A Criterion for Univalent Meromorphic Functions

El Moctar Ould Beiba ${ }^{\text {a }}$
${ }^{a}$ Département de Mathématiques et Informatique
Faculté des Sciences et Techniques
Université de Nouakchott Al Aasriya
B.P 5026, Nouakchott, Mauritanie

Abstract

Let $\mathbb{D}=\{z \in \mathbb{C},|z|<1\}$ and $\mathcal{A}(p)$ be the set of meromorphic functions in \mathbb{D} possessing only simple pole at the point p with $p \in(0,1)$. The aim of this paper is to give a criterion by mean of conditions on the parameters $\alpha, \beta \in \mathbb{C}, \lambda>0$ and $g \in \mathcal{A}(p)$ for functions in the class denoted $\mathcal{P}_{\alpha, \beta ; h}(p ; \lambda)$ of functions $f \in \mathcal{A}(p)$ satisfying a differential Inequality of the form $$
\left|\alpha\left(\frac{z}{f(z)}\right)^{\prime \prime}+\beta\left(\frac{z}{g(z)}\right)^{\prime \prime}\right| \leq \lambda \mu, z \in \mathbb{D}
$$

to be univalent in the disc \mathbb{D}, where $\mu=\left(\frac{1-p}{1+p}\right)^{2}$.

1. Introduction

Let \mathcal{M} be the set of meromorphic functions in the region $\Delta=\{\zeta \in \mathbb{C},|\zeta|>1\} \cup\{\infty\}$ with the following Laurent development

$$
\begin{equation*}
F(\zeta)=\zeta+\sum_{n=0}^{\infty} b_{n} \zeta^{-n}, \zeta \in \Delta \tag{1.1}
\end{equation*}
$$

Let Σ be the subset of \mathcal{M} consisting of univalent functions. \mathcal{A} is the set of analytic functions f in the unit disc \mathbb{D} normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. The subset of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S}. If $f \in \mathcal{A}$, then the function F defined by

$$
\begin{equation*}
F(\zeta)=\frac{1}{f\left(\frac{1}{\zeta}\right)} \tag{1.2}
\end{equation*}
$$

belongs to \mathcal{M} and f is univalent in \mathbb{D} if and only if F is univalent in Δ. In [1], Aksentév proved that a function F in \mathcal{M} is univalent if its derivative F^{\prime} satisfies the differential Inequality:

$$
\begin{equation*}
\left|F^{\prime}(\zeta)-1\right|<1, \zeta \in \Delta \tag{1.3}
\end{equation*}
$$

[^0]If F and f are as in (1.2) then the condition (1.3) is equivalent to

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right|<1, z \in \mathbb{D} \tag{1.4}
\end{equation*}
$$

Hence, by virtue of the Aksentìe criterion, a criterion for a function $f \in \mathcal{A}$ with $\frac{f(z)}{z} \neq 0$ for $|z|<1$ to be univalent is stated as follows:

$$
\begin{equation*}
\left|U_{f}(z)\right|<1, z \in \mathbb{D} \tag{1.5}
\end{equation*}
$$

where $U_{f}(z):=\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1$.
Ozaki and Nunokawa proved in [11], without using the theorem of Aksentév, that functions in \mathcal{A} satisfying (1.4) are univalent.

For $\lambda \in(0,1]$, let $\mathcal{U}(\lambda)$ be the subclass of $\mathcal{U}=\mathcal{U}(1)$ defined by

$$
\begin{equation*}
\mathcal{U}(\lambda)=\left\{f \in \mathcal{A},\left|U_{f}(z)\right|<\lambda, z \in \mathbb{D}\right\} . \tag{1.6}
\end{equation*}
$$

The classes $\mathcal{U}(\lambda)$ have been extensively studied by many authors and the results obtained cover a wide range of properties (starlikeness, convexity, coefficients properties, radius properties, etc.). For more details on this subjects see [4]-[8] and references therein.
In their article [7], Obradović and Ponnusamy considered the subclass $\mathcal{P}_{\alpha, \beta ; g}(\lambda)$ of functions f in \mathcal{A} such that $\frac{f(z)}{z} \neq 0$ for $z \in \mathbb{D}$ and satisfying the differential inequality

$$
\begin{equation*}
\left|\alpha\left(\frac{z}{f(z)}\right)^{\prime \prime}+\beta\left(\frac{z}{g(z)}\right)^{\prime \prime}\right| \leq \lambda, z \in \mathbb{D} \tag{1.7}
\end{equation*}
$$

