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Abstract. The paper introduces DS-I-A model with periodical coefficients. First of all, we show that
there is a unique positive solution of the stochastic model. Furthermore we deduce the conditions under
which the disease will end and continue. At last, we draw a conclusion that there exists nontrivial positive
periodic solution for the stochastic system by stochastic Lyapunov functions. Simulations are also carried
out to confirm our analytical results.

1. Introduction

Human immunodeficiency virus (HIV) infection is characterized by three different phases, namely
the primary infection, clinically asymptomatic stage (chronic infection), and acquired immunodeficiency
syndrome (AIDS) or drug therapy. Mathematical modeling is useful for understanding the spread of
HIV/AIDS. Thus various models have been developed to describe the spread of this disease according to
its characteristics, see [1]-[5]. Many works have focused on the epidemic models with bilinear incidence
whereas Anderson and May and De Jong et al. pointed out that the epidemic models with standard
incidence provide a more natural description for humankind and gregarious animals [6]-[7]. Among these
models, the following DS-I-A model proposed by Hyman et al. [5] describes HIV spreads in multi-groups
of susceptibilities:

dSk(t)
dt = µ(S0

k − Sk(t)) − βαkSk(t)I(t)
N(t) , 1 ≤ k ≤ n,

dI(t)
dt =

n∑
k=1

βαkSk(t)I(t)
N(t)

− (µ + γ)I(t),

dA(t)
dt = γI(t) − δA(t),

(1)

in which N(t) =
∑n

k=1 Sk(t) + I(t),Si(t)(i = 1, 2, . . . ,n) denote the n individuals susceptible to infection sub-
groups, I(t) the infected individuals; A(t) the AIDS cases; µS0

k(k = 1, 2, . . . ,n) the input flow into the n
susceptible subgroups; µ the natural mortality rate; γ the removal rate coefficient of the infected individu-
als and δ the sum of natural mortality rate and mortality due to illness; αk(k = 1, 2, . . . ,n) the susceptibility
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of susceptible individuals in subgroup I and βI(t)Sk(t)
N(t) αk the standard incidence ratio of susceptible subgroups

Sk. Since the dynamics of group A has no effect on the disease transmission dynamics, thus we only consider
dSk(t)

dt = µ(S0
k − Sk(t)) − βαkSk(t)I(t)

N(t) , 1 ≤ k ≤ n,

dI(t)
dt =

n∑
k=1

βαkSk(t)I(t)
N(t)

− (µ + γ)I(t),
(2)

The threshold conditions can be calculated which determine whether an infectious disease will spread
in susceptible population when the disease is introduced into the crowed, according to research the disease
free equilibrium E0(S0

1,S
0
2, . . . ,S

0
n, 0) of system (2) in [8].

And they obtain reproductive number

R0 =

β
n∑

k=1

αkS0
k

(µ + γ)
n∑

k=1

S0
k

,

where R0 < 1,E0 is local asymptotic stabile and disease extinct. When R0 > 1, then E0 is unstable and
the disease will persistent existence (see [5]). The effective contact rate of infected individual in subgroup
Sk(k = 1, 2, . . . ,n) is αkβ(k = 1, 2, . . . ,n). So for initial time (Si = S0

i ), the average effective contact rate of

infected individual in subgroup Sk(k = 1, 2, . . . ,n) is

β

n∑
k=1

αkS0
k

n∑
k=1

S0
k

. 1
µ+γ the average disease period of infected

individuals. So R0 is basic reproductive number.
It is well recognized fact that real life is full of randomness and stochasticity. Hence the epidemic models

are always affected by the environmental noise (in cite [9]-[16]). In [17]-[22], the stochastic models may be
more convenient epidemic models in many situations. To establish the stochastic differential equation(SDE)
model, we naturally use the equation in the form of differential

dSk(t) =
[
µ(S0

k − Sk(t)) −
βαkSk(t)I(t)

N(t)

]
dt, 1 ≤ k ≤ n. (3)

Here [t, t + ∆t) is a small time interval and d· for the small change. For example dSk(t) = Sk(t + dt)−Sk(t), 1 ≤
k ≤ n and the change dSk(t) is described by (3). Consider the effective contact rate constant of infected
individual βαk, 1 ≤ k ≤ n in the deterministic model. The total number of newly increased I in the small
interval [t, t + dt) is

n∑
k=1

βαkSk(t)I(t)
N(t)

dt.

Now suppose that some stochastic environment factors acts simultaneously on each subgroups in the
disease. In this case, βαk, 1 ≤ k ≤ n changes to a random variable β̃αk, 1 ≤ k ≤ n. More precisely

β̃αkdt = βαkdt + σkdBk(t) 1 ≤ k ≤ n.

Here dBk(t) = Bk(t + dt) − Bk(t)(k = 1, 2, . . . ,n) is the increment of a standard Brownian motion. And
Bk(t)(k = 1, 2, . . . ,n) are independent standard Brownian motions with Bk(0) = 0(k = 1, 2, . . . ,n) and σ2

k >
0(k = 1, 2, . . . ,n) denote the intensities of the white noise. Thus the number of newly increasing I that each
subgroups Sk, 1 ≤ k ≤ n infected in [t, t + dt) is normally distributed with mean βαkdt and variance σ2

kdt,
where k = 1, 2, . . . ,n.
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Therefore we replace βαkdt in equation (3) by β̃αkdt = βαkdt + σkdB(t) to get

dSk(t) =
[
µ(S0

k − Sk(t)) −
βαkSk(t)I(t)

N(t)

]
dt − σk

Sk(t)I(t)
N(t)

dBk(t), 1 ≤ k ≤ n.

