Filomat 33:8 (2019), 2277–2284 https://doi.org/10.2298/FIL1908277N

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Coefficients of Some *p*-Valent Starlike Functions

Mamoru Nunokawa^a, Janusz Sokół^b, Nikola Tuneski^c

^aUniversity of Gunma, Hoshikuki-Cho 798-8, Chuou-Ward, Chiba 260-0808, Japan ^bCollege of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland ^cFaculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of North Macedonia

Abstract. We consider the class \mathcal{A}_p of functions f analytic in the unit disk |z| < 1 in the complex plane, of the form $f(z) = z^p + \ldots$ such that $\Re ez f^{(p)}(z) / f^{(p-1)}(z) > 0$ in the unit disc. The object of the present paper is to derive some bounds for coefficients in this class and relation with the functions satisfying condition $\Re ef^{(k)}(z) / f^{(p-k)}(z) > 0$ in the unit disc.

1. Introduction

We denote by \mathcal{H} the class of functions f(z) which are holomorphic in the open unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. A function f analytic in a domain $D \in \mathbb{C}$ is called p-valent in D, if for every complex number w, the equation f(z) = w has at most p roots in D, so that there exists a complex number w_0 such that the equation $f(z) = w_0$ has exactly p roots in D. The properties of multivalent functions under several operators were established recently in several papers, see for instance [3, 6, 8, 16]. Meromorphic multivalent functions was considered recently in [4, 5, 9]. Denote by \mathcal{A}_p , $p \in \mathbb{N} = \{1, 2, ...\}$, the class of functions $f(z) \in \mathcal{H}$ given by

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n, \quad (z \in \mathbb{D}).$$

$$\tag{1}$$

Let $\mathcal{A} = \mathcal{A}_1$. Let \mathcal{S} denote the class of all functions in \mathcal{A} which are univalent. Also let \mathcal{S}_p^* and \mathcal{C}_p be the subclasses of \mathcal{A}_p defined as follows

$$S_p^* = \left\{ f(z) \in \mathcal{A}_p : \Re e\left\{ \frac{zf'(z)}{f(z)} \right\} > 0, \ z \in \mathbb{D} \right\},$$
$$C_p = \left\{ f(z) \in \mathcal{A}_p : \Re e\left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, \ z \in \mathbb{D} \right\}.$$

The classes S_p^* and C_p will be called the class of *p*-valently starlike functions and the class of *p*-valently convex functions, respectively. Note that $S_1^* = S^*$ and $C_1 = C$, where S^* and C are usual classes of starlike and convex functions respectively.

In this paper we need the following lemmas.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C80

Keywords. univalent functions; starlike; convex; close-to-convex.

Received: 02 August 2018; Accepted: 10 October 2018

Communicated by Miodrag Mateljević

Corresponding Author: Janusz Sokół

Email addresses: mamoru_nuno@doctor.nifty.jp (Mamoru Nunokawa), jsokol@ur.edu.pl (Janusz Sokół),

nikola.tuneski@mf.edu.mk(Nikola Tuneski)

Lemma 1.1. [13, Theorem 5] If $f(z) \in \mathcal{A}_v$, then for all $z \in \mathbb{D}$, we have

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0 \quad \Rightarrow \quad \forall k \in \{1, \dots, p-1\}: \quad \Re e\left\{\frac{zf^{(k)}(z)}{f^{(k-1)}(z)}\right\} > 0.$$
(2)

Corollary 1.2. If $f(z) \in \mathcal{A}_p$, then for $r \in (0, 1]$, we have

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad |z| < r \quad \Rightarrow \quad \forall k \in \{1, \dots, p-1\}: \quad \Re e\left\{\frac{zf^{(k)}(z)}{f^{(k-1)}(z)}\right\} > 0, \quad |z| < r.$$

Lemma 1.3. [14] Let p be analytic function in |z| < 1, with p(0) = 1. If there exists a point z_0 , $|z_0| < 1$, such that

 $\Re e\{p(z)\} > 0 \ for \ |z| < |z_0|$

and

 $p(z_0) = \pm ia$

for some a > 0, then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = \frac{2ik \arg\{p(z_0)\}}{\pi},$$
(3)

for some $k \ge (a + a^{-1})/2 \ge 1$.