where $\alpha \neq 0, \beta$ are given complex numbers and g is a given function in \mathcal{A} with $\frac{g(z)}{z} \neq 0$ in \mathbb{D}. One of their main results was the following theorem:
Theorem 1.1. Let $g \in \mathcal{A}$ with $\frac{g(z)}{z} \neq 0$ in \mathbb{D} and $K=\sup _{z \in \mathbb{D}}\left|\left(\frac{z}{g(z)}\right)^{2} g^{\prime}(z)-1\right|$. Then we have

$$
\begin{equation*}
\mathcal{P}_{\alpha, \beta ; g}(2 \lambda|\alpha|-2 K|\beta|) \subset \mathcal{U}(\lambda) \tag{1.8}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\mathcal{P}_{\alpha, \beta ; g}(2|\alpha|-2 K|\beta|) \subset \mathcal{U}(1) . \tag{1.9}
\end{equation*}
$$

Let $p \in(0,1)$ and $\mathcal{A}(p)$ be the set of meromorphic functions in \mathbb{D} normalized by $f(0)=f^{\prime}(0)-1=0$ and possessing only simple pole at the point p. Each function f in $\mathcal{A}(p)$ has a Laurent expansion of the form

$$
\begin{equation*}
f(z)=\frac{m}{z-p}+\frac{m}{p}+\left(\frac{m}{p^{2}}+1\right) z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in \mathbb{D} \backslash\{p\}, m \neq 0 \tag{1.10}
\end{equation*}
$$

where m is the residue of f at $p(m \neq 0)$. Our investigations will concern functions in $\mathcal{A}(p)$ satisfying the condition

$$
\begin{equation*}
\left|1+\frac{p^{2}}{m}\right|<1 \tag{1.11}
\end{equation*}
$$

In a recent paper [2], Bhowmik and Parveen introduced, for $0<\lambda \leq 1$, a meromorphic analogue of the class $\mathcal{U}(\lambda)$, namely the class $\mathcal{U}_{p}(\lambda)$ consisting of functions f in $\mathcal{A}(p)$ satisfying

$$
\begin{equation*}
\left|U_{f}(z)\right| \leq \lambda \mu, z \in \mathbb{D} \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{f}(z)=\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1, z \in \mathbb{D} \text { and } \mu=\left(\frac{1-p}{1+p}\right)^{2} \tag{1.13}
\end{equation*}
$$

They obtained some results for the class $\mathcal{U}_{p}(\lambda)$, in particular they proved the following theorem :
Theorem 1.2. (Theorem 1, [2]) Let f be of the form (1.10). If

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right| \leq\left(\frac{1-p}{1+p}\right)^{2}, z \in \mathbb{D}
$$

, then f is univalent in \mathbb{D}.
Note that Ponnusamy and Wirths have proved by elegant method (Theorem 2, [12]), that functions in $\mathcal{U}_{p}(\lambda)$ are univalent on the closure of the disc \mathbb{D}.

The main object of the present paper is to give, for the class $\mathcal{A}(p)$, an analog result to the Theorem 1.1 obtained for the class \mathcal{A}.

2. Main Results

We start by some "round trip" results between the classes $\mathcal{A}(p)$ and \mathcal{A}.
Proposition 2.1. Let $f(z)=\frac{m}{z-p}+\frac{m}{p}+\frac{m+p^{2}}{p^{2}} z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be a function in $\mathcal{A}(p)$ such that $\frac{f(z)}{z} \neq 0$ in \mathbb{D} and $-c$ be an omitted value by f. Let g be defined by

$$
\begin{equation*}
g(z)=\frac{c f(z)}{c+f(z)} \tag{2.1}
\end{equation*}
$$

Then $g \in \mathcal{A}$ and we have

$$
\begin{align*}
& g(p)=c, g^{\prime}(p)=-\frac{c^{2}}{m}=-\frac{g^{2}(p)}{m} \tag{2.2}\\
& U_{g}(p)=-1-\frac{p^{2}}{m} \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{z \rightarrow p} U_{f}(z)=U_{g}(p)=-1-\frac{p^{2}}{m} \tag{2.4}
\end{equation*}
$$

