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Abstract. It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin
inverse. In this case, (ba)d = b((ab)d)2a. This formula is so-called Cline’s formula for g-Drazin inverse, which
plays an elementary role in matrix and operator theory. In this paper, we generalize Cline’s formula to the
wider case. In particular, as applications, we obtain new common spectral properties of bounded linear
operators.

1. Introduction

Let R be an associative ring with an identity. The commutant of a ∈ R is defined by comm(a) = {x ∈
R | xa = ax}. The double commutant of a ∈ R is defined by comm2(a) = {x ∈ R | xy = yx for all y ∈ comm(a)}.

An element a ∈ R has Drazin inverse in case there exists b ∈ R such that

b = bab, b ∈ comm2(a), a − a2b ∈ Rnil.

The preceding b is unique if exists, we denote it by aD. Let a, b ∈ R. Then ab has Drazin inverse if and only
if ba has Drazin inverse. In this case, (ba)D = b((ab)D)2a. This was known as Cline’s formula for Drazin
inverses. Cline’s formula plays an elementary role in matrix and operator theory.

An element a ∈ R has g-Drazin inverse (i.e., generalized Drazin inverse) in case there exists b ∈ R such
that

b = bab, b ∈ comm2(a), a − a2b ∈ Rqnil.

The preceding b is unique if exists, we denote it by ad. Here, Rqnil = {a ∈ R | 1 + ax ∈ U(R) for every x ∈
comm(a)}, where U(R) is the set of all units in R. We say a ∈ R is quasi-nilpotent if a ∈ `Rqnil. For a Banach
algebra A it is well known that

a ∈ Aqnil
⇔ lim

n→∞
‖ an
‖

1
n = 0.

Let a, b ∈ R. Then ab has g-Drazin inverse if and only if ba has g-Drazin inverse. In this case, (ba)d = b((ab)d)2a.
This was known as Cline’s formula for g-Drazin inverses. Many papers discussed Cline’s formula in the
setting of matrices, operators, elements of Banach algebras or rings (see [1, 2, 4, 5, 7] and [9]).
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The motivation of this paper is to extend Cline’s formula and then apply to common spectral properties
of bounded linear operators. In Section 2, we generalize the Cline’s formula for generalized Drazin inverses.
We prove that for a ring R, if a(ba)2 = abaca = acaba = (ac)2a, for some a, b, c ∈ R then, ac ∈ Rd if and only if
ba ∈ Rd. When we choose b = c, the known Cline’s formula follows as a special case.

In Section 3, we generalize the Jacobson’s Lemma and prove that if a(ba)2 = abaca = acaba = (ac)2a in a
ring R, then

1 − ac ∈ U(R)⇐⇒ 1 − ba ∈ U(R).

Combing this generalized Jacobson’s Lemma and the main result in Section 2, we thereby determine the
common spectral properties of bounded linear operators. Let A,B,C ∈ L(X) such that A(BA)2 = ABACA =
ACABA = (AC)2A. We prove that σd(AC) = σd(BA), where σd is the g-Drazin spectrum.

Throughout the paper, all rings are associative with an identity. We use Rnil and Rqnil to denote the set
of all nilpotents and quasinilpotents of the ring R, respectively. RD and Rd denote the sets of all elements in
R which have Drazin and g-Drazin inverses, respectively. N stands for the set of all natural numbers.

2. Cline’s Formula

In [4, Lemma 2.2] proved that ab ∈ Rqnil if and only if ba ∈ Rqnil for any elements a, b in a ring R. We
generalized this fact as follows.

Lemma 2.1. Let R be a ring, and let a, b, c ∈ R. If a(ba)2 = abaca = acaba = (ac)2a, then the following are equivalent:

(1) ac ∈ Rqnil.
(2) ba ∈ Rqnil.

Proof. =⇒ By hypothesis, a(ba)2 = (ac)2a and a(ba)3 = (ac)3a. Suppose that ac ∈ Rqnil. Let y ∈ comm(ba). Then
(1 − yba)(1 + yba − y2baba) = 1 − y3bababa, and so

(1 − yba)(1 + yba + y2baba)(1 + y3bababa)
= 1 − y6babababababa
= 1 − y6b(acaca)bababa
= 1 − y6b(acac)(ababa)ba
= 1 − y6b(acac)(acaca)ba.

In view of Jacobson’s Lemma (see [6, Theorem 2.1]), we will suffice to prove

1 − abay6bacacac(ac) ∈ U(R).

As ac ∈ Rqnil, we will suffice to check

abay6bacacac(ac) = (ac)abay6bacacac.

One easily checks that
abay6bacacac(ac) = abay6b(acacac)ac

= ay6bababababac;
(ac)abay6bacacac = (ac)ababay6cacac

= (acacaca)y6cacac
= (abababa)y6cacac
= ay6bababababac.