Note that β̃αidt now denotes the mean of the stochastic number of Si infected in the infinitesimally small
time interval [t, t + dt). Similarly, the first equation of (2) becomes another SDE. That is, the deterministic
infectious diseases model (2) becomes the Itô SDE


dSk(t) = [µ(S0

k − Sk(t)) − βαkSk(t)I(t)
N(t) ]dt − σk

Sk(t)I(t)
N(t) dBk(t), 1 ≤ k ≤ n,

dI(t) = [
n∑

k=1

βαkSk(t)I(t)
N(t)

− (µ + γ)I(t)]dt +

n∑
k=1

σk
Sk(t)I(t)

N(t)
dBk(t),

(4)

Other parameters are the same as in system (2). On the other hand, many infectious of humans fluctuate over
time and often show seasonal patterns of incidence. Taking account of periodic variation in epidemic models
and studying the existence of periodic solutions are important and interesting to predict and control the
spread of infectious diseases. Many results on the periodic solution of epidemic models have been reported
[23–25] by using Has’minskii theory of periodic solutions and constructing suitable Lyapunov functions.

Motivated by above facts, in this paper, we will consider the following stochastic DS-I-A model:
dSk(t) = [µ(t)(S0

k(t) − Sk(t)) − β(t)αk(t)Sk(t)I(t)
N(t) ]dt − σk(t) Sk(t)I(t)

N(t) dBk(t), 1 ≤ k ≤ n,

dI(t) = [
n∑

k=1

β(t)αk(t)Sk(t)I(t)
N(t)

− (µ(t) + γ(t))I(t)]dt +

n∑
k=1

σk(t)
Sk(t)I(t)

N(t)
dBk(t),

(5)

in which the parameter functions µ,S0
k , σk, β, αk, γ, k = 1, 2, . . . ,n, are positive, non-constant and continuous

functions of period T. This paper is organized as follows. In Section 2, we show there is a unique positive
solution of system (5) by the same way as mentioned in Ref.[26]-[28]. In Section 3, we establish sufficient
conditions for extinction of disease. The condition for the disease being persistent is given in Sections 4.
In Section 5, we verify that there exists nontrivial positive periodic solution of system (5). In Section 6,
outcomes of numerical simulations are also reported in support of analytical results.

Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions(i.e. it is right continuous and F0 contains all P -null
sets). Denote

Rn
+ = {x ∈ Rn : xi > 0 f or all 1 ≤ i ≤ n}.

If f (t) is an integral function on [0,∞), define 〈 f 〉T = 1
T

∫ T

0 f (s)ds. If f (t) is a bounded function on [0,∞),
define f l = inft∈[0,∞) f (t), f u = supt∈[0,∞) f (t). We consider the general d-dimensional stochastic differential
equation

dx(t) = f (x(t), t)dt + 1(x(t), t)dB(t), f or t ≥ t0 (6)

with initial value x(t0) = x0 ∈ Rn, where B(t) denotes d-dimensional standard Brownian motions defined
on the above probability space.

Define the differential operator L associated with Eq.(6) by

L =
∂
∂t

+ Σ fi(x, t)
∂
∂xi

+
1
2

Σ[1T(x, t)1(x, t)]i j
∂2

∂xi∂x j
.

If L acts on a function V ∈ C2,1(Rn
× R̄+; R̄+), then

LV(x, t) = Vt(x, t) + Vx(x, t) f (x, t) +
1
2

trac[1T(x, t)Vxx(x, t)1(x, t)]
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where Vt = ∂V
∂t ,Vx = ( ∂V

∂x1
, · · · , ∂V

∂xd
) and Vxx = ( ∂2V

∂xi∂x j
)d×d. By Itô’s formula, if x(t) is a solution of Eq.(6), then

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)1(x(t), t)dB(t).

In Eq.(6),we assume that f (0, t) = 0 and 1(0, t) = 0 for all t ≥ t0. So x(t) ≡ 0 is a solution of Eq.(6), called
the trivial solution or equilibrium position.

By the definition of stochastic differential, the equation (6) is equivalent to the following stochastic
integral equation

x(t) = x0 +

∫ t

t0

f (x(s), s)ds +

d∑
r=1

∫ t

t0

1r(x(s), s)dBr(s), f or t ≥ t0 (7)

2. Existence and uniqueness of positive solution

In this section we first show that the solution of system (5) is positive and global. To get a unique
global(i.e. no explosion in a finite time) solution for any initial value, the coefficients of the equation are
required to satisfy the linear growth condition and the local lipschitz condition. However, the coefficients
of system (5) do not satisfy the linear growth condition, as the item βαiSi(t)I(t)

N(t) is nonlinear. So the solution of
system (5) may explore in finite time. In this section, we show that the solution of system (5) is positive and
global by using the Lyapunov analysis method.

Theorem 2.1. There is a unique positive solution X(t) = (S1(t),S2(t), . . . ,Sn(t), I(t)) of system (5) on t ≥ 0 for any
initial value (S1(0),S2(0), . . . ,Sn(0), I(0)) ∈ Rn+1

+ , and the solution will remain in Rn+1
+ with probability 1, namely,

(S1(t),S2(t), . . . ,Sn(t), I(t)) ∈ Rn+1
+ for all t ≥ 0.

