Subclasses of Meromorphic Functions Associated with a Convolution Operator

Mohamed K. Aouf ${ }^{\text {a }}$, Teodor Bulboacă ${ }^{\text {b }}$, Tamer M. Seoudy ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Mansoura 35516, Egypt
${ }^{b}$ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
${ }^{c}$ Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

Abstract

The purpose of the present paper is to introduce a subclass of meromorphic functions by using the convolution operator, that generalizes some well-known classes previously defined by different authors. We discussed inclusion results, radius problems, and some connections with a certain integral operator.

1. Introduction

Let $H(\mathrm{U})$ be the class of functions analytic in the open unit disk $\mathrm{U}=\{z \in \mathbb{C}:|z|<1\}$, and let $\Sigma(p, n)$ denote the class of all meromorphic functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{j=n}^{\infty} a_{j} z^{j}, z \in \dot{\mathrm{U}}=\mathrm{U} \backslash\{0\} \quad(p, n \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1}
\end{equation*}
$$

Let $\mathcal{P}_{k}(\alpha)$ be the class of functions g, analytic in U , satisfying the condition $g(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} g(z)-\alpha}{1-\alpha}\right| d \theta \leq k \pi \tag{2}
\end{equation*}
$$

where $z=r e^{i \theta}, 0<r<1, k \geq 2$ and $0 \leq \alpha<1$. This class was introduced by Padmanabhan and Parvatham [15], and as a special case we note that the class $\mathcal{P}_{k}(0)$ was introduced by Pinchuk [16]. Moreover, $\mathcal{P}(\alpha):=\mathcal{P}_{2}(\alpha)$ is the class of analytic functions g in U , with $g(0)=1$, and the real part greater than α.

Remark 1.1. (i) Like in [13] and [14], from the definition (2) it can easily be seen that the function g, analytic in U , with $g(0)=1$, belongs to $\mathcal{P}_{k}(\alpha)$ if and only if there exists the functions $g_{1}, g_{2} \in \mathcal{P}(\alpha)$ such that

$$
\begin{equation*}
g(z)=\left(\frac{k}{4}+\frac{1}{2}\right) g_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) g_{2}(z) \tag{3}
\end{equation*}
$$

[^0](ii) Notice that, if $g \in H(\mathrm{U})$ with $g(0)=1$, then there exist functions $g_{1}, g_{2} \in H(\mathrm{U})$ with $g_{1}(0)=g_{2}(0)=1$, such that the function g can be written in the form (3). For example, taking
$$
g_{1}(z)=\frac{g(z)-1}{k}+\frac{g(z)+1}{2} \quad \text { and } \quad g_{2}(z)=\frac{g(z)+1}{2}-\frac{g(z)-1}{k}
$$
then $g_{1}, g_{2} \in H(\mathrm{U})$, and $g_{1}(0)=g_{2}(0)=1$.
(iii) Using the fact that $\mathcal{P}(\alpha)$ is the class of functions with real part greater than α, from the above representation formula it follows that
$$
\mathcal{P}_{k}\left(\alpha_{2}\right) \subset \mathcal{P}_{k}\left(\alpha_{1}\right), \quad \text { if } \quad 0 \leq \alpha_{1}<\alpha_{2}<1
$$
(iv) It is well-known from [12] that the class $\mathcal{P}_{k}(\alpha)$ is a convex set.

We recall the differential operator $\mathcal{D}_{\lambda, p}^{m}: \Sigma(p, n) \rightarrow \Sigma(p, n)$, defined as follows:

$$
\begin{align*}
& \mathcal{D}_{\lambda, p}^{0} f(z)=f(z), \\
& \mathcal{D}_{\lambda, p}^{m} f(z)=(1-\lambda) \mathcal{D}_{\lambda, p}^{m-1} f(z)+\lambda \frac{\left(z^{p+1} \mathcal{D}_{\lambda, p}^{m-1} f(z)\right)^{\prime}}{z^{p}}= \\
& \frac{1}{z^{p}}+\sum_{j=n}^{\infty}[1+\lambda(j+p)]^{m} a_{j} z^{j}, \quad(\lambda \geq 0, p \in \mathbb{N}, m \in \mathbb{N}), \tag{4}
\end{align*}
$$