Hence 1 + yba ∈ U(R). This shows that ba ∈ Rqnil.
⇐= If ba ∈ Rqnil, by the preceding discussion, we see that ab ∈ Rqnil. With the same argument as above

we get ca ∈ Rqnil, and therefore ac ∈ Rqnil.

We come now to the main result of this paper
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Theorem 2.2. Let R be a ring, and let a, b, c ∈ R. If a(ba)2 = abaca = acaba = (ac)2a, then the following are
equivalent:

(1) ac ∈ Rd.
(2) ba ∈ Rd.

In this case, (ac)d = a((ba)d)2c and (ba)d = b((ac)d)2a.

Proof. Suppose that ac has g-Drazin inverse and (ac)d = d. Let e = bd2a and f ∈ comm(ba). Note that
b(ac)4 = (ba)4c and (ba)4 = b(ac)3a. Then

f e = f b((ac)2d3)2a = f b(ac)4d6a = (ba)4 f cd6a = b((ac)3a f c)d6a.

Also we have
ac((ac)3a f c) = (ac)4a f c = a f (ba)4c = a f (ba)3cac

= ((ab)3a f c)ac = ((ac)3a f c)ac.

Since d ∈ comm2(ac), we get ((ac)3a f c)d = d((ac)3a f c). Thus, we conclude that

f e = b((ac)3a f c)d6a = bd6((ac)3a f c)a
= bd6(ab)3a f c = bd6a f (ba)3ca
= bd6a f (ba)4 = bd6a(ba)4 f
= bd6a(ca)4 f = bd2a f = e f .

This implies that e ∈ comm2(ba). We have

e(ba)e = bd2a(ba)bd2a = bd2ababacd3a
= bd2(ac)3d3a = bd2a = e.

Let p = 1 − acd, then,
pac = ac − acdac = ac − (ac)2d

that is contained in Rqnil. Moreover, we have

ba − (ba)2e = ba − bababd2a = ba − bababacd2da
= ba − bacacacd2da = b(1 − acd)a = bpa.

One easily checks that
abpabpa = ab(1 − acd)ab(1 − acd)a

= ab(1 − dac)aba(1 − cda)
= (ababa − abdacaba)(1 − cda)
= (abaca − abdacaca)(1 − cda)
= ab(1 − dac)aca(1 − cda)
= ab(1 − dac)ac(1 − acd)a
= abpacpa,

and so
(pa)b(pa)b(pa) = (pa)b(pa)c(pa).

Likewise, we verify
(pa)b(pa)b(pa) = (pa)c(pa)b(pa) = (pa)c(pa)c(pa).

Then by Lemma 2.1., bpa ∈ Rqnil. Hence ba has g-Drazin inverse e. That is, e = bd2a = (ba)d. Moreover, we
check

a((ba)d)2c = abd2abd2(ac)
= abd3(acabac)d2

= abd3(acacac)d2

= ab(acacac)d5

= (ac)4d5

= (ac)d,

as required.
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Corollary 2.3. Let R be a ring, let k ∈N, and let a, b, c ∈ R. If a(ba)2 = abaca = acaba = (ac)2a, If (ac)k has g-Drazin
inverse if and only if (ba)k has g-Drazin inverse.

Proof. Case 1. k = 1. This is obvious by Theorem 2.2.
Case 2. k = 2. We easily check that

a(bab)a(bab)a = a(bab)a(cac)a
= a(cac)a(bab)a
= a(cac)a(cac)a.

The result follows by Theorem 2.2.
Case 3. k ≥ 3. Then (ac)k = (ab)k−1ac. Hence, (ac)k has g-Drazin inverse if and only if (ab)k = (ac)(ab)k−1

has g-Drazin inverse. This completes the proof.

Corollary 2.4. Let R be a ring, and let a, b, c ∈ R. If aba = aca, then ac ∈ Rd if and only if ba ∈ Rd. In this case,
(ba)dc = b(ac)d.

Proof. In view of Theorem 2.2., ac ∈ Rd if and only if ba ∈ Rd. Moreover, (ac)d = a((ba)d)2c and (ba)d = b((ac)d)2a.
Therefore (ba)dc = b((ac)d)2ac = b(ac)d, as required.

Lemma 2.5. Let R be a ring, and let a ∈ R. If a ∈ RD, then a ∈ Rd and aD = ad.

Proof. This is obvious as the g-Drazin inverse of a is unique.

Lemma 2.6. Let R be a ring, and let a, b, c ∈ R. If a(ba)2 = abaca = acaba = (ac)2a, then ac ∈ Rnil if and only if
ba ∈ Rnil.