Lemma 1.4. [13] If $f(z) \in \mathcal{A}_p$, and there exists a positive integer $j, 1 \le j \le p$ for which

$$\Re e\left\{ j + \frac{zf^{(j+1)}(z)}{f^{(j)}(z)} \right\} > 0, \quad (z \in \mathbb{D}),$$
(4)

then for all $z \in \mathbb{D}$ *we have*

$$\forall k \in \{1, \dots, j\}: \quad \Re e\left\{k - 1 + \frac{zf^{(k)}(z)}{f^{(k-1)}(z)}\right\} > 0.$$
(5)

Corollary 1.5. If $f(z) \in \mathcal{A}_p$, and there exists a positive integer $j, 1 \le j \le p$ for which

$$\Re e\left\{ j + \frac{z f^{(j+1)}(z)}{f^{(j)}(z)} \right\} > 0, \quad (|z| < r),$$
(6)

then for |z| < r, we have

$$\forall k \in \{1, \dots, j\}: \quad \Re e\left\{k - 1 + \frac{zf^{(k)}(z)}{f^{(k-1)}(z)}\right\} > 0, \quad (|z| < r).$$
(7)

2. Main results

Coefficient bounds for *p*-valent functions was considered recently in [15] while the coefficient neighborhoods of certain *p*-valently analytic functions with negative coefficients, in [1]. Some convolution (Hadamard product) conditions for starlikeness and convexity of meromorphically multivalent functions one can find in [11].

Let $(x)_n$ denote the Pochhammer symbol which is defined in term of Gamma function Γ as:

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = \begin{cases} 1 & \text{for } n = 0, \quad x \neq 0, \\ x(x+1)\dots(x+n-1) & \text{for } k \in \mathbb{N} = \{1, 2, 3, \dots\}. \end{cases}$$

Theorem 2.1. *If* $f(z) \in \mathcal{A}_p$, $p \ge 2$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$, $z \in \mathbb{D}$ and *if*

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad z \in \mathbb{D},$$
(8)

then for $n \ge p$, we have

$$|a_n| \le \frac{p!(n-p+1)}{n(n-1)(n-2)\dots(n-(p-2))} = \frac{p!(n-p+1)}{(n-p+2)_{p-1}}$$

The result is sharp.

Proof. If a function f(z) satisfies (8), then $f^{(p-1)}(z)/p! = z + b_2 z^2 + \cdots$ is a starlike function. Therefore, the coefficients of $f^{(p-1)}(z)/p!$ satisfy

$$|b_n| \leq n$$
.

From this we can obtain the bound for $|a_n|$. We have that $b_{n-p+1} = n(n-1)(n-2)...(n-(p-2))a_n/p!$, so $|a_n| \le p!(n-p+1)/[n(n-1)(n-2)...(n-(p-2))]$ for $n \ge p$. To show that the bound is sharp it suffices to prove that the function

$$f_p(z) = \sum_{n=p}^{\infty} \frac{p!(n-p+1)}{n(n-1)(n-2)\dots(n-(p-2))} z^n, \quad z \in \mathbb{D},$$
(9)

satisfies (8). We have

$$f_p^{(p-1)}(z)/p! = \frac{z}{(1-z)^2}$$

so (8) holds.

It is well known that if $f(z) \in \mathcal{A}_1$, then $|a_n| \le n$. From this and from Theorem 2.1 we the following corollary for $p \ge 1$.

Corollary 2.2. *If* $f(z) \in \mathcal{A}_p$, $p \ge 1$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$, $z \in \mathbb{D}$ and *if*

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad z \in \mathbb{D},$$

then we have

$$|a_{p+1}| \le \frac{4}{p+1}, \quad |a_{p+2}| \le \frac{18}{(p+1)(p+2)}, \dots, \quad |a_{p+k}| \le (k+1)\frac{(k+1)!}{(p+1)\dots(p+k)}.$$

The result is sharp.

Corollary 2.2 implies that the function (9) may be written as

$$f_p(z) = z^p + \frac{4z^{p+1}}{p+1} + \frac{18z^{p+2}}{(p+1)(p+2)} + \sum_{k=3}^{\infty} (k+1)\frac{(k+1)!}{(p+1)\dots(p+k)} z^{p+k}, \quad z \in \mathbb{D}.$$
 (10)

Now we prove an inequality of type Fekete-Szegö type for functions satisfying (8). Fekete-Szegö inequalities for *p*-valent starlike and convex functions of complex order was considered recently in [2].