where the function $f \in \Sigma(p, n)$ is given by (1). This operator could be written by using the Hadamard (convolution) product, like

$$
\begin{equation*}
\mathcal{D}_{\lambda, p}^{m}=\varphi_{p, n}(\lambda, m ; z) * f(z) \tag{5}
\end{equation*}
$$

where

$$
\varphi_{p, n}(\lambda, m ; z)=\frac{1}{z^{p}}+\sum_{j=n}^{\infty}[1+\lambda(j+p)]^{m} z^{j}
$$

From the expansion formula (4) it is easy to verify the differentiation relation

$$
\begin{equation*}
\lambda z\left(\mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\prime}=\mathcal{D}_{\lambda, p}^{m+1} f(z)-(1+\lambda p) \mathcal{D}_{\lambda, p}^{m} f(z) \tag{6}
\end{equation*}
$$

Remark 1.2. The operator $\mathcal{D}_{\lambda, p}^{m}$ was defined and studied by Aouf et al. [2] and Aouf and Seoudy [3], and we note that:
(i) The operator $\mathcal{D}_{1, p}^{m}=\mathcal{D}_{p}^{m}$ was introduced and studied by Aouf and Hossen [1], Liu and Owa [8], Liu and Srivastava [9], and Srivastava and Patel [20].
(ii) The operator $\mathcal{D}_{1,1}^{m}=\mathcal{D}^{m}$ was introduced and studied by Uralegaddi and Somanatha [21]. More general results than the work [21], with a different notation for convolution (to distinguish from the analytic case) were obtained in [17].

Next, by using the convolution operator $\mathcal{D}_{\lambda, p}^{m}$ we will introduce the subclass of p-valent Bazilević functions of $\Sigma(p, n)$ as follows:

Definition 1.3. A function $f \in \Sigma(p, n)$ is said to be in the class $\Sigma \mathcal{B}_{k}^{m}(p, \lambda ; \gamma, \mu, \alpha)$ if it satisfies the condition

$$
\begin{aligned}
& (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}+\gamma \frac{\mathcal{D}_{\lambda, p}^{m+1} f(z)}{\mathcal{D}_{\lambda, p}^{m} f(z)}\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu} \in \mathcal{P}_{k}(\alpha) \\
& (k \geq 2, \gamma \geq 0, \mu>0,0 \leq \alpha<1)
\end{aligned}
$$

where all the powers represent the principal branches, i.e. $\log 1=0$.

We need to remark that, since the left-hand side function from the above definition need to be analytic in U, we implicitly assumed that $\mathcal{D}_{\lambda, p}^{m} f(z) \neq 0$ for all $z \in \dot{U}$.

To prove our main results, the following lemma will be required in our investigation. We emphasize that slightly general situation than the above lemma is covered in [18], which might be useful to cover the case of nonlinear differential subordination.

Lemma 1.4. [19] If g is an analytic function in U , with $g(0)=1$, and if λ_{1} is a complex number satisfying $\operatorname{Re} \lambda_{1} \geq 0$, $\lambda_{1} \neq 0$, then

$$
\operatorname{Re}\left[g(z)+\lambda_{1} z g^{\prime}(z)\right]>\alpha, z \in \mathrm{U}, \quad(0 \leq \alpha<1)
$$

implies

$$
\operatorname{Re} g(z)>\beta, z \in \mathrm{U}
$$

where β is given by

$$
\begin{equation*}
\beta=\alpha+(1-\alpha)\left(2 \beta_{1}-1\right), \quad \beta_{1}=\int_{0}^{1}\left(1+t^{\operatorname{Re} \lambda_{1}}\right)^{-1} d t \tag{7}
\end{equation*}
$$

and β_{1} is an increasing function of $\operatorname{Re} \lambda_{1}$, and $\frac{1}{2} \leq \beta_{1}<1$. The estimate is sharp in the sense that the bound cannot be improved.

