On Coefficients of Some p-Valent Starlike Functions

Mamoru Nunokawa ${ }^{\text {a }}$, Janusz Sokół ${ }^{\text {b }}$, Nikola Tuneski ${ }^{\text {c }}$
${ }^{a}$ University of Gunma, Hoshikuki-Cho 798-8, Chuou-Ward, Chiba 260-0808, Japan
${ }^{b}$ College of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland
${ }^{c}$ Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of North Macedonia

Abstract

We consider the class \mathcal{A}_{p} of functions f analytic in the unit disk $|z|<1$ in the complex plane, of the form $f(z)=z^{p}+\ldots$ such that $\mathfrak{R e z f ^ { (p) } (z) / f ^ { (p - 1) } (z) > 0 \text { in the unit disc. The object of the present paper }}$ is to derive some bounds for coefficients in this class and relation with the functions satisfying condition $\mathfrak{R e} f^{(k)}(z) / f^{(p-k)}(z)>0$ in the unit disc.

1. Introduction

We denote by \mathcal{H} the class of functions $f(z)$ which are holomorphic in the open unit disc $\mathbb{D}=\{z \in \mathbb{C}$: $|z|<1\}$. A function f analytic in a domain $D \in \mathbb{C}$ is called p-valent in D, if for every complex number w, the equation $f(z)=w$ has at most p roots in D, so that there exists a complex number w_{0} such that the equation $f(z)=w_{0}$ has exactly p roots in D. The properties of multivalent functions under several operators were established recently in several papers, see for instance $[3,6,8,16]$. Meromorphic multivalent functions was considered recently in $[4,5,9]$. Denote by $\mathcal{A}_{p}, p \in \mathbb{N}=\{1,2, \ldots\}$, the class of functions $f(z) \in \mathcal{H}$ given by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad(z \in \mathbb{D}) \tag{1}
\end{equation*}
$$

Let $\mathcal{A}=\mathcal{A}_{1}$. Let \mathcal{S} denote the class of all functions in \mathcal{A} which are univalent. Also let \mathcal{S}_{p}^{*} and \mathcal{C}_{p} be the subclasses of \mathcal{A}_{p} defined as follows

$$
\begin{aligned}
& \mathcal{S}_{p}^{*}=\left\{f(z) \in \mathcal{A}_{p}: \mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, z \in \mathbb{D}\right\} \\
& C_{p}=\left\{f(z) \in \mathcal{A}_{p}: \mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, z \in \mathbb{D}\right\}
\end{aligned}
$$

The classes S_{p}^{*} and C_{p} will be called the class of p-valently starlike functions and the class of p-valently convex functions, respectively. Note that $S_{1}^{*}=\mathcal{S}^{*}$ and $C_{1}=C$, where S^{*} and C are usual classes of starlike and convex functions respectively.

In this paper we need the following lemmas.

[^0]Lemma 1.1. [13, Theorem 5] If $f(z) \in \mathcal{A}_{p}$, then for all $z \in \mathbb{D}$, we have

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0 \quad \Rightarrow \quad \forall k \in\{1, \ldots, p-1\}: \quad \mathfrak{R e}\left\{\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}>0 \tag{2}
\end{equation*}
$$

Corollary 1.2. If $f(z) \in \mathcal{A}_{p}$, then for $r \in(0,1]$, we have

$$
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad|z|<r \quad \Rightarrow \quad \forall k \in\{1, \ldots, p-1\}: \quad \mathfrak{R e}\left\{\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}>0, \quad|z|<r
$$

Lemma 1.3. [14] Let p be analytic function in $|z|<1$, with $p(0)=1$. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
\mathfrak{R e}\{p(z)\}>0 \text { for }|z|<\left|z_{0}\right|
$$

and

$$
p\left(z_{0}\right)= \pm i a
$$

for some $a>0$, then we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi} \tag{3}
\end{equation*}
$$

for some $k \geq\left(a+a^{-1}\right) / 2 \geq 1$.
Lemma 1.4. [13] If $f(z) \in \mathcal{A}_{p}$, and there exists a positive integer $j, 1 \leq j \leq p$ for which

$$
\begin{equation*}
\mathfrak{R e}\left\{j+\frac{z f^{(j+1)}(z)}{f^{(j)}(z)}\right\}>0, \quad(z \in \mathbb{D}) \tag{4}
\end{equation*}
$$

then for all $z \in \mathbb{D}$ we have

$$
\begin{equation*}
\forall k \in\{1, \ldots, j\}: \quad \mathfrak{R e}\left\{k-1+\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}>0 . \tag{5}
\end{equation*}
$$

