\operatorname{Alg}(\mathcal{N})$.

References

[1] A. N. Al-Kenani, M. Ashraf and A. Jabeen, Nonlinear generalized Jordan (σ, τ)-derivation on triangular algebras, Special Matrices 6 (2018), 216-228.
[2] M. Ashraf, A. Khan and C. Haetinger, On (σ, τ)-higher derivations in prime rings, Internat. Elect. J. Algebra, 8 (2010), 65-79.
[3] M. Ashraf, A. Jabeen and N. Parveen, On Jordan triple (σ, τ)-higher derivations of triangular algebras, Special Matrices 6 (2018), 383-393.
[4] S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J., 18 (1961), 13-25.
[5] W. S. Cheung, Maps on triangular algebras, Ph.D. Dissertation, University of Victoria, 2000.
[6] W. S. Cheung, Commuting maps of triangular algebras, J. Lond. Math. Soc., 63 (2001), 117-127.
[7] W. S. Cheung, Lie derivation of triangular algebras, Linear Multilinear Algebra, 51 (2003), 299-310.
[8] W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turk. J. Math., 29 (2005), 1-10.
[9] M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaest. Math., 25(2) (2002), 249-257.
[10] C. Haetinger, Derivações de ordem superior em anéis primos e semiprimos, Ph.D Thesis, IMUFRGS, UFRGS-Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2000.
[11] D. Han and F. Wei, Jordan (α, β)-derivations on triangular algebras and related mappings, Linear Algebra Appl., 434(1) (2011), 259-284.
[12] H. Hasse and F. K. Schimdt, Noch eine Begründung ger Theorie der höhr Differential quotenten in einem algebraischen Fünktiosenkörper einer Unbestimten, J. Reine. Angen. Math., 177 (1937), 215-237.
[13] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
[14] R. Khazal, S. Dǎscǎlescu and L. V. Wyk, Isomorphism of generalized triangular matrix rings and recovery of tiles, Int. J. Math. Math. Sci., 9 (2003), 533-538.
[15] F. Wei and Z. K. Xiao, Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl., 435 (2011), $1034-1054$.
[16] J. Zhu and C. Xiong, Generalized derivations on rings and mappings of P-preserving kernel into range on Von Neumann algebras, Acta Math. Sinica, 41 (1998), 795-800 (in Chinese).

[^0]: 2010 Mathematics Subject Classification. Primary 16W25; Secondary 15A78
 Keywords. Triangular algebra; (σ, τ)-higher derivation; Jordan (σ, τ)-higher derivation
 Received: 02 August 2018; Accepted: 21 October 2018
 Communicated by Dragan S. Djordjević
 Email addresses: mashraf80@hotmail.com (Mohammad Ashraf), ajabeen329@gmail.com (Aisha Jabeen),
 mshuaibakhtar@gmail.com (Mohd Shuaib Akhtar)