In this paper we investigate several properties of the class $\Sigma \mathcal{B}_{k}^{m}(p, \lambda ; \gamma, \mu, \alpha)$ associated with the operator $\mathcal{D}_{\lambda, p^{\prime}}^{m}$ like inclusion results, radius problems, and some connections with the generalized Bernardi-LiberaLivingston integral operator introduced in [6].

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that $k \geq 2, \gamma \geq 0, \mu>0,0 \leq \alpha<1$, and all the powers represent the principal branches, i.e. $\log 1=0$.

Theorem 2.1. If $f \in \Sigma \mathcal{B}_{k}^{m}(p, \lambda ; \gamma, \mu, \alpha)$, then

$$
\begin{equation*}
\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu} \in \mathcal{P}_{k}(\beta), \tag{8}
\end{equation*}
$$

where β is given by (7), with $\lambda_{1}=\frac{\gamma \lambda}{\mu}$.
Proof. Since the implication is obvious for $\gamma=0$, suppose that $\gamma>0$. Let f be an arbitrary function in $\Sigma \mathcal{B}_{k}^{m}(p, \lambda ; \gamma, \mu, \alpha)$, and denote

$$
\begin{equation*}
g(z):=\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu} \tag{9}
\end{equation*}
$$

It follows that g is analytic in U , with $g(0)=1$, and according to the part $(i i)$ of Remarks 1.1 the function g can be written in the form

$$
\begin{equation*}
g(z)=\left(\frac{k}{4}+\frac{1}{2}\right) g_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) g_{2}(z) \tag{10}
\end{equation*}
$$

where g_{1} and g_{2} are analytic in U , with $g_{1}(z)=g_{2}(z)=1$.
From the part (i) of Remarks 1.1 we have that $g \in \mathcal{P}_{k}(\beta)$, if and only if the function g has the representation given by the above relation, where $g_{1}, g_{2} \in \mathcal{P}(\alpha)$. Consequently, supposing that g is of the form (10), we will prove that $g_{1}, g_{2} \in \mathcal{P}(\alpha)$.

Using the differentiation formula (6) and the notation (9), after an elementary computation we obtain

$$
\begin{gather*}
(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}+\gamma \frac{\mathcal{D}_{\lambda, p}^{m+1} f(z)}{\mathcal{D}_{\lambda, p}^{m} f(z)}\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}= \\
g(z)+\frac{\gamma \lambda}{\mu} z g^{\prime}(z) . \tag{11}
\end{gather*}
$$

Now, using the representation formula (3), we have

$$
\begin{gather*}
g(z)+\frac{\gamma \lambda}{\mu} z g^{\prime}(z)= \tag{12}\\
\left(\frac{k}{4}+\frac{1}{2}\right)\left[g_{1}(z)+\frac{\gamma \lambda}{\mu} z g_{1}^{\prime}(z)\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[g_{2}(z)+\frac{\gamma \lambda}{\mu} z g_{2}^{\prime}(z)\right]
\end{gather*}
$$

Since $f \in \Sigma \mathcal{B}_{k}^{m}(p, \lambda ; \gamma, \mu, \alpha)$, from the relations (11) and (12) it follows that

$$
\begin{equation*}
g_{i}(z)+\frac{\gamma \lambda}{\mu} z g_{i}^{\prime}(z) \in \mathcal{P}(\alpha), i=1,2 \tag{13}
\end{equation*}
$$

To prove our result we need to show that (13) implies $g_{i} \in \mathcal{P}(\beta), i=1,2$. Thus, the conditions (13) are equivalent to

$$
\operatorname{Re}\left[g_{i}(z)+\lambda_{1} z g_{i}^{\prime}(z)\right]>\alpha, z \in \mathrm{U}
$$

with $\lambda_{1}=\frac{\gamma \lambda}{\mu}$. According to Lemma 1.4, it follows that $g_{i} \in \mathcal{P}(\beta)$, where β is given by (7), with $\lambda_{1}=\frac{\gamma \lambda}{\mu}$. Thus, according to the part (i) of Remarks 1.1 and to the representation formula (3) we obtain the desired result.