Corollary 1.5. If $f(z) \in \mathcal{A}_{p}$, and there exists a positive integer $j, 1 \leq j \leq p$ for which

$$
\begin{equation*}
\mathfrak{R e}\left\{j+\frac{z f^{(j+1)}(z)}{f^{(j)}(z)}\right\}>0, \quad(|z|<r) \tag{6}
\end{equation*}
$$

then for $|z|<r$, we have

$$
\begin{equation*}
\forall k \in\{1, \ldots, j\}: \quad \mathfrak{R e}\left\{k-1+\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}>0, \quad(|z|<r) . \tag{7}
\end{equation*}
$$

2. Main results

Coefficient bounds for p-valent functions was considered recently in [15] while the coefficient neighborhoods of certain p-valently analytic functions with negative coefficients, in [1]. Some convolution (Hadamard product) conditions for starlikeness and convexity of meromorphically multivalent functions one can find in [11].

Let $(x)_{n}$ denote the Pochhammer symbol which is defined in term of Gamma function Γ as:

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}=\left\{\begin{array}{lll}
1 & \text { for } & n=0, \\
x(x+1) \ldots(x+n-1) & \text { for } & k \in \mathbb{N}=\{1,2,3, \ldots\}
\end{array}\right.
$$

Theorem 2.1. If $f(z) \in \mathcal{A}_{p}, p \geq 2, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad z \in \mathbb{D} \tag{8}
\end{equation*}
$$

then for $n \geq p$, we have

$$
\left|a_{n}\right| \leq \frac{p!(n-p+1)}{n(n-1)(n-2) \ldots(n-(p-2))}=\frac{p!(n-p+1)}{(n-p+2)_{p-1}}
$$

The result is sharp.
Proof. If a function $f(z)$ satisfies (8), then $f^{(p-1)}(z) / p!=z+b_{2} z^{2}+\cdots$ is a starlike function. Therefore, the coefficients of $f^{(p-1)}(z) / p$! satisfy

$$
\left|b_{n}\right| \leq n
$$

From this we can obtain the bound for $\left|a_{n}\right|$. We have that $b_{n-p+1}=n(n-1)(n-2) \ldots(n-(p-2)) a_{n} / p!$, so $\left|a_{n}\right| \leq p!(n-p+1) /[n(n-1)(n-2) \ldots(n-(p-2))]$ for $n \geq p$. To show that the bound is sharp it suffices to prove that the function

$$
\begin{equation*}
f_{p}(z)=\sum_{n=p}^{\infty} \frac{p!(n-p+1)}{n(n-1)(n-2) \ldots(n-(p-2))} z^{n}, \quad z \in \mathbb{D}, \tag{9}
\end{equation*}
$$

satisfies (8). We have

$$
f_{p}^{(p-1)}(z) / p!=\frac{z}{(1-z)^{2}}
$$

so (8) holds.

It is well known that if $f(z) \in \mathcal{A}_{1}$, then $\left|a_{n}\right| \leq n$. From this and from Theorem 2.1 we the following corollary for $p \geq 1$.

Corollary 2.2. If $f(z) \in \mathcal{A}_{p}, p \geq 1, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then we have

$$
\left|a_{p+1}\right| \leq \frac{4}{p+1}, \quad\left|a_{p+2}\right| \leq \frac{18}{(p+1)(p+2)}, \cdots, \quad\left|a_{p+k}\right| \leq(k+1) \frac{(k+1)!}{(p+1) \ldots(p+k)}
$$

The result is sharp.
Corollary 2.2 implies that the function (9) may be written as

$$
\begin{equation*}
f_{p}(z)=z^{p}+\frac{4 z^{p+1}}{p+1}+\frac{18 z^{p+2}}{(p+1)(p+2)}+\sum_{k=3}^{\infty}(k+1) \frac{(k+1)!}{(p+1) \ldots(p+k)} z^{p+k}, \quad z \in \mathbb{D} . \tag{10}
\end{equation*}
$$

Now we prove an inequality of type Fekete-Szegö type for functions satisfying (8). Fekete-Szegö inequalities for p-valent starlike and convex functions of complex order was considered recently in [2].

