Filomat 33:8 (2019), 2269–2276 https://doi.org/10.2298/FIL1908269O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Criterion for Univalent Meromorphic Functions

El Moctar Ould Beiba^a

^aDépartement de Mathématiques et Informatique Faculté des Sciences et Techniques Université de Nouakchott Al Aasriya B.P 5026, Nouakchott, Mauritanie

Abstract. Let $\mathbb{D} = \{z \in \mathbb{C}, |z| < 1\}$ and $\mathcal{A}(p)$ be the set of meromorphic functions in \mathbb{D} possessing only simple pole at the point *p* with $p \in (0, 1)$.

The aim of this paper is to give a criterion by mean of conditions on the parameters $\alpha, \beta \in \mathbb{C}$, $\lambda > 0$ and $g \in \mathcal{A}(p)$ for functions in the class denoted $\mathcal{P}_{\alpha,\beta,h}(p;\lambda)$ of functions $f \in \mathcal{A}(p)$ satisfying a differential Inequality of the form

$$\left|\alpha\left(\frac{z}{f(z)}\right)'' + \beta\left(\frac{z}{g(z)}\right)''\right| \le \lambda\mu, \ z \in \mathbb{D}$$

to be univalent in the disc \mathbb{D} , where $\mu = (\frac{1-p}{1+p})^2$.

1. Introduction

.

Let \mathcal{M} be the set of meromorphic functions in the region $\Delta = \{\zeta \in \mathbb{C}, |\zeta| > 1\} \cup \{\infty\}$ with the following Laurent development

$$F(\zeta) = \zeta + \sum_{n=0}^{\infty} b_n \zeta^{-n}, \ \zeta \in \Delta.$$
(1.1)

Let Σ be the subset of \mathcal{M} consisting of univalent functions. \mathcal{A} is the set of analytic functions f in the unit disc \mathbb{D} normalized by the conditions f(0) = f'(0) - 1 = 0. The subset of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S} . If $f \in \mathcal{A}$, then the function F defined by

$$F(\zeta) = \frac{1}{f(\frac{1}{\zeta})}$$
(1.2)

belongs to \mathcal{M} and f is univalent in \mathbb{D} if and only if F is univalent in Δ . In [1], Aksentév proved that a function F in \mathcal{M} is univalent if its derivative F' satisfies the differential Inequality:

$$\left|F'(\zeta) - 1\right| < 1, \ \zeta \in \Delta.$$
(1.3)

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45 ; Secondary 30D15

Keywords. Meromorphic Functions, Univalent Functions Received: 01 August 2018; Accepted: 20 September 2018

Communicated by Dragan S. Djordjević

Employ Diagan 5. Djordjević

Email address: elbeiba@yahoo.fr (El Moctar Ould Beiba)

If *F* and *f* are as in (1.2) then the condition (1.3) is equivalent to

$$\left|\left(\frac{z}{f(z)}\right)^2 f'(z) - 1\right| < 1, \ z \in \mathbb{D}.$$
(1.4)

Hence, by virtue of the Aksent've criterion, a criterion for a function $f \in \mathcal{A}$ with $\frac{f(z)}{z} \neq 0$ for |z| < 1 to be univalent is stated as follows:

$$\left| U_{f}(z) \right| < 1, \ z \in \mathbb{D}, \tag{1.5}$$

where $U_f(z) := \left(\frac{z}{f(z)}\right)^2 f'(z) - 1.$

Ozaki and Nunokawa proved in [11], without using the theorem of Aksentév, that functions in \mathcal{A} satisfying (1.4) are univalent.

For $\lambda \in (0, 1]$, let $\mathcal{U}(\lambda)$ be the subclass of $\mathcal{U} = \mathcal{U}(1)$ defined by

$$\mathcal{U}(\lambda) = \{ f \in \mathcal{A}, \left| U_f(z) \right| < \lambda, \ z \in \mathbb{D} \}.$$
(1.6)

The classes $\mathcal{U}(\lambda)$ have been extensively studied by many authors and the results obtained cover a wide range of properties (starlikeness, convexity, coefficients properties, radius properties, etc.). For more details on this subjects see [4] - [8] and references therein.