Proof. Since the coefficients of system (5) are locally Lipschitz continuous, then, for given initial value
(S1(0),S2(0), . . . ,Sn(0), I(0)) ∈ Rn+1

+ . There is a unique local solution (S1(t),S2(t), . . . ,Sn(t), I(t)) on t ∈ [0, τe),
where τe is the explosion time [12]. To show the solution is global, we only need to verify that τe = ∞ a.s.
Let m0 ≥ 0 be sufficiently large so that every component of X(0) lies within the interval [1/m0,m0]. For each
m ≥ m0, we define the stopping time

τm = inf{t ∈ [0, τe) : min{S1(t),S2(t), . . . ,Sn(t), I(t)} ≤
1
m

or max{S1(t),S2(t), . . . ,Sn(t), I(t)} ≥ m}

where we set infφ = ∞(as usualφ denotes the empty set) throughout the paper. According to the definition,
τm is increasing when m → ∞. Set τ∞ = lim

m→∞
τm, then τ∞ ≤ τe a.s. In the following, we need to prove that

τ∞ = ∞ a.s., then τe = ∞ and (S1(t),S2(t), . . . ,Sn(t), I(t)) ∈ Rn+1
+ a.s. for all t ≥ 0. In other words, to complete

the proof all we need to show is that τ∞ = ∞ a.s. If this assertion is violated then there exists a pair of
constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer m1 ≥ m0 such that

P{τ∞ ≤ T} ≥ ε, f or all m ≥ m1.

For t ≤ τm, we can see, for each m,

d(
n∑

k=1

Sk + I) = [µ(t)
n∑

k=1

(S0
k(t) − Sk(t)) − (µ(t) + γ(t))I(t)]dt

= [µ(t)
n∑

k=1

S0
k(t) − µ(t)(

n∑
k=1

Sk(t) + I(t)) − γ(t)I(t)]dt

≤ µ(t)
n∑

k=1

S0u
k dt − µ(t)(

n∑
k=1

Sk(t) + I(t))dt.
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Therefore

n∑
k=1

Sk(t) + I(t) ≤


n∑

k=1

S0u
k , if

n∑
k=1

Sk(0) + I(0) <
n∑

k=1

S0u
k

n∑
k=1

Sk(0) + I(0), if
n∑

k=1

Sk(0) + I(0) ≥
n∑

k=1

S0u
k .

Let C := max{
n∑

k=1

S0
ku,

n∑
k=1

Sk(0) + I(0)}. Define a C2-function V : Rn+1
+ → R̄+ by

V(S1,S2, . . . ,Sn, I) =

n∑
k=1

(Sk − 1 − ln Sk) + (I − 1 − ln I).

The non-negativity of this function can be see from u − 1 − log u ≥ 0, ∀u > 0. Let m ≥ m0 and T > 0 be
arbitrary then by Itô’s formula one obtains

dV(S1,S2, . . . ,Sn, I) = LV(S1,S2, . . . ,Sn, I)dt −
∑n

k=1 σk(t)(Sk(t) − 1) I(t)
N(t) dBk(t)

+

n∑
k=1

σk(t)(I(t) − 1)
Sk(t)
N(t)

dBk(t),

where

LV =

n∑
k=1

(1 −
1

Sk(t)
)[µ(t)(S0

k(t) − Sk(t)) −
β(t)αk(t)Sk(t)I(t)

N(t)
] + (1 −

1
I(t)

)

×[
n∑

k=1

β(t)αk(t)Sk(t)I(t)
N(t)

− (µ(t) + γ(t))I(t)] +

n∑
k=1

σ2
k(t)
2

I2(t)
N2(t)

+

n∑
k=1

σ2
k(t)
2

S2
k(t)

N2(t)

= µ(t)
n∑

k=1

S0
k(t) − µ(t)(

n∑
k=1

Sk(t) + I(t)) − γ(t)I(t) − µ(t)
n∑

k=1

S0
k(t)

Sk(t)
+ (n + 1)µ(t)

+γ(t) +
β(t)I(t)

N(t)

n∑
k=1

αk(t) −
n∑

k=1

β(t)αk(t)Sk(t)
N(t)

+

n∑
k=1

σ2
k(t)
2

I2(t)
N2(t)

+

n∑
k=1

σ2
k(t)
2

S2
k(t)

N2(t)

< µu
n∑

k=1

S0u
k + (n + 1)µu + γu + βu

n∑
k=1

αu
k +

n∑
k=1

(σu
k )2 := M,

(8)

where M is a positive constant which is independent of S1(t),S2(t), . . . ,Sn(t), I(t) and t. The remainder of the
proof follows that in ref. [29].

Remark 2.2. From Theorem (2.1) there is a unique global solution (S1(t),S2(t), . . . ,Sn(t), I(t)) ∈ Rn+1
+ almost surely

of system (5), for any initial value (S1(0),S2(0), . . . ,Sn(0), I0) ∈ Rn+1
+ . Hence

d(
n∑

k=1

Sk(t) + I(t)) ≤ µ(t)
n∑

k=1

S0u
k dt − µ(t)(

n∑
k=1

Sk(t) + I(t))dt,

and
n∑

k=1

Sk(t) + I(t) ≤
n∑

k=1

S0u
k + e−

∫ t
0 µ(s)ds[

n∑
k=1

Sk(0) + I(0) −
n∑

k=1

S0u
k ].

If
n∑

k=1

Sk(0) + I(0) <
n∑

k=1

S0u
k , then

n∑
k=1

Sk(t) + I(t) <
n∑

k=1

S0u
k a.s.. Thus the region

Γ∗ =

(S1,S2, . . . ,Sn, I) ∈ Rn+1
+ ,

n∑
k=1

Sk(t) + I(t) <
n∑

k=1

S0u
k


is a positively invariant set of system (5).
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3. Extinction

The other main concern in epidemiology is how we can regulate the disease dynamics so that the disease
will be eradicated in a long term. In this section, we shall give a sharp result of the extinction of disease in
the stochastic model (5).

Theorem 3.1. Assume J = {1, 2, . . . ,n}, and J = N1
⊕

N2, where N1 = {i|(σl
i)

2
≥ βuαu

i }, and N2 = {i|(σl
i)

2 < βuαu
i }.

