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aUniversity of Gunma, Hoshikuki-Cho 798-8, Chuou-Ward, Chiba 260-0808, Japan
bCollege of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland

cFaculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of North Macedonia

Abstract. We consider the class Ap of functions f analytic in the unit disk |z| < 1 in the complex plane,
of the form f (z) = zp + . . . such that Rez f (p)(z)/ f (p−1)(z) > 0 in the unit disc. The object of the present paper
is to derive some bounds for coefficients in this class and relation with the functions satisfying condition
Re f (k)(z)/ f (p−k)(z) > 0 in the unit disc.

1. Introduction

We denote by H the class of functions f (z) which are holomorphic in the open unit disc D = {z ∈ C :
|z| < 1}. A function f analytic in a domain D ∈ C is called p-valent in D, if for every complex number w, the
equation f (z) = w has at most p roots in D, so that there exists a complex number w0 such that the equation
f (z) = w0 has exactly p roots in D. The properties of multivalent functions under several operators were
established recently in several papers, see for instance [3, 6, 8, 16]. Meromorphic multivalent functions was
considered recently in [4, 5, 9]. Denote byAp, p ∈N = {1, 2, . . .}, the class of functions f (z) ∈ H given by

f (z) = zp +

∞∑
n=p+1

anzn, (z ∈ D). (1)

Let A = A1. Let S denote the class of all functions in A which are univalent. Also let S∗p and Cp be the
subclasses ofAp defined as follows

S
∗

p =

{
f (z) ∈ Ap : Re

{
z f ′(z)

f (z)

}
> 0, z ∈ D

}
,

Cp =

{
f (z) ∈ Ap : Re

{
1 +

z f ′′(z)
f ′(z)

}
> 0, z ∈ D

}
.

The classes S∗p and Cp will be called the class of p-valently starlike functions and the class of p-valently
convex functions, respectively. Note that S∗1 = S∗ and C1 = C, where S∗ and C are usual classes of starlike
and convex functions respectively.

In this paper we need the following lemmas.
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Lemma 1.1. [13, Theorem 5] If f (z) ∈ Ap, then for all z ∈ D, we have

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0 ⇒ ∀k ∈ {1, . . . , p − 1} : Re

{
z f (k)(z)
f (k−1)(z)

}
> 0. (2)

Corollary 1.2. If f (z) ∈ Ap, then for r ∈ (0, 1], we have

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, |z| < r ⇒ ∀k ∈ {1, . . . , p − 1} : Re

{
z f (k)(z)
f (k−1)(z)

}
> 0, |z| < r.

Lemma 1.3. [14] Let p be analytic function in |z| < 1, with p(0) = 1. If there exists a point z0, |z0| < 1, such that

Re{p(z)} > 0 f or |z| < |z0|

and

p(z0) = ±ia

for some a > 0, then we have

z0p′(z0)
p(z0)

=
2ik arg

{
p(z0)

}
π

, (3)

for some k ≥ (a + a−1)/2 ≥ 1.

Lemma 1.4. [13] If f (z) ∈ Ap, and there exists a positive integer j, 1 ≤ j ≤ p for which

Re

{
j +

z f ( j+1)(z)
f ( j)(z)

}
> 0, (z ∈ D), (4)

then for all z ∈ D we have

∀k ∈ {1, . . . , j} : Re

{
k − 1 +

z f (k)(z)
f (k−1)(z)

}
> 0. (5)

Corollary 1.5. If f (z) ∈ Ap, and there exists a positive integer j, 1 ≤ j ≤ p for which

Re

{
j +

z f ( j+1)(z)
f ( j)(z)

}
> 0, (|z| < r), (6)

then for |z| < r, we have

∀k ∈ {1, . . . , j} : Re

{
k − 1 +

z f (k)(z)
f (k−1)(z)

}
> 0, (|z| < r). (7)

2. Main results

Coefficient bounds for p-valent functions was considered recently in [15] while the coefficient neigh-
borhoods of certain p-valently analytic functions with negative coefficients, in [1]. Some convolution
(Hadamard product) conditions for starlikeness and convexity of meromorphically multivalent functions
one can find in [11].

Let (x)n denote the Pochhammer symbol which is defined in term of Gamma function Γ as:

(x)n =
Γ(x + n)

Γ(x)
=

{
1 for n = 0, x , 0,
x(x + 1) . . . (x + n − 1) for k ∈N = {1, 2, 3, . . .}.
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Theorem 2.1. If f (z) ∈ Ap, p ≥ 2, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, z ∈ D, (8)

then for n ≥ p, we have

|an| ≤
p!(n − p + 1)

n(n − 1)(n − 2) . . . (n − (p − 2))
=

p!(n − p + 1)
(n − p + 2)p−1

The result is sharp.