In their article [7], Obradović and Ponnusamy considered the subclass $\mathcal{P}_{\alpha,\beta;g}(\lambda)$ of functions f in \mathcal{A} such that $\frac{f(z)}{z} \neq 0$ for $z \in \mathbb{D}$ and satisfying the differential inequality

$$\left|\alpha\left(\frac{z}{f(z)}\right)'' + \beta\left(\frac{z}{g(z)}\right)''\right| \le \lambda, \ z \in \mathbb{D}$$
(1.7)

where $\alpha \neq 0$, β are given complex numbers and g is a given function in \mathcal{A} with $\frac{g(z)}{z} \neq 0$ in \mathbb{D} . One of their main results was the following theorem:

Theorem 1.1. Let $g \in \mathcal{A}$ with $\frac{g(z)}{z} \neq 0$ in \mathbb{D} and $K = \sup_{z \in \mathbb{D}} |(\frac{z}{g(z)})^2 g'(z) - 1|$. Then we have

$$\mathcal{P}_{\alpha,\beta;g}(2\lambda |\alpha| - 2K|\beta|) \subset \mathcal{U}(\lambda).$$
(1.8)

In particular, we have

$$\mathcal{P}_{\alpha,\beta;g}(2|\alpha| - 2K|\beta|) \subset \mathcal{U}(1). \tag{1.9}$$

Let $p \in (0, 1)$ and $\mathcal{A}(p)$ be the set of meromorphic functions in \mathbb{D} normalized by f(0) = f'(0) - 1 = 0and possessing only simple pole at the point p. Each function f in $\mathcal{A}(p)$ has a Laurent expansion of the form

$$f(z) = \frac{m}{z-p} + \frac{m}{p} + \left(\frac{m}{p^2} + 1\right)z + \sum_{n=2}^{\infty} a_n z^n, \ z \in \mathbb{D} \setminus \{p\}, \ m \neq 0,$$
(1.10)

where *m* is the residue of *f* at *p* ($m \neq 0$). Our investigations will concern functions in $\mathcal{A}(p)$ satisfying the condition

$$\left|1 + \frac{p^2}{m}\right| < 1. \tag{1.11}$$

In a recent paper [2], Bhowmik and Parveen introduced, for $0 < \lambda \leq 1$, a meromorphic analogue of the class $\mathcal{U}(\lambda)$, namely the class $\mathcal{U}_p(\lambda)$ consisting of functions f in $\mathcal{R}(p)$ satisfying

$$|U_f(z)| \le \lambda \,\mu, \, z \in \mathbb{D}, \tag{1.12}$$

where

$$U_f(z) = \left(\frac{z}{f(z)}\right)^2 f'(z) - 1, \ z \in \mathbb{D} \text{ and } \mu = \left(\frac{1-p}{1+p}\right)^2$$
(1.13)

They obtained some results for the class $\mathcal{U}_p(\lambda)$, in particular they proved the following theorem :

Theorem 1.2. (Theorem 1, [2]) Let *f* be of the form (1.10). If

$$\left| \left(\frac{z}{f(z)}\right)^2 f'(z) - 1 \right| \le \left(\frac{1-p}{1+p}\right)^2, \ z \in \mathbb{D}$$

, then f is univalent in \mathbb{D} .

Note that Ponnusamy and Wirths have proved by elegant method (Theorem 2, [12]), that functions in $\mathcal{U}_p(\lambda)$ are univalent on the closure of the disc \mathbb{D} .

The main object of the present paper is to give, for the class $\mathcal{A}(p)$, an analog result to the Theorem 1.1 obtained for the class \mathcal{A} .

2. Main Results

We start by some "round trip" results between the classes $\mathcal{A}(p)$ and \mathcal{A} .