If R̂∗0 :=

∑
i∈N1

(βu)2(αu
i )2

2(σl
i)

2
+

∑
j∈N2

(
βuαu

j −
(σl

j)
2

2

)
〈µ+γ〉T

< 1, then the disease I(t) will die out exponentially with probability one,
i.e.,

lim sup
t→∞

ln I(t)
t
≤ 〈µ + γ〉T(R̂∗0 − 1) < 0 a.s..

Proof. Making use of the Itô’s formula to ln I(t), one has

d ln I = 1
I(t)

[ β(t)I(t)

n∑
k=1

αk(t)Sk(t)

N(t) − (µ(t) + γ(t))I(t)
]
dt − 1

I2(t)

n∑
k=1

σ2
k(t)
2

S2
k(t)I2(t)

N2(t)
dt

+

n∑
k=1

σk(t)
Sk(t)
N(t)

dBk(t)

=
[ β(t)

n∑
k=1

αk(t)Sk(t)

N(t) −

n∑
k=1

σ2
k(t)
2

S2
k(t)

N2(t)
− (µ(t) + γ(t))

]
dt +

n∑
k=1

σk(t)
Sk(t)
N(t)

dBk(t)

=

n∑
k=1

β(t)αk(t)
Sk(t)
N(t)

−
σ2

k(t)
2

S2
k(t)

N2(t)

 dt − (µ(t) + γ(t))dt +

n∑
k=1

σk(t)
Sk(t)
N(t)

dBk(t)

≤

n∑
k=1

βuαu
k

Sk(t)
N(t)

−
(σl

k)2

2

S2
k(t)

N2(t)

 dt − (µ(t) + γ(t))dt +

n∑
k=1

σu
k

Sk(t)
N(t)

dBk(t)

= −

n∑
k=1

[ (σl
k)2

2

S2
k(t)

N2(t)
− βuαu

k
Sk(t)
N(t)

+
( √2βuαu

k

2σl
k

)2]
dt +

n∑
k=1

βuαu
k

2(σl
k)2

dt

−(µ(t) + γ(t))dt +

n∑
k=1

σu
k

Sk(t)
N(t)

dBk(t)

= −

n∑
k=1

( σl
k
√

2

Sk(t)
N(t)

−

√
2βuαu

k

2σl
k

)2
dt +

n∑
k=1

(βu)2(αu
k )2

2(σl
k)2

dt − (µ(t) + γ(t))dt

+

n∑
k=1

σu
k

Sk(t)
N(t)

dBk(t).

(9)

Let Sk
N = zk, k = 1, 2, . . . ,n, and 0 < zk ≤ 1, we can obtain

f (zk) :=
(
βuαu

k zk −
(σl

k)2

2 z2
k

)
= −

( σl
k
√

2
zk −

√
2βuαu

k

2σl
k

)2
+

(βu)2(αu
k )2

2(σl
k)2 .

Case 1: When
σl

k
√

2
≥

√
2βuαu

k

2σl
k
, that is (σl

k)2
≥ βuαu

k , then f (zk) ≤ f (
βuαu

k

(σl
k)2 ), we obtain:

f (zk) ≤
(βu)2(αu

k )2

2(σl
k)2

, (10)
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where k = 1, 2, . . . ,n.

Case 2: When
σl

k
√

2
<
√

2βuαu
k

2σl
k
, that is (σl

k)2 < βuαu
k , then f (zk) ≤ f (1), we can obtain:

f (zk) ≤ βuαu
k −

(σl
k)2

2
, (11)

where k = 1, 2, . . . ,n.
Assume J = {1, 2, . . . ,n}, and J = N1

⊕
N2, where N1 = {i|(σl

i)
2
≥ βuαu

i }, and N2 = {i|(σl
i)

2 < βuαu
i } then

d ln I ≤
∑
i∈N1

(βu)2(αu
i )2

2(σl
i)

2
dt +

∑
j∈N2

(
βuαu

j −
(σl

j)
2

2

)
dt − (µ(t) + γ(t))dt +

n∑
k=1

σu
k

Sk

N
dBk(t) (12)

Integrating (12) from 0 to t and dividing by t, we obtain

ln I(t) − ln I(0)
t

≤ 〈µ + γ〉T(R̂∗0 − 1) +

n∑
k=1

σu
k

1
t

∫ t

0

Sk(t)
N(t)

dBk(t). (13)

An application of the strong law of large numbers (in [12]) we can obtain

lim
t→∞

1
t

∫ t

0

Sk

N
dBk(t) = 0, 1 ≤ k ≤ n a.s.. (14)

Taking the superior limit on both side of (13) and combining with (14), one arrives at

lim sup
t→∞

ln I(t)
t
≤ 〈µ + γ〉T(R̂∗0 − 1) < 0 a.s.,

which implies that limt→∞ I(t) = 0 a.s. Thus the disease I(t) will tend to zero exponentially with probability
one.

By system (5) and (1), it is easy to see that when limt→∞ I(t) = 0 a.s., then limt→∞ A(t) = 0 a.s. This
completes the proof.

4. Persistence

Definition 4.1. System (5) is said to be persistence in the mean if

lim inf
t→∞

1
t

∫ t

0

I(r)
N(r)

dr > 0 a.s..