Theorem 2.2. If $0 \leq \gamma_{1}<\gamma_{2}$, then

$$
\Sigma \mathcal{B}_{k}^{m}\left(p, \lambda ; \gamma_{2}, \mu, \alpha\right) \subset \Sigma \mathcal{B}_{k}^{m}\left(p, \lambda ; \gamma_{1}, \mu, \alpha\right) .
$$

Proof. If we consider an arbitrary function $f \in \Sigma \mathcal{B}_{k}^{m}\left(p, \lambda ; \gamma_{2}, \mu, \alpha\right)$, then $\varphi_{2} \in \mathcal{P}_{k}(\alpha)$, where

$$
\varphi_{2}(z):=\left(1-\gamma_{2}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}+\gamma_{2} \frac{\mathcal{D}_{\lambda, p}^{m+1} f(z)}{\mathcal{D}_{\lambda, p}^{m} f(z)}\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}
$$

According to Theorem 2.1 we have

$$
\varphi_{1}(z):=\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu} \in \mathcal{P}_{k}(\beta)
$$

where β is given by (7), with $\lambda_{1}=\frac{\gamma \lambda}{\mu}$. Since $\beta=\alpha+(1-\alpha)\left(2 \beta_{1}-1\right)$ and $\frac{1}{2} \leq \beta_{1}<1$, it follows that $\beta \geq \alpha$, and from the part (ii) of Remarks 1.1 we conclude that $\mathcal{P}_{k}(\beta) \subset \mathcal{P}_{k}(\alpha)$, hence $\varphi_{1} \in \mathcal{P}_{k}(\alpha)$.

A simple computation shows that

$$
\begin{gather*}
\left(1-\gamma_{1}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}+\gamma_{1} \frac{\mathcal{D}_{\lambda, p}^{m+1} f(z)}{\mathcal{D}_{\lambda, p}^{m} f(z)}\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}= \\
\left(1-\frac{\gamma_{1}}{\gamma_{2}}\right) \varphi_{1}(z)+\frac{\gamma_{1}}{\gamma_{2}} \varphi_{2}(z) \tag{14}
\end{gather*}
$$

Since the class $\mathcal{P}_{k}(\alpha)$ is a convex set (see the part (iv) of Remarks 1.1), it follows that right-hand side of (14) belongs to $\mathcal{P}_{k}(\alpha)$ for $0 \leq \gamma_{1}<\gamma_{2}$, which implies that $f \in \Sigma \mathcal{B}_{k}^{m}\left(p, \lambda ; \gamma_{1}, \mu, \alpha\right)$.

Let us define the integral operator $J_{c, p}: \Sigma(p, n) \rightarrow \Sigma(p, n)$ by

$$
\begin{equation*}
J_{c, p} f(z)=\frac{c+1}{z^{c+p+1}} \int_{0}^{z} t^{c+p} f(t) d t \quad(c>-1) \tag{15}
\end{equation*}
$$

We will give a short proof that this operator is well-defined, as follows. If the function $f \in \Sigma(p, n)$ is of the form (1), then the definition (15) can be written

$$
\begin{aligned}
& J_{c, p} f(z)=\frac{1}{z^{p}} \frac{c+1}{z^{c+1}} \int_{0}^{z} t^{c}\left(t^{p} f(t)\right) d t= \\
& \frac{1}{z^{p}} \frac{c+1}{z^{c+1}} \int_{0}^{z} t^{c} \varphi(t) d t=\frac{c+1}{z^{p}} I_{c, p} \varphi(z),
\end{aligned}
$$

where

$$
I_{c, p} \varphi(z)=\frac{1}{z^{c+1}} \int_{0}^{z} t^{c} \varphi(t) d t
$$

and

$$
\begin{equation*}
\varphi(z)=z^{p} f(z)=1+\sum_{j=n}^{\infty} a_{j} z^{j+p}, z \in \mathrm{U} \tag{16}
\end{equation*}
$$

is analytic in U . We see that integral operator $I_{c, p}$ defined above is similar to that of Lemma 1.2c. of [11]. According to this lemma, it follows that $I_{c, p}$ is an analytic integral operator for any function φ of the form (16) whenever $\operatorname{Re} c>-1$, and $J_{c, p} f \in \Sigma(p, n)$ has the form

$$
J_{c, p} f(z)=\frac{1}{z^{p}}+(c+1) \sum_{j=n}^{\infty} \frac{a_{j}}{j+p+c+1} z^{j}, z \in \mathrm{U} .
$$