Proposition 2.1. Let $f(z) = \frac{m}{z-p} + \frac{m}{p} + \frac{m+p^2}{p^2}z + \sum_{n=2}^{\infty} a_n z^n$ be a function in $\mathcal{A}(p)$ such that $\frac{f(z)}{z} \neq 0$ in \mathbb{D} and -c be an omitted value by f. Let g be defined by

$$g(z) = \frac{c f(z)}{c + f(z)}.$$
(2.1)

Then $g \in \mathcal{A}$ and we have

$$g(p) = c, \ g'(p) = -\frac{c^2}{m} = -\frac{g^2(p)}{m},$$
(2.2)

$$U_g(p) = -1 - \frac{p^2}{m},$$
(2.3)

and

$$\lim_{z \to p} U_f(z) = U_g(p) = -1 - \frac{p^2}{m}.$$
(2.4)

Proof. Since *f* is holomorphic in $\mathbb{D} \setminus \{p\}$, *g* is also holomorphic in $\mathbb{D} \setminus \{p\}$. It is easy to check that g(0) = g'(0) - 1 = 0.

For the value of g(p), we have

$$g(p) = \lim_{z \to p} g(z) = \lim_{z \to p} \frac{c f(z)}{c + f(z)} = \lim_{z \to p} \frac{c (z - p) f(z)}{c(z - p) + (z - p) f(z)} = \frac{c m}{m} = c.$$

To conclude that $g \in \mathcal{A}$, we have to prove that g'(p) exists. We have, by (2.1, that

$$\lim_{z \to p} \frac{g(z) - g(p)}{z - p} = \lim_{z \to p} \frac{g(z) - c}{z - p} = \lim_{z \to p} \frac{-c^2}{c(z - p) + (c - p)f(z)} = \frac{-c^2}{m}$$

Thus g'(p) exists and its value gives (2.2). Now, taking (2.2) in the expression of U_q , we get

$$U_g(p) = -\left(\frac{p}{c}\right)^2 \frac{c^2}{m} - 1 = -1 - \frac{p^2}{m}$$

To prove (2.4), we have by a little calculation

$$U_f(z) = U_g(z), \ z \in \mathbb{D} \setminus \{p\}.$$

$$(2.5)$$

Thus we have

$$\lim_{z \to p} U_f(z) = U_g(p)$$

which yields, by (2.3), the desired result.

Remark 2.2. We obtain from (2.4) that a necessary condition for *f* in $\mathcal{A}(p)$ to be in $\mathcal{U}_p(\lambda)$ is that $|1 + \frac{p^2}{m}| \le \lambda \mu$, where *m* is the residue of *f* at *p*.

Proposition 2.3. Let $p \in (0, 1)$ and $g \in \mathcal{A}$ such that $g'(p) \neq 0$ and g(z) - g(p) has no zero in $\mathbb{D} \setminus \{p\}$. We suppose also that g satisfies the following condition

$$|g^{2}(p) - g'(p)p^{2}| < |g^{2}(p)|.$$
(2.6)

Then, the function *f* defined by

$$f(z) = \frac{-g(p)g(z)}{g(z) - g(p)}$$

belongs to $\mathcal{A}(p)$ and satisfies (1.11). If in addition *q* is univalent, then *f* is also univalent.

Proof. It is obvious that *f* is holomorphic in $\mathbb{D} \setminus \{p\}$ and that $f(p) = \infty$. We get by a simple calculation

$$\lim_{z \to p} (z - p) f(z) = -\frac{g^2(p)}{g'(p)}.$$

From (2.6) we have $g(p) \neq 0$. Hence the limit above shows that *f* has a simple pole with residue $m = -\frac{g^2(p)}{g'(p)}$ at the point *p*. By the condition (2.6) we have

$$\left|1 - \frac{p^2 g^2(p)}{g'(p)}\right| < 1$$

and hence f satisfies the condition (1.11). It is easy to verify that f is univalent if g is univalent.