We define a parameter

Rs
0 :=

n∑
k=1

〈(µ2βαkS0
k)

1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ + γ +

n∑
k=1

σ2
k

2
〉T〈µ

n∑
k=1

S0
k〉T

. (15)

Theorem 4.2. Assume that Rs
0 > 1, then for any initial value (S1(0),S2(0), . . . ,Sn(0), I0) ∈ Γ∗ the solution

(S1(t),S2(t), . . . ,Sn(t), I(t)) of system (5) has the following property:

lim inf
t→∞

1
t

∫ t

0

I(r)
N(r)

dr ≥

(µ + γ +

n∑
k=1

σ2
k

2
)(Rs

0 − 1)

βu
n∑

k=1

〈(µ2βαkS0
k)

1
3 〉

1
3
T

〈µ +
σ2

k
2 〉

2
T〈µ

n∑
k=1

S0
k〉T

αu
k

, (16)

where k = 1, 2, . . . ,n.
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Proof.

L

 n∑
k=1

Sk + I

 = µ(t)
n∑

k=1

(S0
k(t) − Sk(t)) − (µ(t) + γ(t))I(t) = µ(t)

n∑
k=1

S0
k(t)

−µ(t)(
n∑

k=1

Sk(t) + I(t)) − γ(t)I(t)

= µ(t)
n∑

k=1

S0
k(t) − µ(t)N(t) − γ(t)I(t)

L(− ln Sk) = −
µ(t)S0

k(t)

Sk(t)
+ µ(t) +

β(t)αk(t)I(t)
N(t)

+
σ2

k(t)
2

I2(t)
N2(t)

,

where k = 1, 2, . . . ,n,

L(− ln I) = −

β(t)
n∑

k=1

αk(t)Sk(t)

N(t)
+ (µ(t) + γ(t)) +

n∑
k=1

σ2
k(t)
2

S2
k(t)

N2(t)
.

Hence we define

U(S1,S2, . . . ,Sn, I) = − ln I(t) −
n∑

k=1

ck ln Sk(t) +

n∑
k=1

ak

 n∑
k=1

Sk(t) + I(t)

 ,
with

ck =
〈(µ2βαkS0

k)
1
3 〉

3
T

〈µ +
σ2

k
2 〉

2
T〈µ

n∑
k=1

S0
k〉T

, ak =
〈(µ2βαkS0

k)
1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ

n∑
k=1

S0
k〉

2
T

,

in which k = 1, 2, . . . ,n.
Using Itô’s formula and Basic inequality a+b+c

3 ≥
3√
abc one can write

LU = −

n∑
k=1

β(t)αk(t)Sk(t)
N(t)

+ (µ(t) + γ(t)) −
n∑

k=1

ckµ(t)S0
k(t)

Sk(t)
−

n∑
k=1

akµ(t)N(t)

+

β(t)I(t)

n∑
k=1

ckαk(t)

N(t) +

n∑
k=1

ck(µ(t) +
σ2

k(t)
2

I2(t)
N2(t)

) + µ(t)
n∑

k=1

ak(
n∑

k=1

S0
k(t)) −

n∑
k=1

akγ(t)I(t)

+
β(t)αk(t)I(t)

N(t) +

n∑
k=1

σ2
k(t)
2

S2
k(t)

N2(t)

≤ −

n∑
k=1

β(t)αk(t)Sk(t)
N(t)

+ (µ(t) + γ(t) +

n∑
k=1

σ2
k(t)
2

) −
n∑

k=1

ckµ(t)S0
k(t)

Sk(t)
−

n∑
k=1

akµ(t)N(t)

+

β(t)I(t)

n∑
k=1

ckαk(t)

N(t) +

n∑
k=1

ck(µ(t) +
σ2

k(t)

2
) + µ(t)

n∑
k=1

ak(
n∑

k=1

S0
k(t)) −

n∑
k=1

akγ(t)I(t)

=

n∑
k=1

[−
β(t)αk(t)Sk(t)

N(t)
−

ckµS0
k(t)

Sk(t)
− akµ(t)N(t)] + (µ(t) + γ(t) +

n∑
k=1

σ2
k(t)

2
)

+

β(t)I(t)

n∑
k=1

ckαk(t)

N(t) +

n∑
k=1

ck(µ(t) +
σ2

k(t)

2
) + µ(t)

n∑
k=1

ak(
n∑

k=1

S0
k(t)) −

n∑
k=1

akγ(t)I(t)



S. Liu, X. Xu / Filomat 33:8 (2019), 2219–2235 2227

≤ −3
n∑

k=1

(ckβ(t)µ2(t)αk(t)S0
k(t)ak)

1
3 +

n∑
k=1

ck(µ(t) +
σ2

k(t)

2
) + µ(t)

n∑
k=1

ak(
n∑

k=1

S0
k(t))

+(µ(t) + γ(t) +

n∑
k=1

σ2
k(t)

2
) +

β(t)
n∑

k=1

ckαk(t)

N(t)
I(t)

:= R0(t) +

β(t)

n∑
k=1

ckαk(t)

N(t) I(t).

Define the T−periodic function w(t) which satisfies

w′(t) = 〈R0〉T − R0(t). (17)

By ck, ak, k = 1, 2, . . . ,n, we obtain

ck〈µ +
σ2

k
2 〉T = ak〈µ

n∑
k=1

S0
k〉T =

〈(µ2βαkS0
k )

1
3 〉3T

〈µ+
σ2

k
2 〉T〈µ

n∑
k=1

S0
k〉T

,

in which k = 1, 2, . . . ,n.
Then we get

L(U + w(t)) ≤ 〈R0〉T +

βu

n∑
k=1

ckα
u
k

N(t) I(t)

≤

n∑
k=1

−3〈(µ2βαkS0
k)

1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ

n∑
k=1

S0
k〉T

+

n∑
k=1

2〈(µ2βαkS0
k)

1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ

n∑
k=1

S0
k〉T

+〈µ + γ +

n∑
k=1

σ2
k

2
〉T +

βu
n∑

k=1

ckα
u
k

N(t)
I(t)

= −

n∑
k=1

〈(µ2βαkS0
k)