Theorem 2.3. If $f(z) \in \mathcal{A}_{p}, p \geq 1, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then for any complex number μ, we have

$$
\begin{equation*}
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{6}{(p+1)(p+2)} \max \{1,|2 \lambda-1|\} \tag{11}
\end{equation*}
$$

where

$$
\lambda=\frac{4 \mu(p+2)}{3(p+1)}-1
$$

The bound is sharp.
Proof. We have

$$
z f^{(p)}(z)=f^{(p-1)}(z)\left[1+q_{1} z+q_{2} z^{2}+\cdots\right]
$$

where $\mathfrak{R e}\left\{1+q_{1} z+q_{2} z^{2}+\cdots\right\}>0$ in \mathbb{D}. This leads us to the conclusion

$$
a_{p+1}=\frac{2 q_{1}}{p+1}, \quad a_{p+2}=\frac{3\left(q_{1}^{2}+q_{2}\right)}{(p+1)(p+2)}
$$

Thus we have

$$
\begin{equation*}
\left|a_{p+2}-\mu a_{p+1}^{2}\right|=\frac{3}{(p+1)(p+2)}\left|q_{2}-\frac{4 \mu(p+2)-3(p+1)}{3(p+1)} q_{1}^{2}\right| . \tag{12}
\end{equation*}
$$

In [10] it was proved that for any complex number λ the following sharp estimate holds

$$
\begin{equation*}
\left|q_{2}-\lambda q_{1}^{2}\right| \leq 2 \max \{1,|2 \lambda-1|\} \tag{13}
\end{equation*}
$$

Therefore, applying (13) in (12) gives sharp bound (11).
Corollary 2.4. If $p=1$, then (11) becomes the known sharp result [10]

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \max \{1,|4 \mu-3|\}
$$

for starlike functions, i.e. the solution of Fekete-Szegö problem in the class of starlike functions.
If $\mu=1$, then (11) becomes the following sharp result.
Corollary 2.5. If $f(z) \in \mathcal{A}_{p}, p \geq 1, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then we have

$$
\left|a_{p+2}-a_{p+1}^{2}\right| \leq \frac{6}{(p+1)(p+2)} \max \left\{1, \frac{|7-p|}{3(p+1)}\right\} .
$$

The bound is sharp which show the coefficients of (10).

Theorem 2.6. If $f(z) \in \mathcal{A}_{p}, p \geq 2, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad z \in \mathbb{D} \tag{14}
\end{equation*}
$$

then for $|z|=r<1$, we have

$$
\begin{equation*}
\frac{1}{(1+r)^{2 p}} \leq\left|\frac{f(z)}{z^{p}}\right| \leq \frac{1}{(1-r)^{2 p}} \tag{15}
\end{equation*}
$$

The bounds are sharp.
Proof. From (14) and from Lemma 1.1, we have

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D},\left.\quad \frac{z f^{\prime}(z)}{f(z)}\right|_{z=0}=p
$$

and so we have for $|z|=r<1$

$$
\frac{1-r}{1+r} \leq \mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{p f(z)}\right\} \leq \frac{1+r}{1-r}
$$

Then it follows that

$$
\begin{aligned}
\log \left|\frac{f(z)}{z^{p}}\right| & =\mathfrak{R e} \int_{0}^{z}\left(\frac{f^{\prime}(t)}{f(t)}-\frac{p}{t}\right) \mathrm{d} t \\
& =\mathfrak{R e} \int_{0}^{z} \frac{p}{t}\left(\frac{t f^{\prime}(t)}{p f(t)}-1\right) \mathrm{d} t \\
& =\mathfrak{R e} \int_{0}^{r} \frac{p}{\rho e^{i \theta}\left(\frac{t f^{\prime}(t)}{p f(t)}-1\right) e^{i \theta} \mathrm{~d} \rho} \\
& =\int_{0}^{r} \mathfrak{R e}\left\{\frac{p}{\rho}\left(\frac{t f^{\prime}(t)}{p f(t)}-1\right)\right\} \mathrm{d} \rho \\
& \leq \int_{0}^{r} \frac{p}{\rho}\left(\frac{1+\rho}{1-\rho}-1\right) \mathrm{d} \rho \\
& =\int_{0}^{r} \frac{2 p}{1-\rho} \mathrm{d} \rho=\log \frac{1}{(1-r)^{2 p}}
\end{aligned}
$$

This shows that for $|z|=r<1$

$$
\left|\frac{f(z)}{z^{p}}\right| \leq \frac{1}{(1-r)^{2 p}}
$$

Applying the same method as the above, we can obtain for $|z|=r<1$

$$
\frac{1}{(1+r)^{2 p}} \leq\left|\frac{f(z)}{z^{p}}\right|
$$

The sharpness of (18) shows the function

$$
\begin{equation*}
g(z)=\left[\frac{z}{(1-z)^{2}}\right]^{p}=z^{p}+\cdots \tag{16}
\end{equation*}
$$

This completes the proof of Theorem 2.6.