Theorem 2.3. *If* $f(z) \in \mathcal{A}_p$, $p \ge 1$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$, $z \in \mathbb{D}$ and *if*

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad z \in \mathbb{D},$$

then for any complex number μ , we have

$$\left|a_{p+2} - \mu a_{p+1}^2\right| \le \frac{6}{(p+1)(p+2)} \max\left\{1, |2\lambda - 1|\right\},\tag{11}$$

where

$$\lambda = \frac{4\mu(p+2)}{3(p+1)} - 1.$$

The bound is sharp.

Proof. We have

$$zf^{(p)}(z) = f^{(p-1)}(z) \left[1 + q_1 z + q_2 z^2 + \cdots \right],$$

where $\Re \{1 + q_1 z + q_2 z^2 + \dots\} > 0$ in \mathbb{D} . This leads us to the conclusion

$$a_{p+1} = \frac{2q_1}{p+1}, \quad a_{p+2} = \frac{3(q_1^2 + q_2)}{(p+1)(p+2)}.$$

Thus we have

$$\left|a_{p+2} - \mu a_{p+1}^2\right| = \frac{3}{(p+1)(p+2)} \left|q_2 - \frac{4\mu(p+2) - 3(p+1)}{3(p+1)}q_1^2\right|.$$
(12)

In [10] it was proved that for any complex number λ the following sharp estimate holds

$$|q_2 - \lambda q_1^2| \le 2 \max\{1, |2\lambda - 1|\}.$$
(13)

Therefore, applying (13) in (12) gives sharp bound (11). \Box

Corollary 2.4. If p = 1, then (11) becomes the known sharp result [10]

$$|a_3 - \mu a_2^2| \le \max\{1, |4\mu - 3|\}$$

for starlike functions, i.e. the solution of Fekete-Szegö problem in the class of starlike functions.

If $\mu = 1$, then (11) becomes the following sharp result.

Corollary 2.5. *If* $f(z) \in \mathcal{A}_p$, $p \ge 1$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots, z \in \mathbb{D}$ and if

$$\mathfrak{Re}\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad z \in \mathbb{D},$$

then we have

$$\left|a_{p+2} - a_{p+1}^2\right| \le \frac{6}{(p+1)(p+2)} \max\left\{1, \frac{|7-p|}{3(p+1)}\right\}$$

The bound is sharp which show the coefficients of (10).

Theorem 2.6. If $f(z) \in \mathcal{A}_p$, $p \ge 2$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$, $z \in \mathbb{D}$ and if

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad z \in \mathbb{D},$$
(14)

then for |z| = r < 1, we have

$$\frac{1}{(1+r)^{2p}} \le \left|\frac{f(z)}{z^p}\right| \le \frac{1}{(1-r)^{2p}}.$$
(15)

The bounds are sharp.

Proof. From (14) and from Lemma 1.1, we have

$$\Re e\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \quad z \in \mathbb{D}, \quad \left.\frac{zf'(z)}{f(z)}\right|_{z=0} = p,$$

and so we have for |z| = r < 1

$$\frac{1-r}{1+r} \leq \Re e\left\{\frac{zf'(z)}{pf(z)}\right\} \leq \frac{1+r}{1-r}.$$

Then it follows that

$$\log \left| \frac{f(z)}{z^p} \right| = \Re e \int_0^z \left(\frac{f'(t)}{f(t)} - \frac{p}{t} \right) dt$$
$$= \Re e \int_0^z \frac{p}{t} \left(\frac{tf'(t)}{pf(t)} - 1 \right) dt$$
$$= \Re e \int_0^r \frac{p}{\rho e^{i\theta}} \left(\frac{tf'(t)}{pf(t)} - 1 \right) e^{i\theta} d\rho$$
$$= \int_0^r \Re e \left\{ \frac{p}{\rho} \left(\frac{tf'(t)}{pf(t)} - 1 \right) \right\} d\rho$$
$$\leq \int_0^r \frac{p}{\rho} \left(\frac{1+\rho}{1-\rho} - 1 \right) d\rho$$
$$= \int_0^r \frac{2p}{1-\rho} d\rho = \log \frac{1}{(1-r)^{2p}}.$$

This shows that for |z| = r < 1

$$\left|\frac{f(z)}{z^p}\right| \le \frac{1}{(1-r)^{2p}}.$$

Applying the same method as the above, we can obtain for |z| = r < 1

$$\frac{1}{(1+r)^{2p}} \le \left|\frac{f(z)}{z^p}\right|.$$

The sharpness of (18) shows the function

$$g(z) = \left[\frac{z}{(1-z)^2}\right]^p = z^p + \cdots .$$
(16)

This completes the proof of Theorem 2.6.