1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ

n∑
k=1

S0
k〉T

+ 〈µ + γ +

n∑
k=1

σ2
k

2
〉T +

βu
n∑

k=1

ckα
u
k

N(t)
I(t)

= −〈µ + γ +

n∑
k=1

σ2
k

2
〉T

[ n∑
k=1

〈(µ2βαkS0
k)

1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ + γ +

σ2
n+1
2 〉T〈µ

n∑
k=1

S0
k〉T

− 1
]

+

βu

n∑
k=1

ckα
u
k

N(t) I(t)

≤ −〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1) +

βu
n∑

k=1

ckα
u
k

N(t)
I(t),

in which Rs
0 is defined in (15).
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Thus we can obtain

d(U + w(t)) ≤ −〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1) +

βu
n∑

k=1

ckα
u
k

N
I +

n∑
k=1

σu
k

I
N

dBk(t) −
n∑

k=1

σl
k
Sk

N
dBk(t) (18)

As w(t) is a T−periodic function so we obtain:

〈R0〉T = lim
t→+∞

∫ t

0 R0(t)dt

t
.

and integrating (17) from 0 to t and dividing by t, we can get

w(t) − w(0)
t

= 〈R0〉T −

∫ t

0 R0(t)dt

t

Integrating (18) from 0 to t and dividing by t, we can get

ln U(t)−ln U(0)
t ≤ −〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1)t + βu
n∑

k=1

ckα
u
k

1
t

∫ t

0

I(r)
N(r)

dr

+

n∑
k=1

σu
k

1
t

∫ t

0

I(r)
N(r)

dBk(t) −
n∑

k=1

σl
k
1
t

∫ t

0

Sk(r)
N(r)

dBk(t).
(19)

Since
n∑

k=1

Sk(t) + I(t) ≤ C, we can obtain

W(t) = − ln I(t) −
n∑

k=1

ck ln Sk(t) +

n∑
k=1

ak

 n∑
k=1

Sk(t) + I(t)


≥ − ln I(t) −

n∑
k=1

ck ln Sk(t)

≥ − ln C −
n∑

k=1

ck ln C := M̄.

(20)

An application of the strong law of large numbers (in [12]) we can obtain

lim
t→∞

1
t

∫ t

0

Si(r)
N(r)

dBi(t) = 0 1 ≤ i ≤ n a.s.. (21)

lim
t→∞

1
t

∫ t

0

I(r)
N(r)

dBi(t) = 0 (22)

Taking the superior limit on both side of (19) and combining with (20), (21) and (22) one arrives at

lim inf
t→∞

1
t

∫ t

0

I(r)
N(r)

dr ≥

〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1)

βu
n∑

k=1

ckα
u
k

.

Therefore, by the condition Rs
0 > 1, we have assertion (16). This complete the proof of Theorem (4.2).
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5. Existence of nontrivial positive periodic solution of system (1.5)

Definition 5.1. A stochastic process x(t, $) is said to be periodic with period T if its finite dimensional distributions
are periodic with period T, i.e., for any positive integer m and any moments of time t1, t2, . . . , tm, the joint distributions
of the random variables x(t1+kT, $), . . . , x(tm+kT, $) are independent of k (k = ±1,±2, · · · ).

Consider the following periodic stochastic equation

dx(t) = f (t, x(t))dt + 1(t, x(t))dB(t), x ∈ Rn, (23)

where functions f and 1 are T−periodic in t.

Lemma 5.2. ([30]). Assume that system (23) admits a unique global solution. Suppose further that there exists a
function V(t, x) ∈ C2 in R which is T−periodic in t, and satisfies the following conditions

inf
|x|>R

V(t, x)→∞ as R→∞, (24)

and

LV(t, x) ≤ −1 outside some compact set, (25)

where the operator L is defined by

LV(t, x) = Vt(t, x) + Vx(t, x) f (t, x) +
1
2

trace(1T(t, x)Vxx(t, x)1(t, x)). (26)

Then the system (23) has a T−periodic solution.

By Theorem (2.1), we can obtain that system (5) has a unique globally positive solution
(S1(t),S2(t), . . . ,Sn(t), I(t)) ∈ Rn+1

+ on t ≥ 0 for any initial value (S1(0),S2(0), . . . ,Sn(0), I(0)) ∈ Rn+1
+ . Based on

this result we will give conditions which guarantees the existence of periodic solutions.

Theorem 5.3. Assume that Rs
0 > 1 (defined by Section 4), then system (5) admits a nontrivial positive T−periodic

solution.

Proof. Since the coefficients of (5) are constants, it is not difficult to show that they satisfy (5.1), (5.2). For
all initial value (S1(0),S2(0), . . . ,Sn(0), I0) ∈ Γ∗, the solution of (5) is regular by Theorem (2.1). It is clear
that coefficients of system (5) satisfy the local Lipschitz condition. According to Lemma (5.2), to prove this
result, it only need to construct a C2

−periodic function V(x, t) and a compact set such that (24) and (25) are
satisfied. Defining a C2

−function

V̂(S1,S2, . . . ,Sn, I, t) = M(U + w(t)) −
n∑

k=1

ln Sk − ln(
n∑

k=1

S0u
k −

n∑
k=1

Sk − I),

in which U(t) is defined by section 4. And the following condition for M > 0 is satisfied

−Mλ +

n∑
k=1

(σu
k )2

2
+ (n + 1)µu = −2, (27)

λ = 〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1) > 0.