Proof. =⇒Let ac ∈ Rnil, then there exists some n ∈N such that (ac)n = 0. We may assume that n is even. Hence
(ac)na = (ac)n−2(ac)2a = (ac)n−2a(ba)2 = (ac)n−4(ac)2a(ba)2 = (ac)n−4a(ba)4 = · · · = (ac)2a(ba)n−2 = a(ba)n = 0 and
so (ba)n+1 = 0.
⇐= It can be proved in the similar way.

Theorem 2.7. Let R be a ring, and let a, b, c ∈ R. If a(ba)2 = abaca = acaba = (ac)2a, then ac ∈ RD if and only if
ba ∈ RD. In this case, we have

(ba)D = b(((ac)D)2)a, (ac)D = a(((ba)D)2)c.

Proof. Suppose that ac ∈ RD. Then ac ∈ Rd by Lemma 2.1. In view of Theorem 2.2, we see that ba ∈ Rd, and
(ba)d = b((ac)d)2a. Let p = 1 − (ac)(ac)d. As in the proof of Theorem 2.2, we have

(pa)b(pa)b(pa) = (pa)b(pa)c(pa) = (pa)c(pa)b(pa) = (pa)c(pa)c(pa);
(pa)c = ac − (ac)2(ac)D

∈ Rnil.

In light of Lemma 2.6, bpa ∈ Rnil. Therefore

ba − (ba)2(ba)d = ba − babab((ac)d)2a
= ba − bababac((ac)d)3a
= ba − bacacac((ac)d)3a
= ba − b(ac)(ac)da
= bpa ∈ Rnil.

Therefore ba ∈ RD and (ac)D = a(((ba)D)2)c. Moreover, (ba)D = b(((ac)D)2)a. Conversely if ba ∈ RD, then by [5,
Theorem 2.1], ab ∈ RD. With the same argument we get ca ∈ RD and so ac ∈ RD.

Recall that a has the group inverse if a has Drazin inverse with index 1, and denote the group inverse by a#.
As an immediate consequence of Theorem 2.7., we now derive
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Corollary 2.8. Let R be a ring, and let a, b, c ∈ R. If a(ba)2 = abaca = acaba = (ac)2a, then ac has group if and only if

(1) ba ∈ U(R); or
(2) ba has group inverse and (ba)# = b((ac)#)2a; or
(3) ba ∈ RD and (ba)D = b((ac)#)2a.

We note that if aba = aca in a ring R then a(ba)2 = abaca = acaba = (ac)2a, but the converse is not true.

Example 2.9. Let R = M6(Z2), x =

 0 1 0
0 0 1
0 0 0

 ∈M3(Z2). Then x2 , 0 and x3 = 0. Choose

a =

(
0 x
0 0

)
, b =

(
1 0
0 0

)
, c =

(
1 0
1 1

)
.

Then a(ba)2 = abaca = acaba = (ac)2a, but aba , aca. In this case, ac ∈ RD.

3. Common spectral properties of bounded linear operators

Let X be Banach space, and let L(X) denote the set of all bounded linear operators from Banach space
to itself, and let a ∈ L(X). The Drazin spectrum σD(a) and g-Drazin spectrum σd(a) are defined by

σD(a) = {λ ∈ C | λ − a < L(X)D
};

σd(a) = {λ ∈ C | λ − a < L(X)d
}.

The goal of this section is concern on common spectrum properties of L(X). For any a, b ∈ R, Jacobson’s
Lemma states that 1 + ab ∈ U(R) if and only if 1 + ba ∈ U(R). We now extend this known result as follows.

Lemma 3.1. Let R be a ring, and let a, b, c ∈ R. If a(ba)2 = abaca = acaba = (ac)2a, then

1 − ac ∈ U(R)⇐⇒ 1 − ba ∈ U(R).

Proof. =⇒Write s(1 − ac) = (1 − ac)s = 1 for some s ∈ R. Then sac = s − 1. We see that(
(1 + bsa)(1 + ba) − bsa

)
(1 − ba)

= (1 + bsa)(1 − baba) − bsa(1 − ba)
= 1 − baba + bsa − bsababa − bsa(1 − ba)
= 1 − baba + bsa − bsacaba − bsa(1 − ba)
= 1 − baba + bsa − b(s − 1)aba − bsa(1 − ba)
= 1.

Thus, 1 − ba ∈ R is left invertible.
In light of Jacobson’s Lemma, we have 1 − ca ∈ U(R). Set t = (1 − ca)−1. Then a = a(1 − ca)t = (a − aca)t;

hence,
aba = ab(a − aca)t

= (aba − abaca)t
= (aba − ababa)t
= (1 − ab)abat.

It follows that (1− ab)a = a− (1− ab)abat, and so (1− ab)(a + abat) = a. This implies that (1− ab)(a + abat)b = ab;
whence,

(1 − ab)
(
1 + (a + abat)b

)
= (1 − ab) + (1 − ab)(a + abat)b = 1.