Proof. If a function f (z) satisfies (8), then f (p−1)(z)/p! = z + b2z2 + · · · is a starlike function. Therefore, the
coefficients of f (p−1)(z)/p! satisfy

|bn| ≤ n.

From this we can obtain the bound for |an|. We have that bn−p+1 = n(n − 1)(n − 2) . . . (n − (p − 2))an/p!, so
|an| ≤ p!(n − p + 1)/[n(n − 1)(n − 2) . . . (n − (p − 2))] for n ≥ p. To show that the bound is sharp it suffices to
prove that the function

fp(z) =

∞∑
n=p

p!(n − p + 1)
n(n − 1)(n − 2) . . . (n − (p − 2))

zn, z ∈ D, (9)

satisfies (8). We have

f (p−1)
p (z)/p! =

z
(1 − z)2

so (8) holds.

It is well known that if f (z) ∈ A1, then |an| ≤ n. From this and from Theorem 2.1 we the following corollary
for p ≥ 1.

Corollary 2.2. If f (z) ∈ Ap, p ≥ 1, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, z ∈ D,

then we have

|ap+1| ≤
4

p + 1
, |ap+2| ≤

18
(p + 1)(p + 2)

, . . . , |ap+k| ≤ (k + 1)
(k + 1)!

(p + 1) . . . (p + k)
.

The result is sharp.

Corollary 2.2 implies that the function (9) may be written as

fp(z) = zp +
4zp+1

p + 1
+

18zp+2

(p + 1)(p + 2)
+

∞∑
k=3

(k + 1)
(k + 1)!

(p + 1) . . . (p + k)
zp+k, z ∈ D. (10)

Now we prove an inequality of type Fekete-Szegö type for functions satisfying (8). Fekete-Szegö
inequalities for p-valent starlike and convex functions of complex order was considered recently in [2].
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Theorem 2.3. If f (z) ∈ Ap, p ≥ 1, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, z ∈ D,

then for any complex number µ, we have∣∣∣∣ap+2 − µa2
p+1

∣∣∣∣ ≤ 6
(p + 1)(p + 2)

max {1, |2λ − 1|} , (11)

where

λ =
4µ(p + 2)
3(p + 1)

− 1.

The bound is sharp.

Proof. We have

z f (p)(z) = f (p−1)(z)
[
1 + q1z + q2z2 + · · ·

]
,

where Re{1 + q1z + q2z2 + · · · } > 0 inD. This leads us to the conclusion

ap+1 =
2q1

p + 1
, ap+2 =

3(q2
1 + q2)

(p + 1)(p + 2)
.

Thus we have∣∣∣∣ap+2 − µa2
p+1

∣∣∣∣ =
3

(p + 1)(p + 2)

∣∣∣∣∣q2 −
4µ(p + 2) − 3(p + 1)

3(p + 1)
q2

1

∣∣∣∣∣ . (12)

In [10] it was proved that for any complex number λ the following sharp estimate holds

|q2 − λq2
1| ≤ 2 max {1, |2λ − 1|} . (13)

Therefore, applying (13) in (12) gives sharp bound (11).

Corollary 2.4. If p = 1, then (11) becomes the known sharp result [10]

|a3 − µa2
2| ≤ max

{
1, |4µ − 3|

}
,

for starlike functions, i.e. the solution of Fekete-Szegö problem in the class of starlike functions.

If µ = 1, then (11) becomes the following sharp result.

Corollary 2.5. If f (z) ∈ Ap, p ≥ 1, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, z ∈ D,

then we have∣∣∣∣ap+2 − a2
p+1

∣∣∣∣ ≤ 6
(p + 1)(p + 2)

max
{

1,
|7 − p|

3(p + 1)

}
.

The bound is sharp which show the coefficients of (10).
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Theorem 2.6. If f (z) ∈ Ap, p ≥ 2, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, z ∈ D, (14)

then for |z| = r < 1, we have

1
(1 + r)2p ≤

∣∣∣∣∣ f (z)
zp

∣∣∣∣∣ ≤ 1
(1 − r)2p . (15)

The bounds are sharp.

Proof. From (14) and from Lemma 1.1, we have

Re

{
z f ′(z)

f (z)

}
> 0, z ∈ D,

z f ′(z)
f (z)

∣∣∣∣∣
z=0

= p,

and so we have for |z| = r < 1

1 − r
1 + r

≤ Re

{
z f ′(z)
p f (z)

}
≤

1 + r
1 − r

.

Then it follows that

log
∣∣∣∣∣ f (z)

zp

∣∣∣∣∣ = Re

∫ z

0

(
f ′(t)
f (t)
−

p
t

)
dt

= Re

∫ z

0

p
t

(
t f ′(t)
p f (t)

− 1
)

dt

= Re

∫ r

0

p
ρeiθ

(
t f ′(t)
p f (t)

− 1
)

eiθdρ

=

∫ r

0
Re

{
p
ρ

(
t f ′(t)
p f (t)

− 1
)}

dρ

≤

∫ r

0

p
ρ

(
1 + ρ

1 − ρ
− 1

)
dρ

=

∫ r

0

2p
1 − ρ

dρ = log
1

(1 − r)2p .