Proof. Since f is holomorphic in $\mathbb{D} \backslash\{p\}, g$ is also holomorphic in $\mathbb{D} \backslash\{p\}$. It is easy to check that $g(0)=g^{\prime}(0)-1=0$.
For the value of $g(p)$, we have

$$
g(p)=\lim _{z \rightarrow p} g(z)=\lim _{z \rightarrow p} \frac{c f(z)}{c+f(z)}=\lim _{z \rightarrow p} \frac{c(z-p) f(z)}{c(z-p)+(z-p) f(z)}=\frac{c m}{m}=c .
$$

To conclude that $g \in \mathcal{A}$, we have to prove that $g^{\prime}(p)$ exists.
We have, by (2.1, that

$$
\lim _{z \rightarrow p} \frac{g(z)-g(p)}{z-p}=\lim _{z \rightarrow p} \frac{g(z)-c}{z-p}=\lim _{z \rightarrow p} \frac{-c^{2}}{c(z-p)+(c-p) f(z)}=\frac{-c^{2}}{m}
$$

Thus $g^{\prime}(p)$ exists and its value gives (2.2). Now, taking (2.2) in the expression of U_{g}, we get

$$
U_{g}(p)=-\left(\frac{p}{c}\right)^{2} \frac{c^{2}}{m}-1=-1-\frac{p^{2}}{m} .
$$

To prove (2.4), we have by a little calculation

$$
\begin{equation*}
U_{f}(z)=U_{g}(z), z \in \mathbb{D} \backslash\{p\} . \tag{2.5}
\end{equation*}
$$

Thus we have

$$
\lim _{z \rightarrow p} U_{f}(z)=U_{g}(p)
$$

which yields, by (2.3), the desired result.

Remark 2.2. We obtain from (2.4) that a necessary condition for f in $\mathcal{A}(p)$ to be in $\mathcal{U}_{p}(\lambda)$ is that $\left|1+\frac{p^{2}}{m}\right| \leq \lambda \mu$, where m is the residue of f at p.

Proposition 2.3. Let $p \in(0,1)$ and $g \in \mathcal{A}$ such that $g^{\prime}(p) \neq 0$ and $g(z)-g(p)$ has no zero in $\mathbb{D} \backslash\{p\}$. We suppose also that g satisfies the following condition

$$
\begin{equation*}
\left|g^{2}(p)-g^{\prime}(p) p^{2}\right|<\left|g^{2}(p)\right| \tag{2.6}
\end{equation*}
$$

Then, the function f defined by

$$
f(z)=\frac{-g(p) g(z)}{g(z)-g(p)}
$$

belongs to $\mathcal{A}(p)$ and satisfies (1.11). If in addition g is univalent, then f is also univalent.
Proof. It is obvious that f is holomorphic in $\mathbb{D} \backslash\{p\}$ and that $f(p)=\infty$. We get by a simple calculation

$$
\lim _{z \rightarrow p}(z-p) f(z)=-\frac{g^{2}(p)}{g^{\prime}(p)}
$$

From (2.6) we have $g(p) \neq 0$. Hence the limit above shows that f has a simple pole with residue $m=-\frac{g^{2}(p)}{g^{\prime}(p)}$ at the point p. By the condition (2.6) we have

$$
\left|1-\frac{p^{2} g^{2}(p)}{g^{\prime}(p)}\right|<1
$$

and hence f satisfies the condition (1.11).
It is easy to verify that f is univalent if g is univalent.

Remark 2.4. The condition (2.6) is satisfied when $g \in \mathcal{U}(1)$;
Let $\mathcal{P}_{\alpha, \beta ; h}(p ; \lambda)$ be the set of functions f in $\mathcal{A}(p)$ of the form (1.10) such that $\frac{f(z)}{z} \neq 0$ in \mathbb{D} and satisfying the condition

$$
\begin{equation*}
\left|\alpha\left(\frac{z}{f(z)}\right)^{\prime \prime}+\beta\left(\frac{z}{h(z)}\right)^{\prime \prime}\right| \leq \lambda \mu, z \in \mathbb{D} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|1+\frac{p^{2}}{m}\right| \leq \lambda \mu, \tag{2.8}
\end{equation*}
$$

where $\alpha \neq 0, \beta$ are given complex numbers and h is a given function in $\mathcal{A}(p)$ with $\frac{h(z)}{z} \neq 0$ in \mathbb{D}.
We observe that $\mathcal{P}_{1,0 ; h}(p ; \lambda)$ doesn't depend on the function h and thus will be simply noted $\mathcal{P}(p ; \lambda)$. The particular case where $\lambda=2$ has been considered by Bhowmik and Parveen in [3].