The operator $J_{c, p}$ was introduced by Kumar and Shukla [6], connected with the Bernardi-LiberaLivingston integral operators (see [4], [7] and [10]).

Theorem 2.3. If $f \in \Sigma(p, n)$, the integral operator $J_{c, p}$ is given by (15), $\gamma \geq 0$ and $\mu>0$, then

$$
(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z)\right)^{\mu}+\gamma z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z)\right)^{\mu-1} \in \mathcal{P}_{k}(\alpha),
$$

implies that

$$
\left(z^{p} \mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z)\right)^{\mu} \in \mathcal{P}_{k}(\beta)
$$

where β is given by (7), with $\lambda_{1}=\frac{\gamma}{\mu(c+1)}$.
Proof. Like in the remark mentioned after the Definition 1.3, since the left-hand side function from the above definition need to be analytic in U , we implicitly assumed that $\mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z) \neq 0$ for all $z \in \dot{\mathrm{U}}$.

The implication is obvious for $\gamma=0$, hence suppose that $\gamma>0$. Differentiating the relation (15) we have

$$
z\left(J_{c, p} f(z)\right)^{\prime}=(c+1) f(z)-(c+p+1) J_{c, p} f(z)
$$

and using the fact that $\mathcal{D}_{\lambda, p}^{m}$ and $J_{\mathcal{c}, p}$ commute, this implies

$$
\begin{equation*}
z\left(\mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z)\right)^{\prime}=(c+1) \mathcal{D}_{\lambda, p}^{m} f(z)-(c+p+1) \mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z) \tag{17}
\end{equation*}
$$

If we let

$$
g(z):=\left(z^{p} \mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z)\right)^{\mu}
$$

then by part (ii) of Remarks 1.1 the function g can be written in the form (10), where g_{1} and g_{2} are analytic in U, with $g_{1}(0)=g_{2}(0)=1$. According to the the part (i) of Remarks 1.1 we need to prove that $g_{1}, g_{2} \in \mathcal{P}(\beta)$.

Using (17), from the above relation we have

$$
\begin{gathered}
(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z)\right)^{\mu}+\gamma z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} J_{c, p} f(z)\right)^{\mu-1}= \\
g(z)+\frac{\gamma}{\mu(c+1)} z g^{\prime}(z)=\left(\frac{k}{4}+\frac{1}{2}\right)\left[g_{1}(z)+\frac{\gamma}{\mu(c+1)} z g_{1}^{\prime}(z)\right]- \\
\left(\frac{k}{4}-\frac{1}{2}\right)\left[g_{2}(z)+\frac{\gamma}{\mu(c+1)} z g_{2}^{\prime}(z)\right] \in \mathcal{P}_{k}(\alpha) .
\end{gathered}
$$

Now, from the part (i) of Remarks 1.1 it follows that

$$
g_{i}(z)+\frac{\gamma}{\mu(c+1)} z g_{i}^{\prime}(z) \in \mathcal{P}(\alpha), i=1,2
$$

and from Lemma 1.4 we conclude that $g_{i} \in \mathcal{P}(\beta), i=1,2$, with β given by (7) and $\lambda_{1}=\frac{\gamma}{\mu(c+1)}$.
The following result represents the converse of Theorem 2.1.
Theorem 2.4. If $f \in \Sigma(p, n)$ such that $\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu} \in \mathcal{P}_{k}(\alpha)$, then $\rho^{p} f(\rho z) \in \Sigma \mathcal{B}_{k}^{m}(p, \lambda ; \gamma, \mu, \alpha)$, with