Theorem 2.7. If $f(z) \in \mathcal{A}_{p}, p \geq 2, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad z \in \mathbb{D} \tag{17}
\end{equation*}
$$

then for $|z|=r<1$, we have

$$
\begin{equation*}
\frac{p r^{p-1}(1-r)}{(1+r)^{2 p+1}} \leq\left|f^{\prime}(z)\right| \leq \frac{p r^{p-1}(1+r)}{(1-r)^{2 p}} \tag{18}
\end{equation*}
$$

The bounds are sharp.
Proof. By the same reason as in the proof of Theorem 2.6, we have for $|z|=r<1$

$$
\frac{1-r}{1+r} \leq \mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{p f(z)}\right\} \leq \frac{1+r}{1-r}
$$

Applying Theorem 2.6 we easily have the proof of Theorem 2.7. The sharpness of (20) shows the function (16).

Theorem 2.8. If $f(z) \in \mathcal{A}_{p}, p \geq 2, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{f^{(p-1)}(z)}{z}\right\}>0, \quad z \in \mathbb{D}, \tag{19}
\end{equation*}
$$

then, we have

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0, \quad|z|<\sqrt{2}-1 \tag{20}
\end{equation*}
$$

The bound is sharp.
Proof. Let us put

$$
q(z)=\frac{f^{(p-1)}(z)}{z p!}, \quad q(0)=1
$$

From the hypothesis (19), we have

$$
\mathfrak{R e}\{q(z)\}>0, \quad z \in \mathbb{D}
$$

Applying [7, p.186], [12, Th.2], we have

$$
\left|\frac{z q^{\prime}(z)}{q(z)}\right|=\left|\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}-1\right| \leq \frac{2|z|}{1-|z|^{2}}, \quad z \in \mathbb{D}
$$

Therefore, we have

$$
\left|\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}-1\right|<1 \quad \text { for } \quad|z|<\sqrt{2}-1
$$

and so

$$
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0 \quad \text { for } \quad|z|<\sqrt{2}-1
$$

It is easy to check that the function $f_{1}(z)$ such that

$$
f_{1}^{(p-1)}(z)=\frac{z(1+z)}{1-z}
$$

gives

$$
\left.\frac{z f_{1}^{(p)}(z)}{f_{1}^{(p-1)}(z)}\right|_{z=1-\sqrt{2}}=\left.\frac{1+2 z-z^{2}}{1-z^{2}}\right|_{z=1-\sqrt{2}}=0
$$

which shows the sharpness of (20).

Corollary 2.9. If $f(z) \in \mathcal{A}_{p}, p \geq 2, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and if

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{f^{(p-1)}(z)}{z}\right\}>0, \quad z \in \mathbb{D} \tag{21}
\end{equation*}
$$

then, $f(z)$ is p-valently starlike in $|z|<\sqrt{2}-1$. The bound is sharp.
Proof. From Theorem 2.8, we have (19). Then from Corollary 1.2 we have

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad|z|<\sqrt{2}-1
$$

Theorem 2.10. Let $f(z) \in \mathcal{A}_{p}, p \geq 2, f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, z \in \mathbb{D}$ and let

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{f^{(k)}(z)}{z^{p-k}}\right\}>0, \quad z \in \mathbb{D} \tag{22}
\end{equation*}
$$

for some integer $k \in[0, p]$. Then $f(z)$ is p-valently convex in $\left(\sqrt{1+p^{2}}-1\right) / p$ i.e.

$$
\begin{equation*}
1+\mathfrak{R e}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad|z|<\left(\sqrt{1+p^{2}}-1\right) / p \tag{23}
\end{equation*}
$$

The result is sharp.
Proof. Let us put

$$
q(z)=\frac{f^{(k)}(z)}{(p)_{k} z^{p-k}}, \quad q(0)=1
$$

Then it follows that

$$
\frac{z q^{\prime}(z)}{q(z)}=\frac{z f^{(k+1)}(z)}{f^{(k)}(z)}-(p-k)=k+\frac{z f^{(k+1)}(z)}{f^{(k)}(z)}-p, \quad z \in \mathbb{D} .
$$