We need the following Lemma:
Lemma 2.5. Let $0<\lambda<\mu^{-1}$. If f belongs to $\mathcal{U}_{p}(\lambda)$ then, f is univalent in \mathbb{D}.
Proof. Let $-c$ be an omitted value for f and let $g=\frac{c f}{c+f}$. As seen above we have

$$
U_{g}(z)=U_{f}(z)
$$

and hence $g \in \mathcal{U}(\lambda \mu)$. Since $\lambda \mu<1, g$ belongs to $\mathcal{U}(1)$ and thus it is univalent. This implies that f is univalent.

Theorem 2.6. Let $h \in \mathcal{A}(p)$ be such that $\frac{h(z)}{z} \neq 0$ for $z \in \mathbb{D}$ and

$$
K=\sup _{z \in \mathbb{D}}\left|\left(\frac{z}{h(z)}\right)^{2} h^{\prime}(z)-1\right|<+\infty
$$

If $f \in \mathcal{P}_{\alpha, \beta ; h}\left(p ; 2 \lambda|\alpha|-2 K \frac{|\beta|}{\mu}\right)$, then $f \in \mathcal{U}_{p}(\lambda)$. If in addition $\lambda<\mu^{-1}$, the function f is univalent in the disc \mathbb{D}. In particular, we have

$$
\mathcal{P}_{\alpha, \beta ; h}\left(p ; 2 \mu|\alpha|-2 K \frac{|\beta|}{\mu}\right) \subset \mathcal{U}_{p}(1) .
$$

Proof. Let $f \in \mathcal{P}_{\alpha, \beta ; h}\left(p ; 2 \lambda|\alpha|-2 K \frac{|\beta|}{\mu}\right)$. Let g and k be defined by

$$
\begin{equation*}
g=\frac{c f}{c+f} \text { and } k=\frac{d h}{d+h} \tag{2.9}
\end{equation*}
$$

where $-c$ and $-d$ are omitted values respectively by f and h. By Proposition $2.1, g$ and k belong to \mathcal{A}. A little calculation shows that $\frac{g(z)}{z} \neq 0$ and $\frac{k(z)}{z} \neq 0$ in \mathbb{D} and

$$
\begin{equation*}
\frac{z}{g(z)}=\frac{z}{f(z)}+\frac{z}{c} \text { and } \frac{z}{k(z)}=\frac{z}{h(z)}+\frac{z}{d} \tag{2.10}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left(\frac{z}{g(z)}\right)^{\prime \prime}=\left(\frac{z}{f(z)}\right)^{\prime \prime},\left(\frac{z}{k(z)}\right)^{\prime \prime}=\left(\frac{z}{h(z)}\right)^{\prime \prime} \tag{2.11}
\end{equation*}
$$

Since f belongs to $\mathcal{P}_{\alpha, \beta ; h}\left(p ; 2 \lambda|\alpha|-2 K \frac{|\beta|}{\mu}\right)$, we have by (2.11)

$$
\begin{equation*}
g \in \mathcal{P}_{\alpha, \beta ; k}(2 \lambda \mu|\alpha|-2 K|\beta|) . \tag{2.12}
\end{equation*}
$$

Applying (2.5) to h and k, we obtain

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left|\left(\frac{z}{k(z)}\right)^{2} k^{\prime}(z)-1\right|=K \tag{2.13}
\end{equation*}
$$

Moreover (2.12) and (2.13) give, by applying Theorem 1.1 to g and k,

$$
g \in \mathcal{U}(\lambda \mu)
$$

which gives from (2.5) and (2.8) that $f \in \mathcal{U}_{p}(\lambda)$.
If now $0<\lambda<\mu^{-1}$, then f is univalent by Lemma 2.5.
The second assertion of the theorem follows by taking $\lambda=1$ in the first one.
Let $p \in(0,1)$ and let $h(z)=\frac{z}{(z-p)\left(z-\frac{1}{p}\right)}$. A little calculation yields

$$
\sup \left|\left(\frac{z}{h(z)}\right)^{2} h^{\prime}(z)-1\right|=1 \text { and }\left(\frac{z}{h(z)}\right)^{\prime \prime}=2, z \in \mathbb{D}
$$