This shows that for |z| = r < 1∣∣∣∣∣ f (z)
zp

∣∣∣∣∣ ≤ 1
(1 − r)2p .

Applying the same method as the above, we can obtain for |z| = r < 1

1
(1 + r)2p ≤

∣∣∣∣∣ f (z)
zp

∣∣∣∣∣ .
The sharpness of (18) shows the function

1(z) =

[
z

(1 − z)2

]p

= zp + · · · . (16)

This completes the proof of Theorem 2.6.
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Theorem 2.7. If f (z) ∈ Ap, p ≥ 2, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, z ∈ D, (17)

then for |z| = r < 1, we have

prp−1(1 − r)
(1 + r)2p+1 ≤

∣∣∣ f ′(z)
∣∣∣ ≤ prp−1(1 + r)

(1 − r)2p . (18)

The bounds are sharp.

Proof. By the same reason as in the proof of Theorem 2.6, we have for |z| = r < 1

1 − r
1 + r

≤ Re

{
z f ′(z)
p f (z)

}
≤

1 + r
1 − r

.

Applying Theorem 2.6 we easily have the proof of Theorem 2.7. The sharpness of (20) shows the function
(16).

Theorem 2.8. If f (z) ∈ Ap, p ≥ 2, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
f (p−1)(z)

z

}
> 0, z ∈ D, (19)

then, we have

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, |z| <

√

2 − 1. (20)

The bound is sharp.

Proof. Let us put

q(z) =
f (p−1)(z)

zp!
, q(0) = 1.

From the hypothesis (19), we have

Re{q(z)} > 0, z ∈ D.

Applying [7, p.186], [12, Th.2], we have∣∣∣∣∣zq′(z)
q(z)

∣∣∣∣∣ =

∣∣∣∣∣∣ z f (p)(z)
f (p−1)(z)

− 1

∣∣∣∣∣∣ ≤ 2|z|
1 − |z|2

, z ∈ D.

Therefore, we have∣∣∣∣∣∣ z f (p)(z)
f (p−1)(z)

− 1

∣∣∣∣∣∣ < 1 for |z| <
√

2 − 1

and so

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0 for |z| <

√

2 − 1.
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It is easy to check that the function f1(z) such that

f (p−1)
1 (z) =

z(1 + z)
1 − z

gives

z f (p)
1 (z)

f (p−1)
1 (z)

∣∣∣∣∣∣∣
z=1−

√
2

=
1 + 2z − z2

1 − z2

∣∣∣∣∣∣
z=1−

√
2

= 0

which shows the sharpness of (20).

Corollary 2.9. If f (z) ∈ Ap, p ≥ 2, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and if

Re

{
f (p−1)(z)

z

}
> 0, z ∈ D, (21)

then, f (z) is p-valently starlike in |z| <
√

2 − 1. The bound is sharp.

Proof. From Theorem 2.8, we have (19). Then from Corollary 1.2 we have

Re

{
z f ′(z)

f (z)

}
> 0, |z| <

√

2 − 1.

Theorem 2.10. Let f (z) ∈ Ap, p ≥ 2, f (z) = zp + ap+1zp+1 + · · · , z ∈ D and let

Re

{
f (k)(z)
zp−k

}
> 0, z ∈ D (22)

for some integer k ∈ [0, p]. Then f (z) is p-valently convex in (
√

1 + p2 − 1)/p i.e.

1 +Re

{
z f ′′(z)
f ′(z)

}
> 0, |z| < (

√
1 + p2 − 1)/p. (23)

The result is sharp.

Proof. Let us put

q(z) =
f (k)(z)

(p)kzp−k
, q(0) = 1.

Then it follows that

zq′(z)
q(z)

=
z f (k+1)(z)

f (k)(z)
− (p − k) = k +

z f (k+1)(z)
f (k)(z)

− p, z ∈ D.

And so from the hypothesis (22), applying [7, p.186], [12, Th.2], we have∣∣∣∣∣zq′(z)
q(z)

∣∣∣∣∣ =

∣∣∣∣∣∣k +
z f (k+1)(z)

f (k)(z)
− p

∣∣∣∣∣∣ ≤ 2|z|
1 − |z|2

, z ∈ D.
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Therefore, we have

Re

{
k +

z f (k+1)(z)
f (k)(z)

}
> 0, |z| < (

√
1 + p2 − 1)/p.

Applying Corollary 1.5, we have

Re

{
1 +

z f ′′(z)
f ′(z)

}
> 0, |z| < (

√
1 + p2 − 1)/p.

Further, taking the function f (z) given by

f (z) =
(1 + z

1 − z

)
zp, zinD,

we see that the result is sharp.
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