Remark 2.4. The condition (2.6) is satisfied when $g \in \mathcal{U}(1)$;

Let $\mathcal{P}_{\alpha,\beta,h}(p; \lambda)$ be the set of functions f in $\mathcal{A}(p)$ of the form (1.10) such that $\frac{f(z)}{z} \neq 0$ in \mathbb{D} and satisfying the condition

$$\left|\alpha\left(\frac{z}{f(z)}\right)'' + \beta\left(\frac{z}{h(z)}\right)''\right| \le \lambda\mu, \ z \in \mathbb{D}$$
(2.7)

and

$$|1 + \frac{p^2}{m}| \le \lambda \,\mu,\tag{2.8}$$

...

2272

where $\alpha \neq 0$, β are given complex numbers and *h* is a given function in $\mathcal{A}(p)$ with $\frac{h(z)}{z} \neq 0$ in \mathbb{D} . We observe that $\mathcal{P}_{1,0,h}(p; \lambda)$ doesn't depend on the function *h* and thus will be simply noted $\mathcal{P}(p; \lambda)$.

The particular case where $\lambda = 2$ has been considered by Bhowmik and Parveen in [3].

We need the following Lemma:

Lemma 2.5. Let $0 < \lambda < \mu^{-1}$. If *f* belongs to $\mathcal{U}_p(\lambda)$ then, *f* is univalent in \mathbb{D} .

Proof. Let -c be an omitted value for f and let $g = \frac{cf}{c+f}$. As seen above we have

$$U_q(z) = U_f(z)$$

and hence $q \in \mathcal{U}(\lambda \mu)$. Since $\lambda \mu < 1$, q belongs to $\mathcal{U}(1)$ and thus it is univalent. This implies that f is univalent. П

Theorem 2.6. Let $h \in \mathcal{A}(p)$ be such that $\frac{h(z)}{z} \neq 0$ for $z \in \mathbb{D}$ and

$$K = \sup_{z \in \mathbb{D}} \left| \left(\frac{z}{h(z)} \right)^2 h'(z) - 1 \right| < +\infty.$$

If $f \in \mathcal{P}_{\alpha,\beta,h}(p; 2\lambda |\alpha| - 2K \frac{|\beta|}{\mu})$, then $f \in \mathcal{U}_p(\lambda)$. If in addition $\lambda < \mu^{-1}$, the function f is univalent in the disc \mathbb{D} . In particular, we have

$$\mathcal{P}_{\alpha,\beta;h}(p\,;\,2\,\mu\,|lpha|\,-\,2\,K\,\frac{|eta|}{\mu})\,\subset\,\mathcal{U}_p(1).$$

Proof. Let $f \in \mathcal{P}_{\alpha,\beta,h}(p; 2\lambda |\alpha| - 2K \frac{|\beta|}{\mu})$. Let *g* and *k* be defined by

$$g = \frac{cf}{c+f}$$
 and $k = \frac{dh}{d+h}$ (2.9)

where -c and -d are omitted values respectively by f and h. By Proposition 2.1, g and k belong to \mathcal{A} . A little calculation shows that $\frac{g(z)}{z} \neq 0$ and $\frac{k(z)}{z} \neq 0$ in \mathbb{D} and

$$\frac{z}{g(z)} = \frac{z}{f(z)} + \frac{z}{c} \text{ and } \frac{z}{k(z)} = \frac{z}{h(z)} + \frac{z}{d},$$
(2.10)

which gives

$$\left(\frac{z}{g(z)}\right)'' = \left(\frac{z}{f(z)}\right)'', \quad \left(\frac{z}{k(z)}\right)'' = \left(\frac{z}{h(z)}\right)''.$$
(2.11)

Since *f* belongs to $\mathcal{P}_{\alpha,\beta,h}(p; 2 \lambda |\alpha| - 2K \frac{|\beta|}{\mu})$, we have by (2.11)

$$g \in \mathcal{P}_{\alpha,\beta;k}(2\lambda \,\mu \,|\alpha| - 2K \,|\beta|). \tag{2.12}$$

Applying (2.5) to *h* and *k*, we obtain

$$\sup_{z\in\mathbb{D}}\left|\left(\frac{z}{k(z)}\right)^2 k'(z) - 1\right| = K.$$
(2.13)

Moreover (2.12) and (2.13) give, by applying Theorem 1.1 to q and k_r

 $q \in \mathcal{U}(\lambda \mu)$

2274

which gives from (2.5) and (2.8) that $f \in \mathcal{U}_p(\lambda)$.