Thus, 1 − ab ∈ R is right invertible. In light of [6, Theorem 2.1], 1 − ba ∈ R is right invertible.
Therefore 1 − ba ∈ U(R). In this case, (1 − ba)−1 =

(
1 + b(1 − ac)−1a

)
(1 + ba) − b(1 − ac)−1a.

⇐= This is symmetric.
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Theorem 3.2. Let A,B,C ∈ L(X) such that A(BA)2 = ABACA = ACABA = (AC)2A, then

σd(AC) = σd(BA).

Proof. Case 1. 0 ∈ σd(AC). Then AC < L(X)d. In view of Theorem 2.2., BA < L(X)d. Thus 0 ∈ σd(BA).
Case 2. 0 < λ ∈ σd(AC). Then λ ∈ accσ(AC). Thus, we see that

λ = lim
n→∞
{λn | λnI − AC < L(X)−1

}.

For λn , 0, it follows by Lemma 3.1 that I − ( 1
λn

A)C ∈ L(X)−1 if and only if I − B( 1
λn

A) ∈ L(X)−1. Therefore

λ = lim
n→∞
{λn | λnI − BA < L(X)−1

} ∈ accσ(BA) = σd(BA),

where accσ(BA) denotes the set of all accumulations points of σ(BA) (see [6, Theorem 6.3]). Therefore
σd(AC) ⊆ σd(BA). Likewise, σd(BA) ⊆ σd(AC), as required.

Corollary 3.3. Let A,B,C ∈ L(X) such that ABA = ACA, then

σd(AC) = σd(BA).

Proof. This is obvious by Theorem 3.2.

Example 3.4. Let A,B,C be operators, acting on separable Hilbert space l2(N), defined as follows respectively:

A(x1, x2, x3, x4, · · · ) = (0, x2, 0, x4, · · · ),
B(x1, x2, x3, x4, · · · ) = (0, x1, x2, x4, · · · ),
C(x1, x2, x3, x4, · · · ) = (0, 0, x1, x4, · · · ).

Then ABA = ACA, and so σd(AC) = σd(BA) by Corollary 3.3.

For the Drazin spectrum σD(a), we now derive

Theorem 3.5. Let A,B,C ∈ L(X) such that A(BA)2 = ABACA = ACABA = (AC)2A, then

σD(AC) = σD(BA).

Proof. In view of Theorem 2.7, AC ∈ L(X)D if and only if BA ∈ L(X)D, and therefore we complete the proof
by [7, Theorem 3.1].

A bounded linear operator T ∈ L(X) is Fredholm operator if dimN(T) and codimR(T) are finite, where
N(T) and R(T) are the null space and the range of T respectively. If furthermore the Fredholm index
ind(T) = 0, then T is said to be Weyl operator. For each nonnegative integer n define T|n| to be the restriction
of T to R(Tn). If for some n, R(Tn) is closed and T|n| is a Fredholm operator then T is called a B-Fredholm
operator. T is said to be a B-Weyl operator if T|n| is a Fredholm operator of index zero (see [1]). The
B-Fredholm and B-Weyl spectrums of T are defined by

σBF(T) = {λ ∈ C | T − λI is not a B − Fredholm operator};
σBW(T) = {λ ∈ C | T − λI is not a B −Weyl operator}.

Corollary 3.6. Let R be a ring, and let a ∈ R. Then the following are equivalent:

Let A,B,C ∈ L(X) such that A(BA)2 = ABACA = ACABA = (AC)2A, then

σBF(AC) = σBF(BA).
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Proof. Let π : L(X) → L(X)/F(X) be the canonical map and F(X) be the ideal of finite rank operators in
L(X). As in well known, T ∈ L(X) is B-Fredholm if and only if π(T) had Drazin inverse. By hypothesis, we
see that

π(A)(π(B)π(A))2 = π(A)π(B)π(A)π(C)π(A)
= π(A)π(C)π(A)π(B)π(A)
= (π(A)π(C))2π(A).

According to Theorem 3.5., for every scalar λ, we have

λI − π(AC) has Drazin inverse =⇒ λI − π(BA) has Drazin inverse.

This completes the proof.

Corollary 3.7. Let A,B,C ∈ L(X) such that A(BA)2 = ABACA = ACABA = (AC)2A, then

σBW(AC) = σBW(BA).

Proof. If T is B-Fredholm then for λ , 0 small enough, T − λI is Fredholm and ind(T) = ind(T − λI). As in
the proof of [7, Lemma 2.3, Lemma 2.4], we see that I − AC is Fredholm if and only if I − BA is Fredholm
and in this case, ind(I − AC) = ind(I − BA). Therefore we complete the proof by by Corollary 3.6.
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