And so from the hypothesis (22), applying [7, p.186], [12, Th.2], we have

$$
\left|\frac{z q^{\prime}(z)}{q(z)}\right|=\left|k+\frac{z f^{(k+1)}(z)}{f^{(k)}(z)}-p\right| \leq \frac{2|z|}{1-|z|^{2}}, \quad z \in \mathbb{D} .
$$

Therefore, we have

$$
\mathfrak{R e}\left\{k+\frac{z f^{(k+1)}(z)}{f^{(k)}(z)}\right\}>0, \quad|z|<\left(\sqrt{1+p^{2}}-1\right) / p
$$

Applying Corollary 1.5, we have

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad|z|<\left(\sqrt{1+p^{2}}-1\right) / p
$$

Further, taking the function $f(z)$ given by

$$
f(z)=\left(\frac{1+z}{1-z}\right) z^{p}, \quad \text { zin } \mathbb{D}
$$

we see that the result is sharp.

References

[1] O. Altintaş, Neighborhoods of certain p-valently analytic functions with negative coefficients, Applied Math. Computation 187(1)(2007) 47-53.
[2] M. K. Aouf, R. M. El-Ashwah, H. M. Zayed, Fekete-Szegö inequalities for p-valent starlike and convex functions of complex order, J. Egyptian Math. Society 22(2)(2014) 190-196.
[3] M. K. Aouf, T. Bulboacă, R. M. El-Ashwah, Subordination properties of multivalent functions involving an extended fractional differintegral operator, Acta Math. Scientia 34(2)(2014) 367-379.
[4] M. Arif, J. Sokół, M. Ayaz, Sufficient condition for functions to be in a class of meromorphic multivalent Sakaguchi type spiral-like functions, Acta Math. Scientia 34(2)(2014) 575-578.
[5] S. Bulut, B. A. Frasin, Starlikeness of a new general integral operator for meromorphic multivalent functions, J. Egyptian Math. Society 22(3)(2014) 362-364.
[6] B. A. Frasin, Convexity of integral operators of p-valent functions, Math. Computer Modelling 51(56)(2010) 601-605.
[7] G. Goluzin, Zur Teorie der schlichten konformen Abblidungen, Math. Sb. (N. S.) 42(1935) 169-190.
[8] S. G. Hamidi, S. A. Halim, J. Sokół, Starlikeness and subordination properties of a linear operator, Acta Math. Scientia 34(5)(2014) 1446-1460.
[9] M. Kamali, On certain meromorphic p-valent starlike functions, J. Franklin Institute 344(6)(2007) 867-872.
[10] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain class of analytic functions, Proc. Amer. Math. Soc. 20(1969) 8-12.
[11] J.-L. Liu, H. M. Srivastava, Some convolution conditions for starlikeness and convexity of meromorphically multivalent functions, Applied Math. Letters 16(1)(2003) 13-16.
[12] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104(1962) 532-537.
[13] M. Nunokawa, On the theory of multivalent functions, Tsukuba J. Math. 11(2)(1987) 273-286.
[14] M. Nunokawa, On Properties of Non-Carathéodory Functions, Proc. Japan Acad. Ser. A 68(6)(1992) 152-153.
[15] Rosihan M. Ali, V. Ravichandran, N. Seenivasagan, Coefficient bounds for p-valent functions, Applied Math. Computation 187(1)(2007) 35-46.
[16] H. Tang, G.-T. Deng, S.-H. Li, Certain subclasses of p-valently analytic functions involving a generalized fractional differintegral operator, J. Egyptian Math. Society 22(1)(2014) 36-44.
[17] D.-G. Yang, J.-L. Liu, Some sufficient conditions for p-valent strongly starlike functions, Computers Math. Appl. 59(6)(2010) 2018-2025.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80
 Keywords. univalent functions; starlike; convex; close-to-convex.
 Received: 02 August 2018; Accepted: 10 October 2018
 Communicated by Miodrag Mateljević
 Corresponding Author: Janusz Sokół
 Email addresses: mamoru_nuno@doctor.nifty.jp (Mamoru Nunokawa), jsokol@ur. edu.pl (Janusz Sokół), nikola.tuneski@mf.edu.mk (Nikola Tuneski)