Theorem 2.7. *If* $f(z) \in \mathcal{A}_p$, $p \ge 2$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$, $z \in \mathbb{D}$ and *if*

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad z \in \mathbb{D},$$
(17)

then for |z| = r < 1, we have

$$\frac{pr^{p-1}(1-r)}{(1+r)^{2p+1}} \le \left| f'(z) \right| \le \frac{pr^{p-1}(1+r)}{(1-r)^{2p}}.$$
(18)

The bounds are sharp.

Proof. By the same reason as in the proof of Theorem 2.6, we have for |z| = r < 1

$$\frac{1-r}{1+r} \le \Re \operatorname{e}\left\{\frac{zf'(z)}{pf(z)}\right\} \le \frac{1+r}{1-r}.$$

Applying Theorem 2.6 we easily have the proof of Theorem 2.7. The sharpness of (20) shows the function (16). \Box

Theorem 2.8. *If* $f(z) \in \mathcal{A}_p$, $p \ge 2$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$, $z \in \mathbb{D}$ and *if*

$$\Re e\left\{\frac{f^{(p-1)}(z)}{z}\right\} > 0, \quad z \in \mathbb{D},$$
(19)

then, we have

$$\Re e\left\{\frac{zf^{(p)}(z)}{f^{(p-1)}(z)}\right\} > 0, \quad |z| < \sqrt{2} - 1.$$
(20)

The bound is sharp.

Proof. Let us put

$$q(z) = \frac{f^{(p-1)}(z)}{zp!}, \quad q(0) = 1.$$

From the hypothesis (19), we have

 $\Re e\{q(z)\} > 0, \quad z \in \mathbb{D}.$

Applying [7, p.186], [12, Th.2], we have

$$\left|\frac{zq'(z)}{q(z)}\right| = \left|\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} - 1\right| \le \frac{2|z|}{1 - |z|^2}, \quad z \in \mathbb{D}.$$

Therefore, we have

$$\left|\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} - 1\right| < 1 \quad \text{for} \quad |z| < \sqrt{2} - 1$$

and so

$$\Re \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} > 0 \quad \text{for} \quad |z| < \sqrt{2} - 1.$$

It is easy to check that the function $f_1(z)$ such that

$$f_1^{(p-1)}(z) = \frac{z(1+z)}{1-z}$$

gives

$$\frac{zf_1^{(p)}(z)}{f_1^{(p-1)}(z)}\bigg|_{z=1-\sqrt{2}} = \frac{1+2z-z^2}{1-z^2}\bigg|_{z=1-\sqrt{2}} = 0$$

which shows the sharpness of (20).

Corollary 2.9. If $f(z) \in \mathcal{A}_p$, $p \ge 2$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots, z \in \mathbb{D}$ and if

$$\Re e\left\{\frac{f^{(p-1)}(z)}{z}\right\} > 0, \quad z \in \mathbb{D},$$
(21)

then, f(z) is p-valently starlike in $|z| < \sqrt{2} - 1$. The bound is sharp.

Proof. From Theorem 2.8, we have (19). Then from Corollary 1.2 we have

$$\Re e\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \quad |z| < \sqrt{2} - 1.$$

Theorem 2.10. Let $f(z) \in \mathcal{A}_p$, $p \ge 2$, $f(z) = z^p + a_{p+1}z^{p+1} + \cdots$, $z \in \mathbb{D}$ and let

$$\Re e\left\{\frac{f^{(k)}(z)}{z^{p-k}}\right\} > 0, \quad z \in \mathbb{D}$$
(22)

for some integer $k \in [0, p]$. Then f(z) is p-valently convex in $(\sqrt{1 + p^2} - 1)/p$ i.e.

$$1 + \Re e\left\{\frac{zf''(z)}{f'(z)}\right\} > 0, \quad |z| < (\sqrt{1+p^2}-1)/p.$$
(23)

The result is sharp.