It is easy to check that
lim inf∑n

k=1 Sk(t)+I(t)→
∑n

k=1 S0u
k

t→+∞

V̂(S1,S2, . . . ,Sn, I, t) = +∞.
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In addition, V̂(S1,S2, . . . ,Sn, I, t) is a continuous function on Ūk. Therefore V̂(S1,S2, . . . ,Sn, I, t) has a
minimum value point (S̄1, S̄2, . . . , S̄n, Ī, t) in the interior of Γ∗. Then we define a nonnegative C2

−function V:
Γ∗ → R as follows

V(S1,S2, . . . ,Sn, I, t) = V̂(S1,S2, . . . ,Sn, I, t) − V̂(S̄1, S̄2, . . . , S̄n, Ī, t).

The differential operator L acting on the function V leads to

LV ≤ M
[
− 〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1) +

βu
n∑

k=1

ckα
u
k

N(t)
I(t)

]
+

β(t)
n∑

k=1

αk(t)

N(t)
I(t) −

n∑
k=1

µ(t)S0
k(t)

Sk(t)

+

n∑
k=1

σ2
k(t)
2

I2(t)
N2(t)

+ (n + 1)µ(t) −
γ(t)I(t)

n∑
k=1

S0
k(t) −N(t)

≤ M
[
− 〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1) +

βu
n∑

k=1

ckα
u
k

N(t)
I(t)

]
+

βu
n∑

k=1

αu
k

N(t)
I(t) −

n∑
k=1

µlS0l
k

Sk(t)
+

n∑
k=1

(σu
k )2

2

+(n + 1)µu
−

γlI(t)
n∑

k=1

S0u
k −N(t)

:= −Mλ +

βu

M

n∑
k=1

ckα
u
k +

n∑
k=1

αu
k


N(t) I(t) −

n∑
k=1

µlS0l
k

Sk(t)
−

γlI(t)
n∑

k=1

S0u
k −N(t)

+ (n + 1)µu +

n∑
k=1

(σu
k )2

2
.

Consider the bounded open subset

D = {(S1,S2, . . . ,Sn, I) ∈ Γ∗, 0 <
n∑

k=1

Sk + I <
n∑

k=1

S0u
k , 1 ≤ i ≤ n},

and εi > 0(i = 1, 2, 3) are sufficiently small constants. In the set Γ∗ \ D, we can get εi(i = 1, 2, 3) sufficiently
small such that the following conditions hold

−
µlS0l

k

ε1
+ K̂ ≤ −1 k = 1, 2, . . . ,n, (28)

ε2 = (nε1)2. (29)

ε3 = ε2
2. (30)

βu

M
n∑

k=1

ckα
u
k +

n∑
k=1

αu
k

 nε1 ≤ 1. (31)

K̂ = βu

M
n∑

k=1

ckα
u
k +

n∑
k=1

αu
k

 − 2. (32)

K̂ −
γl

ε2
≤ −1. (33)
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For the purpose of convenience, we can divide Γ∗ \D into the following 2n + 2 domains,

Dk = {0 < Sk ≤ ε1}, k = 1, 2, . . . ,n.

Dn+1 = {0 < I ≤ ε2, ε1 ≤ Sk 1 ≤ k ≤ n}.

Dn+2 = {ε2 ≤ I ≤
n∑

k=1

S0u
k − ε3,

n∑
k=1

S0u
k − ε3 ≤

n∑
k=1

Sk + I}.

Clearly, DC = D1 ∪D2 ∪D3 ∪ . . . ∪Dn+2. Next we will prove that LV(S1,S2, . . . ,Sn, I) ≤ −1 on DC, which is
equivalent to show it on the above n + 2 domains.

Case 1: If (S1,S2, . . . ,Sn, I) ∈ Dk, (k = 1, 2, . . . ,n), then

LV ≤ −Mλ +

βu

M

n∑
k=1

ckα
u
k +

n∑
k=1

αu
k


N(t) I(t) −

µlS0l
k

Sk(t)

+(n + 1)µu +

n∑
k=1

(σu
k )2

2

≤ K̂ −
µlS0l

k
Sk(t)

≤ K̂ −
µlS0l

k
ε1
.

(34)

In view of (28), one has

LV ≤ −1 for any (S1,S2, . . . ,Sn, I) ∈ Dk, (k = 1, 2, . . . ,n).

Case 2: If (S1,S2, . . . ,Sn, I) ∈ Dn+1, then

LV ≤ −Mλ +

βu

M

n∑
k=1

ckα
u
k +

n∑
k=1

αu
k


N(t) I(t) + (n + 1)µu +

n∑
k=1

(σu
k )2

2

≤ −Mλ +

βu

M

n∑
k=1

ckα
u
k +

n∑
k=1

αu
k

ε2

nε1
+ (n + 1)µu +

n∑
k=1

(σu
k )2

2
.

According to (29) and (31) one can see that

LV ≤ −Mλ + βu

M
n∑

k=1

ckα
u
k +

n∑
k=1

αu
k

 nε1 + (n + 1)µu +

n∑
k=1

(σu
k )2

2
. (35)

Combining with (27), one has for sufficiently small ε1,

LV ≤ −1 for any (S1,S2, . . . ,Sn, I) ∈ Dn+1.

Case 3: If (S1,S2, . . . ,Sn, I) ∈ Dn+2, then

LV ≤ −Mλ +

βu

M

n∑
k=1

ckα
u
k +

n∑
k=1

αu
k


N(t) I(t) + (n + 1)µu +

n∑
k=1

(σu
k )2

2
−

γlI(t)
n∑

k=1

S0u
k −N(t)

≤ K̂ − γlI
n∑

k=1

S0u
k −N(t)

≤ K̂ − γlε2

ε3

≤ K̂ − γl

ε2
.

(36)
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In view of (33), one has

LV ≤ −1 for any (S1,S2, . . . ,Sn, I) ∈ Dn+2.