Corollary 2.7. Let $0<p<1$ and $f \in \mathcal{A}(p)$ with $\frac{f(z)}{z} \neq 0$ for $z \in \mathbb{D}$. Let $\alpha \neq 0$ and β be two complex numbers. If f satisfies

$$
\begin{equation*}
\left|\alpha\left(\frac{z}{f(z)}\right)^{\prime \prime}+\beta\right| \leq 2\left(\lambda \mu|\alpha|-\frac{|\beta|}{2}\right), z \in \mathbb{D} \tag{2.14}
\end{equation*}
$$

then $f \in \mathcal{U}_{p}(\lambda)$. If in addition $0<\lambda<\mu^{-1}$, then f is univalent in \mathbb{D}.
Proof. Let $h(z)=\frac{z}{(z-p)\left(z-\frac{1}{p}\right)}$. We have, as shown above, that

$$
\sup \left|\left(\frac{z}{h(z)}\right)^{2} h^{\prime}(z)-1\right|=1 \text { and }\left(\frac{z}{h(z)}\right)^{\prime \prime}=2
$$

Now, if f satisfies (2.14) then $f \in \mathcal{P}_{\alpha, \frac{\beta}{2} ; h}\left(p ; 2\left(\lambda|\alpha|-\frac{|\beta|}{2 \mu}\right)\right)$ and hence, by taking $K=1$ in the first statement of Theorem 2.6, we get the desired conclusion.

If we take $|\alpha|=1$ and $\beta=0$ in Corollary 2.7, we obtain the following
Corollary 2.8. Let $0<p<1$ and $f \in \mathcal{A}(p)$ with $\frac{f(z)}{z} \neq 0$ for $z \in \mathbb{D}$. If f satisfies

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leq 2 \lambda \mu, z \in \mathbb{D} \tag{2.15}
\end{equation*}
$$

then $f \in \mathcal{U}_{p}(\lambda)$, in other words, we have $\mathcal{P}(p ; 2 \lambda) \subset \mathcal{U}_{p}(\lambda)$. If in addition $0<\lambda<\mu^{-1}$, then functions in $\mathcal{P}(p ; 2 \lambda)$ are univalent .

Corollary 2.9. If $0<\lambda \leq 2$, then $\mathcal{P}(p ; \lambda) \subset \mathcal{U}_{p}(1)$ and hence functions in $\mathcal{P}(p ; \lambda)$ are univalent.
Proof. Since $\mu^{-1}>1,0<\frac{\lambda}{2}<\mu^{-1}$. Hence, the desired conclusion follows by applying Corollary 2.8 to $\frac{\lambda}{2}$.
Remark 2.10. If we take $\lambda=2$ in Corollary 2.9, we obtain Theorem 2 in [3].
We need the two followings lemmas:
Lemma 2.11. Let $g \in \mathcal{P}_{\alpha, \beta ; k}(\lambda)$. Then there exists a Schwarz function w in \mathbb{D} such that

$$
\frac{z}{g(z)}-1=-\frac{\beta}{\alpha}\left(\frac{z}{k(z)}+\frac{k^{\prime \prime}(0)}{2} z-1\right)-\frac{g^{\prime \prime}(0)}{2} z+\frac{\lambda z}{\alpha} \int_{0}^{1} \frac{w(t z)}{t}(1-t) d t .
$$

Proof. The proof can be extracted of the proof of Theorem 1.3 ([7], p.186).
Lemma 2.12. Let $h \in \mathcal{A}(p),-c$ be an omitted value for h and $k=\frac{c h}{c+h}$. Then,

$$
\begin{equation*}
1-\frac{z}{k(z)}-\frac{k^{\prime \prime}(0)}{2} z=1-\frac{z}{h(z)}-\frac{h^{\prime \prime}(0)}{2} z, z \in \mathbb{D} . \tag{2.16}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\frac{z}{k(z)}=\frac{z}{h(z)}+\frac{z}{c} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
k^{\prime \prime}(0)=h^{\prime \prime}(0)-\frac{2}{c} \tag{2.18}
\end{equation*}
$$

Taking (2.17) and (2.18) in the left side of (2.17), we get the desired conclusion.
The following theorem is an analogue result of Corollary 1.8 in [7].
Theorem 2.13. Let $f \in \mathcal{P}_{\alpha, \beta ; h}(p ; \lambda)$ and $M=\sup _{z \in \mathbb{D}}\left|1-\frac{z}{h(z)}-\frac{h^{\prime \prime}(0)}{2} z\right|$. Then