$$
\begin{equation*}
\rho=\min \left\{\left(\frac{-n \gamma \lambda+\sqrt{\mu^{2}+n^{2} \gamma^{2} \lambda^{2}}}{\mu}\right)^{\frac{1}{n}} ; r_{0}\right\} \tag{18}
\end{equation*}
$$

where

$$
r_{0}= \begin{cases}\min \{r>0: \varphi(r)=0\}, & \text { if } \exists r>0: \varphi(r)=0 \tag{19}\\ 1, & \text { if } \nexists r>0: \varphi(r)=0\end{cases}
$$

and

$$
\varphi(r)=(2 \alpha-1) r^{2 n}+2\left[2 \alpha-1-n(1-\alpha) \frac{\gamma \lambda}{\mu}\right] r^{n}+1
$$

Proof. For an arbitrary $f \in \Sigma(p, n)$ such that $\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu} \in \mathcal{P}_{k}(\alpha)$, let g be defined as in (9), i.e.

$$
\begin{equation*}
\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}=g(z) \in \mathcal{P}_{k}(\alpha) \tag{20}
\end{equation*}
$$

From the part (i) of Remarks 1.1 we have that (20) holds if and only if

$$
g(z)=\left(\frac{k}{4}+\frac{1}{2}\right) g_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) g_{2}(z)
$$

where $g_{1}, g_{2} \in \mathcal{P}(\alpha)$.

Using the above representation formula, like in the proof of Theorem 2.1 we deduce that

$$
\begin{gathered}
(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}+\gamma \frac{\mathcal{D}_{\lambda, p}^{m+1} f(z)}{\mathcal{D}_{\lambda, p}^{m} f(z)}\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}= \\
\left(\frac{k}{4}+\frac{1}{2}\right)\left[g_{1}(z)+\frac{\gamma \lambda}{\mu} z g_{1}^{\prime}(z)\right]-\left(\frac{k}{4}-\frac{1}{2}\right)\left[g_{2}(z)+\frac{\gamma \lambda}{\mu} z g_{2}^{\prime}(z)\right],
\end{gathered}
$$

and substituting $G_{i}(z):=\frac{g_{i}(z)-\alpha}{1-\alpha}, i=1,2$, we finally obtain

$$
\begin{aligned}
& (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}+\gamma \frac{\mathcal{D}_{\lambda, p}^{m+1} f(z)}{\mathcal{D}_{\lambda, p}^{m} f(z)}\left(z^{p} \mathcal{D}_{\lambda, p}^{m} f(z)\right)^{\mu}= \\
& \left(\frac{k}{4}+\frac{1}{2}\right)\left[(1-\alpha)\left(G_{1}(z)+\frac{\alpha}{1-\alpha}+\frac{\gamma \lambda}{\mu} z G_{1}^{\prime}(z)\right)\right]- \\
& \left(\frac{k}{4}-\frac{1}{2}\right)\left[(1-\alpha)\left(G_{2}(z)+\frac{\alpha}{1-\alpha}+\frac{\gamma \lambda}{\mu} z G_{2}^{\prime}(z)\right)\right],
\end{aligned}
$$

where $G_{1}, G_{2} \in \mathcal{P}(0)$.
To prove our result we need to determine the value of ρ, such that

$$
\operatorname{Re}\left[G_{i}(z)+\frac{\alpha}{1-\alpha}+\frac{\gamma \lambda}{\mu} z G_{i}^{\prime}(z)\right]>0, \text { for }|z|<\rho, i=1,2
$$

whenever $G_{1}, G_{2} \in \mathcal{P}(0)$.
Since $f \in \Sigma(p, n)$, using the well-known estimates [5] for the class $\mathcal{P}(0)$, i.e.