If now $0 < \lambda < \mu^{-1}$, then *f* is univalent by Lemma 2.5.

The second assertion of the theorem follows by taking $\lambda = 1$ in the first one.

Let $p \in (0, 1)$ and let $h(z) = \frac{z}{(z-p)(z-\frac{1}{p})}$. A little calculation yields

$$\sup \left| \left(\frac{z}{h(z)}\right)^2 h'(z) - 1 \right| = 1 \text{ and } \left(\frac{z}{h(z)}\right)^{\prime\prime} = 2, \ z \in \mathbb{D}$$

Corollary 2.7. Let $0 and <math>f \in \mathcal{A}(p)$ with $\frac{f(z)}{z} \neq 0$ for $z \in \mathbb{D}$. Let $\alpha \neq 0$ and β be two complex numbers. If *f* satisfies

$$\left|\alpha\left(\frac{z}{f(z)}\right)'' + \beta\right| \le 2\left(\lambda\mu |\alpha| - \frac{|\beta|}{2}\right), \ z \in \mathbb{D}$$

$$(2.14)$$

then $f \in \mathcal{U}_p(\lambda)$. If in addition $0 < \lambda < \mu^{-1}$, then f is univalent in \mathbb{D} .

Proof. Let $h(z) = \frac{z}{(z-p)(z-\frac{1}{p})}$. We have, as shown above, that

$$\sup \left| \left(\frac{z}{h(z)} \right)^2 h'(z) - 1 \right| = 1 \text{ and } \left(\frac{z}{h(z)} \right)'' = 2.$$

Now, if *f* satisfies (2.14) then $f \in \mathcal{P}_{\alpha, \frac{\beta}{2}; h}(p; 2(\lambda |\alpha| - \frac{|\beta|}{2\mu}))$ and hence, by taking K = 1 in the first statement of Theorem 2.6, we get the desired conclusion.

If we take $|\alpha| = 1$ and $\beta = 0$ in Corollary 2.7, we obtain the following

Corollary 2.8. Let $0 and <math>f \in \mathcal{A}(p)$ with $\frac{f(z)}{z} \neq 0$ for $z \in \mathbb{D}$. If f satisfies

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le 2 \lambda \, \mu, \, z \in \mathbb{D}, \tag{2.15}$$

then $f \in \mathcal{U}_p(\lambda)$, in other words, we have $\mathcal{P}(p; 2\lambda) \subset \mathcal{U}_p(\lambda)$. If in addition $0 < \lambda < \mu^{-1}$, then functions in $\mathcal{P}(p; 2\lambda)$ are univalent.

Corollary 2.9. If $0 < \lambda \leq 2$, then $\mathcal{P}(p; \lambda) \subset \mathcal{U}_p(1)$ and hence functions in $\mathcal{P}(p; \lambda)$ are univalent.

Proof. Since $\mu^{-1} > 1$, $0 < \frac{\lambda}{2} < \mu^{-1}$. Hence, the desired conclusion follows by applying Corollary 2.8 to $\frac{\lambda}{2}$.

Remark 2.10. If we take $\lambda = 2$ in Corollary 2.9, we obtain Theorem 2 in [3].

We need the two followings lemmas :

Lemma 2.11. Let $g \in \mathcal{P}_{\alpha,\beta,k}(\lambda)$. Then there exists a Schwarz function w in \mathbb{D} such that

$$\frac{z}{g(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2} z - 1 \right) - \frac{g''(0)}{2} z + \frac{\lambda z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1 - t) dt.$$

Proof. The proof can be extracted of the proof of Theorem 1.3 ([7], p.186).