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right| \leq\left|\frac{\beta}{\alpha}\right| M+\frac{\left|f^{\prime \prime}(0)\right|}{2}|z|+\frac{\lambda \mu}{2|\alpha|}|z|^{2} . \tag{2.19}
\end{equation*}
$$

Proof. Let $-c$ and $-d$ be omitted values by f and h, respectively.Furthermore let g and k be defined by

$$
g=\frac{c f}{c+f^{\prime}}, \text { and } k=\frac{d h}{d+h^{\prime}}
$$

respectively. We have

$$
\begin{equation*}
\frac{z}{f(z)}-1=\frac{z}{g(z)}-1-\frac{z}{c} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{g^{\prime \prime}(0)}{2}=\frac{f^{\prime \prime}(0)}{2}-\frac{1}{c} \tag{2.21}
\end{equation*}
$$

Since $f \in \mathcal{P}_{\alpha, \beta ; h}(p, \lambda \mu)$, we have $g \in \mathcal{P}_{\alpha, \beta ; k}(\lambda \mu)$. Applying Lemma 2.11, we obtain

$$
\begin{equation*}
\frac{z}{g(z)}-1=-\frac{\beta}{\alpha}\left(\frac{z}{k(z)}+\frac{k^{\prime \prime}(0)}{2} z-1\right)-\frac{g^{\prime \prime}(0)}{2} z+\frac{\lambda \mu z}{\alpha} \int_{0}^{1} \frac{w(t z)}{t}(1-t) d t \tag{2.22}
\end{equation*}
$$

where w is a Schwarz function in \mathbb{D}. Taking (2.22) in (2.20), we obtain

$$
\begin{equation*}
\frac{z}{f(z)}-1=-\frac{\beta}{\alpha}\left(\frac{z}{k(z)}+\frac{k^{\prime \prime}(0)}{2} z-1\right)-\frac{g^{\prime \prime}(0)}{2} z-\frac{z}{c}+\frac{\lambda \mu z}{\alpha} \int_{0}^{1} \frac{w(t z)}{t}(1-t) d t . \tag{2.23}
\end{equation*}
$$

Now, taking (2.21) in (2.23), we get

$$
\begin{equation*}
\frac{z}{f(z)}-1=-\frac{\beta}{\alpha}\left(\frac{z}{k(z)}+\frac{k^{\prime \prime}(0)}{2} z-1\right)-\frac{f^{\prime \prime}(0)}{2} z+\frac{\lambda \mu z}{\alpha} \int_{0}^{1} \frac{w(t z)}{t}(1-t) d t \tag{2.24}
\end{equation*}
$$

The last equality gives us, using the fact that $|w(z)| \leq|z|$ in \mathbb{D},

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right| \leq\left|\frac{\beta}{\alpha}\right| \sup _{z \in \mathbb{D}}\left|\frac{z}{k(z)}+\frac{k^{\prime \prime}(0)}{2} z-1\right|+\frac{\left|f^{\prime \prime}(0)\right|}{2}|z|+\frac{\lambda \mu}{2|\alpha|}|z|^{2} . \tag{2.25}
\end{equation*}
$$

We have, by Lemma 2.12,

$$
\begin{equation*}
\left.\left.\sup _{z \in \mathbb{D}}\left|\frac{z}{k(z)}+\frac{k^{\prime \prime}(0)}{2} z-1\right|=\sup _{z \in \mathbb{D}} \right\rvert\, \frac{z}{h(z)}+\frac{h^{\prime \prime}(0)}{2} z-1\right) \mid=M \tag{2.26}
\end{equation*}
$$

Taking (2.26) in (2.25), we get the desired result.

As a consequence of Theorem 2.13, we have the following corollary:

Corollary 2.14. If z is a given point in \mathbb{D} then, we have
(1) $\left|\frac{z}{f(z)}-1\right| \leq\left(\frac{1}{p}+\frac{\lambda \mu p^{2}}{2}\right)|z|+\frac{\lambda \mu}{2}|z|^{2}, \quad \forall f \in \mathcal{P}(p ; \lambda)$;
(2) $\left|\frac{z}{f(z)}-1\right| \leq \frac{1}{p}+\frac{\lambda \mu p^{2}}{2}+\frac{\lambda \mu}{2}, \forall f \in \mathcal{P}(p ; \lambda)$.