Obviously, from (34), (35), and (36) one can obtain that for a sufficiently small εi(i = 1, 2, 3),

LV ≤ −1 for any (S1,S2, . . . ,Sn, I) ∈ DC.

Therefore, there is a T−periodic solution of system (5) according to Lemma (5.2).

6. Simulation

In this section, we will test our theory conclusion by simulations. In the following simulations, we all
use the Milstein’s Higher Order Method in [31].

Example 6.1. Assume that the parametric values in the model (5) are given by α1(t) = 1.2 + 1.1 sin(t), α2(t) =
1 + 0.9 sin(t),S0

1(t) = 1.5 + 1.3 sin(t),S0
2(t) = 1.4 + 1.2 sin(t), µ(t) = 1.2 + 1.1 sin(t), γ(t) = 1.4 + 1.1 sin(t) and

β = 1.5+ sin(t). The condition of Theorem (3.1) is R̂s
0 := 1

〈µ+γ〉T

n∑
k=1

〈β2α2
k〉T

2〈σ2
k〉T

< 1. If we choose σ1 = 5+4.4 cos(t), σ2 =

2.5 + 2.4 sin(t), we can have

R̂∗0 =

∑
i∈N1

(βu)2(αu
i )2

2(σl
i)

2
+

∑
j∈N2

(
βuαu

j −
(σl

j)
2

2

)
〈µ + γ〉T

< 1,

then by Theorem (3.1), we can obtain that I(t) will tends to zero exponentially with probability one.
Using the Milstein’s Higher Order Method (in [31]), we give the simulations shown in Fig.1 to support our

results.
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Figure 1: Computer simulation of the path S1,S2, I for the SDE DS-I-A epidemic model (5) for σ1 = 5 + 4.4 cos(t), σ2 =
2.5 + 2.4 sin(t). We employ the Milstein’s Higher Order Method with initial value (S1(0),S2(0), I(0)) = (0.8, 0.8, 2).
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Example 6.2. Assume that the parametric values in the deterministic model (2) are given by α1(t) = 1.2 +
1.1 sin(t), α2(t) = 1 + 0.9 sin(t),S0

1(t) = 1.5 + 1.3 sin(t),S0
2(t) = 1.4 + 1.2 sin(t), µ(t) = 1.2 + 1.1 sin(t), γ(t) =

1.4 + 1.1 sin(t) and β = 3 + 1.2 sin(t). Then computer simulation of the path S1,S2, I for the SDE DS-I-A epidemic
model (5).

The condition of Theorem (4.2) is Rs
0 > 1. If we choose σ1(t) = 0.4 + 0.2 sin(t), σ2(t) = 0.4 + 0.2 sin(t) then by

Theorem (4.2), the solution (S1(t),S2(t), I(t)) of system (5) with any initial value (S1(0),S2(0), I(0)) = (0.8, 0.8, 2) ∈ Γ∗.
That is to say, the disease will proceed. For

Rs
0 :=

n∑
k=1

〈(µ2βαkS0
k)

1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ + γ +

n∑
k=1

σ2
k

2
〉T〈µ

n∑
k=1

S0
k〉T

> 1.

Using the Milstein’s Higher Order Method (in [31]), we give the simulations shown in Fig.2 to support our results.
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Figure 2: Computer simulation of the path S1,S2, I for the SDE DS-I-A epidemic model (5) for σ1 = 0.4 + 0.2 sin(t), σ2 =
0.4 + 0.2 sin(t). We employ the Milstein’s Higher Order Method with initial value (S1(0),S2(0), I(0)) = (0.8, 0.8, 2).

7. Conclusion

In this paper, the sufficient condition of extinction is given in the almost sure situation, and this value is
less than the value of the corresponding deterministic system. At some level, we can consider that the large
white noise will control the disease to prevail, which never happen in the deterministic system. Besides,
as the solutions of stochastic differential equations are stochastic processes, it is absolutely impossible for
stochastic differential equations with periodic coefficients to have periodic solutions. In order to show the
stochastic system has the similar property as the deterministic system, we show the transition probability
function of the solution is periodic. Thus, we discuss the long time behaviour of system (5) and get following
results.

(1) Assume J = {1, 2, . . . ,n}, and J = N1
⊕

N2, where N1 = {i|(σl
i)

2
≥ βuαu

i }, and N2 = {i|(σl
i)

2 < βuαu
i }.

If R̂∗0 :=

∑
i∈N1

(βu)2(αu
i )2

2(σl
i)

2
+

∑
j∈N2

(
βuαu

j −
(σl

j)
2

2

)
〈µ+γ〉T

< 1, then the disease I(t) will die out exponentially with



S. Liu, X. Xu / Filomat 33:8 (2019), 2219–2235 2234

probability one, i.e.,

lim sup
t→∞

ln I(t)
t
≤ 〈µ + γ〉T(R̂∗0 − 1) < 0 a.s..

(2) If

Rs
0 :=

n∑
k=1

〈(µ2βαkS0
k)

1
3 〉

3
T

〈µ +
σ2

k
2 〉T〈µ + γ +

n∑
k=1

σ2
k

2
〉T〈µ

n∑
k=1

S0
k〉T

> 1, (37)

then

lim inf
t→∞

1
t

∫ t

0

I(r)
N(r)

dr ≥

〈µ + γ +

n∑
k=1

σ2
k

2
〉T(Rs

0 − 1)

βu
n∑

k=1

ckα
u
k

.

and there exists a T−periodic solution of (5).

Some interesting topics deserve further consideration. On the one hand, one may propose some more
realistic but complex models, such as considering the effects of impulsive perturbations on system (5). On
the other hand, it is necessary to reveal that the methods used in this paper can be also applied to investigate
other interesting epidemic models. We leave these as our future work.
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