Lemma 2.12. Let $h \in \mathcal{A}(p)$, -c be an omitted value for h and $k = \frac{ch}{c+h}$. Then,

$$1 - \frac{z}{k(z)} - \frac{k''(0)}{2}z = 1 - \frac{z}{h(z)} - \frac{h''(0)}{2}z, \ z \in \mathbb{D}.$$
(2.16)

Proof. We have

$$\frac{z}{k(z)} = \frac{z}{h(z)} + \frac{z}{c}$$
(2.17)

and

$$k''(0) = h''(0) - \frac{2}{c}$$
(2.18)

Taking (2.17) and (2.18) in the left side of (2.17), we get the desired conclusion.

The following theorem is an analogue result of Corollary 1.8 in [7].

Theorem 2.13. Let $f \in \mathcal{P}_{\alpha,\beta;h}(p; \lambda)$ and $M = \sup_{z \in \mathbb{D}} |1 - \frac{z}{h(z)} - \frac{h''(0)}{2}z|$. Then

$$\left|\frac{z}{f(z)} - 1\right| \le \left|\frac{\beta}{\alpha}\right| M + \frac{|f''(0)|}{2} |z| + \frac{\lambda \mu}{2|\alpha|} |z|^2.$$
(2.19)

Proof. Let -c and -d be omitted values by f and h, respectively. Furthermore let g and k be defined by

$$g = \frac{cf}{c+f}$$
, and $k = \frac{dh}{d+h}$,

respectively. We have

$$\frac{z}{f(z)} - 1 = \frac{z}{g(z)} - 1 - \frac{z}{c}$$
(2.20)

and

$$\frac{g''(0)}{2} = \frac{f''(0)}{2} - \frac{1}{c}.$$
(2.21)

Since $f \in \mathcal{P}_{\alpha,\beta;h}(p, \lambda\mu)$, we have $g \in \mathcal{P}_{\alpha,\beta;k}(\lambda\mu)$. Applying Lemma 2.11, we obtain

$$\frac{z}{g(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2} z - 1 \right) - \frac{g''(0)}{2} z + \frac{\lambda \mu z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1 - t) dt,$$
(2.22)

where w is a Schwarz function in \mathbb{D} . Taking (2.22) in (2.20), we obtain

$$\frac{z}{f(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2} z - 1 \right) - \frac{g''(0)}{2} z - \frac{z}{c} + \frac{\lambda \mu z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1 - t) dt.$$
(2.23)

Now, taking (2.21) in (2.23), we get

$$\frac{z}{f(z)} - 1 = -\frac{\beta}{\alpha} \left(\frac{z}{k(z)} + \frac{k''(0)}{2} z - 1 \right) - \frac{f''(0)}{2} z + \frac{\lambda \mu z}{\alpha} \int_0^1 \frac{w(tz)}{t} (1 - t) dt.$$
(2.24)

The last equality gives us, using the fact that $|w(z)| \leq |z|$ in \mathbb{D} ,

$$\left|\frac{z}{f(z)} - 1\right| \le \left|\frac{\beta}{\alpha}\right| \sup_{z \in \mathbb{D}} \left|\frac{z}{k(z)} + \frac{k''(0)}{2}z - 1\right| + \frac{|f''(0)|}{2}|z| + \frac{\lambda\mu}{2|\alpha|}|z|^2.$$
(2.25)

We have, by Lemma 2.12,

$$\sup_{z \in \mathbb{D}} \left| \frac{z}{k(z)} + \frac{k''(0)}{2} z - 1 \right| = \sup_{z \in \mathbb{D}} \left| \frac{z}{h(z)} + \frac{h''(0)}{2} z - 1 \right| = M$$
(2.26)

Taking (2.26) in (2.25), we get the desired result.