Proof. Let $f \in \mathcal{P}(p ; \lambda)$. Taking $\alpha=1, \beta=0$ and $h(z)=\frac{p z}{p z^{2}+\left(1+p^{2}\right) z+p}$, the formula (2.24) gives

$$
\begin{equation*}
\frac{z}{f(z)}-1=-\frac{f^{\prime \prime}(0)}{2} z+\lambda \mu z \int_{0}^{1} \frac{w(t z)}{t}(1-t) d t \tag{2.27}
\end{equation*}
$$

Putting $z=p$ in the last equality, we obtain

$$
\begin{equation*}
\frac{f^{\prime \prime}(0)}{2}=\frac{1}{p}\left(1+\lambda \mu p \int_{0}^{1} \frac{w(t p)}{t}(1-t) d t\right) . \tag{2.28}
\end{equation*}
$$

Since w is a Schwarz function, the modulus of the integral in (2.28) is majored by $\frac{p^{2}}{2}$ and hence we have

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(0)}{2}\right| \leq \frac{1}{p}+\frac{\lambda \mu p^{2}}{2} \tag{2.29}
\end{equation*}
$$

Now, taking (2.29) in (2.19), where α, β and h as above, we obtain the estimation

$$
\begin{equation*}
\left|\frac{z}{f(z)}-1\right| \leq\left(\frac{1}{p}+\frac{\lambda \mu p^{2}}{2}\right)|z|+\frac{\lambda \mu}{2}|z|^{2} \tag{2.30}
\end{equation*}
$$

This achieves the proof of (1). The estimation (2) is an immediate consequence of (1).

3. Acknowledgement

The author thanks Karl-Joachim Wirths for his remarks and suggestions and careful reading of the first version of the manuscript.

References

[1] L.A. Aksentév, Sufficient conditions for univalence of regular functions. Izv. VysÅ. Ucebn. Zaved. Matematika. 1958, 1958, 3-7.
[2] B. Bhowmik and F. Parveen, On a subclass of meromorphic univalent functions, Complex Var. Elliptic Equ., 62 (2017), 494-510.
[3] B. Bhowmik and F. Parveen, Sufficient conditions for univalence and study of a class of meromorphic univalent functions, Bull. Korean. Math. Soc. 55 (2018), No. 3, 999-1006.
[4] R. Fournier and S. Ponnusamy, A Class of Locally Univalent Functions defined by a differential Inequality, Complex Var. and Elliptic Equations, 52 (1) (2007), 1-8.
[5] M. Obradović and S. Ponnusamy, V. Singh and P. Vasundhra, Univalency, starlikeness and convexity applied to certain classes of rational functions. Analysis (Munich) 22 (2002), 225-242.
[6] M. Obradović and S. Ponnusamy, Univalence of quotient of analytic functions, Applied Mathematics and Computation 247 (2014) 689-694.
[7] M. Obradović and S. Ponnusamy, New criteria and distortion Theorems for univalent functions. Complex Var. Theory Appl. 44(3), 173191 (2001), 173-191.
[8] M. Obradović and S. Ponnusamy, Product of univalent functions, Math. Comput. Model. 57, 793799 (2013)
[9] M. Obradović and S. Ponnusamy, Univalence and starlikeness of certain transforms defined by convolution. J. Math. Anal. Appl. 336, 758767 (2007), $758-767$.
[10] M. Obradović and S. Ponnusamy,Radius of univalence of certain combination of univalent and analytic functions. Bull. Malays. Math. Sci. Soc. 35(2), (2012), 325-334.
[11] S. Ozaki, and M. Nunokawa, The Schwarzian Derivative and Univalent Functions, Proc. Amer. Math. Soc. 33(2), Number 2, 1972, 392-394.
[12] S. Ponnusamy and K.-J. Wirths, Elementary considerations for classes of meromorphic univalent functions, Lobachevskii J. of Math. 39(5)(2018), 712-715.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45 ; Secondary 30D15
 Keywords. Meromorphic Functions, Univalent Functions
 Received: 01 August 2018; Accepted: 20 September 2018
 Communicated by Dragan S. Djordjević
 Email address: elbeiba@yahoo.fr (El Moctar Ould Beiba)