Proof. Let us put

$$q(z) = \frac{f^{(k)}(z)}{(p)_k z^{p-k}}, \quad q(0) = 1.$$

Then it follows that

$$\frac{zq'(z)}{q(z)} = \frac{zf^{(k+1)}(z)}{f^{(k)}(z)} - (p-k) = k + \frac{zf^{(k+1)}(z)}{f^{(k)}(z)} - p, \quad z \in \mathbb{D}.$$

And so from the hypothesis (22), applying [7, p.186], [12, Th.2], we have

$$\left|\frac{zq'(z)}{q(z)}\right| = \left|k + \frac{zf^{(k+1)}(z)}{f^{(k)}(z)} - p\right| \le \frac{2|z|}{1 - |z|^2}, \quad z \in \mathbb{D}.$$

Therefore, we have

$$\Re e\left\{k+\frac{zf^{(k+1)}(z)}{f^{(k)}(z)}\right\} > 0, \quad |z| < (\sqrt{1+p^2}-1)/p.$$

Applying Corollary 1.5, we have

$$\Re e\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0, \quad |z| < (\sqrt{1+p^2}-1)/p.$$

Further, taking the function f(z) given by

$$f(z) = \left(\frac{1+z}{1-z}\right)z^p, \quad zin\mathbb{D},$$

we see that the result is sharp.

References

- O. Altintaş, Neighborhoods of certain *p*-valently analytic functions with negative coefficients, Applied Math. Computation 187(1)(2007) 47–53.
- [2] M. K. Aouf, R. M. El-Ashwah, H. M. Zayed, Fekete-Szegö inequalities for *p*-valent starlike and convex functions of complex order, J. Egyptian Math. Society 22(2)(2014) 190–196.
- [3] M. K. Aouf, T. Bulboacă, R. M. El-Ashwah, Subordination properties of multivalent functions involving an extended fractional differintegral operator, Acta Math. Scientia 34(2)(2014) 367–379.
- [4] M. Arif, J. Sokół, M. Ayaz, Sufficient condition for functions to be in a class of meromorphic multivalent Sakaguchi type spiral-like functions, Acta Math. Scientia 34(2)(2014) 575–578.
- [5] S. Bulut, B. A. Frasin, Starlikeness of a new general integral operator for meromorphic multivalent functions, J. Egyptian Math. Society 22(3)(2014) 362–364.
- [6] B. A. Frasin, Convexity of integral operators of *p*-valent functions, Math. Computer Modelling 51(56)(2010) 601–605.
- [7] G. Goluzin, Zur Teorie der schlichten konformen Abblidungen, Math. Sb. (N. S.) **42**(1935) 169–190.
- [8] S. G. Hamidi, S. A. Halim, J. Sokół, Starlikeness and subordination properties of a linear operator, Acta Math. Scientia 34(5)(2014) 1446–1460.
- [9] M. Kamali, On certain meromorphic *p*-valent starlike functions, J. Franklin Institute 344(6)(2007) 867–872.
- [10] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain class of analytic functions, Proc. Amer. Math. Soc. 20(1969) 8–12.
- [11] J.-L. Liu, H. M. Srivastava, Some convolution conditions for starlikeness and convexity of meromorphically multivalent functions, Applied Math. Letters 16(1)(2003) 13–16.
- [12] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104(1962) 532-537.
- [13] M. Nunokawa, On the theory of multivalent functions, Tsukuba J. Math. 11(2)(1987) 273-286.
- [14] M. Nunokawa, On Properties of Non-Carathéodory Functions, Proc. Japan Acad. Ser. A 68(6)(1992) 152–153.
- [15] Rosihan M. Ali, V. Ravichandran, N. Seenivasagan, Coefficient bounds for p-valent functions, Applied Math. Computation 187(1)(2007) 35–46.
- [16] H. Tang, G.-T. Deng, S.-H. Li, Certain subclasses of *p*-valently analytic functions involving a generalized fractional differintegral operator, J. Egyptian Math. Society 22(1)(2014) 36–44.
- [17] D.-G. Yang, J.-L. Liu, Some sufficient conditions for p-valent strongly starlike functions, Computers Math. Appl. 59(6)(2010) 2018–2025.