As a consequence of Theorem 2.13, we have the following corollary:

Corollary 2.14. If *z* is a given point in D then, we have

(1)
$$\left|\frac{z}{f(z)} - 1\right| \leq \left(\frac{1}{p} + \frac{\lambda\mu p^2}{2}\right)|z| + \frac{\lambda\mu}{2}|z|^2, \forall f \in \mathcal{P}(p;\lambda);$$

(2) $\left|\frac{z}{f(z)} - 1\right| \leq \frac{1}{p} + \frac{\lambda\mu p^2}{2} + \frac{\lambda\mu}{2}, \forall f \in \mathcal{P}(p;\lambda).$

Proof. Let $f \in \mathcal{P}(p; \lambda)$. Taking $\alpha = 1, \beta = 0$ and $h(z) = \frac{pz}{pz^2 + (1+p^2)z+p}$, the formula (2.24) gives

$$\frac{z}{f(z)} - 1 = -\frac{f''(0)}{2}z + \lambda \mu z \int_0^1 \frac{w(tz)}{t} (1-t)dt.$$
(2.27)

Putting z = p in the last equality, we obtain

$$\frac{f''(0)}{2} = \frac{1}{p} (1 + \lambda \mu p \int_0^1 \frac{w(tp)}{t} (1 - t) dt).$$
(2.28)

Since *w* is a Schwarz function, the modulus of the integral in (2.28) is majored by $\frac{p^2}{2}$ and hence we have

$$\left|\frac{f''(0)}{2}\right| \le \frac{1}{p} + \frac{\lambda \mu p^2}{2}.$$
(2.29)

Now, taking (2.29) in (2.19), where α , β and *h* as above, we obtain the estimation

$$|\frac{z}{f(z)} - 1| \le (\frac{1}{p} + \frac{\lambda \mu p^2}{2})|z| + \frac{\lambda \mu}{2}|z|^2.$$
(2.30)

This achieves the proof of (1). The estimation (2) is an immediate consequence of (1). \Box

3. Acknowledgement

The author thanks Karl-Joachim Wirths for his remarks and suggestions and careful reading of the first version of the manuscript.

References

- [1] L.A. Aksentév, Sufficient conditions for univalence of regular functions. Izv. VysÅ. Ucebn. Zaved. Matematika. 1958, 1958, 3 7.
- [2] B. Bhowmik and F. Parveen, On a subclass of meromorphic univalent functions, Complex Var. Elliptic Equ., 62 (2017), 494-510.
- [3] B. Bhowmik and F. Parveen, Sufficient conditions for univalence and study of a class of meromorphic univalent functions, Bull. Korean. Math. Soc. 55 (2018), No. 3, 999 - 1006.
- [4] R. Fournier and S. Ponnusamy, A Class of Locally Univalent Functions defined by a differential Inequality, Complex Var. and Elliptic Equations, 52 (1) (2007), 1-8.
- [5] M. Obradović and S. Ponnusamy, V. Singh and P. Vasundhra, Univalency, starlikeness and convexity applied to certain classes of rational functions. Analysis (Munich) 22 (2002), 225 - 242.
- [6] M. Obradović and S. Ponnusamy, Univalence of quotient of analytic functions, Applied Mathematics and Computation 247 (2014) 689 - 694.
- [7] M. Obradović and S. Ponnusamy, New criteria and distortion Theorems for univalent functions. Complex Var. Theory Appl. 44(3), 173191 (2001), 173 - 191.
- [8] M. Obradović and S. Ponnusamy, Product of univalent functions, Math. Comput. Model. 57, 793799 (2013)
- [9] M. Obradović and S. Ponnusamy, Univalence and starlikeness of certain transforms defined by convolution. J. Math. Anal. Appl. 336, 758767 (2007), 758 - 767.
- [10] M. Obradović and S. Ponnusamy, Radius of univalence of certain combination of univalent and analytic functions. Bull. Malays. Math. Sci. Soc. 35(2), (2012), 325 - 334.
- [11] S. Ozaki, and M. Nunokawa, The Schwarzian Derivative and Univalent Functions, Proc. Amer. Math. Soc. 33(2), Number 2, 1972, 392 - 394.
- [12] S. Ponnusamy and K.-J. Wirths, Elementary considerations for classes of meromorphic univalent functions, Lobachevskii J. of Math. 39(5)(2018), 712–715.