$$
\begin{aligned}
& \left|z G_{i}^{\prime}(z)\right| \leq \frac{2 n r^{n} \operatorname{Re} G_{i}(z)}{1-r^{2 n}},|z| \leq r<1, i=1,2 \\
& \operatorname{Re} G_{i}(z) \geq \frac{1-r^{n}}{1+r^{n}},|z| \leq r<1, i=1,2
\end{aligned}
$$

we conclude that

$$
\begin{gather*}
\operatorname{Re}\left[G_{i}(z)+\frac{\alpha}{1-\alpha}+\frac{\gamma \lambda}{\mu} z G_{i}^{\prime}(z)\right] \geq \frac{\alpha}{1-\alpha}+\operatorname{Re} G_{i}(z)-\frac{\gamma \lambda}{\mu}\left|z G_{i}^{\prime}(z)\right| \geq \\
\frac{\alpha}{1-\alpha}+\operatorname{Re} G_{i}(z)\left[1-\frac{\gamma \lambda}{\mu} \frac{2 n r^{n}}{1-r^{2 n}}\right] \tag{21}
\end{gather*}
$$

for all $|z| \leq r<1$ and $i=1,2$.
A simple calculation shows that $1-\frac{\gamma \lambda}{\mu} \frac{2 n r^{n}}{1-r^{2 n}} \geq 0(0 \leq r<1)$ if and only if

$$
\begin{equation*}
r \in\left[0,\left(\frac{-n \gamma \lambda+\sqrt{\mu^{2}+n^{2} \gamma^{2} \lambda^{2}}}{\mu}\right)^{\frac{1}{n}}\right] \tag{22}
\end{equation*}
$$

and assuming that (22) holds, from (21) we obtain

$$
\operatorname{Re}\left[G_{i}(z)+\frac{\alpha}{1-\alpha}+\frac{\gamma \lambda}{\mu} z G_{i}^{\prime}(z)\right] \geq \frac{\alpha}{1-\alpha}+\frac{1-r^{n}}{1+r^{n}}\left[1-\frac{\gamma \lambda}{\mu} \frac{2 n r^{n}}{1-r^{2 n}}\right]
$$

$|z| \leq r<1$, for $i=1,2$.

It is easy to check that the right-hand side of the above inequality is greater or equal than zero if and only if

$$
r \in\left[0, \min \left\{1 ; r_{0}\right\}\right]
$$

where r_{0} is given by (19), and combining this with (22) we obtain our result.
Remark 2.5. (i) For the special case $n=1$, it follows that if $f \in \Sigma(p, 1)$ then

$$
\rho=\min \left\{\frac{-\gamma \lambda+\sqrt{\mu^{2}+\gamma^{2} \lambda^{2}}}{\mu} ; r_{0}\right\} .
$$

(ii) We remark that for the special case $n=1$ and $\alpha=0$, the formula (18) reduces to

$$
\rho=-\left(1+\frac{\gamma \lambda}{\mu}\right)+\sqrt{\left(1+\frac{\gamma \lambda}{\mu}\right)^{2}+1}
$$

(iii) Putting $\lambda=1$ in the above results, we obtain the similar results associated with the operator \mathcal{D}_{p}^{m}.
(iv) Taking $\lambda=p=1$ in the above results, we obtain the similar results involving the operator \mathcal{D}^{m}.

Acknowledgments. The authors are grateful to the reviewers of this article, that gave valuable comments and advices, in order to revise and improve the content of the paper.

References

[1] M. K. Aouf, H. M. Hossen, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17(1993), 481-486.
[2] M. K. Aouf, A. Shamandy, A. O. Mostafa and S. M. Madian, Properties of some families of meromorphic p-valent functions involving certain differential operator, Acta Univ. Apulensis Math. Inform., 20(2009), 7-16.
[3] M. K. Aouf, T. M. Seoudy, Subordination and superordination of certain linear operator on meromorphic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 64(1)(2010), 1-16.
[4] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.
[5] S. D. Bernardi, New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions, Proc. Amer. Math. Soc. 45(1)(1974), 113-118.
[6] V. Kumar and S. L. Shukla, Certain integrals for classes of p-valent meromorphic functions, Bull. Austral. Math. Soc., 25(1982), 85-97.
[7] R. J. Libera, Some radius of convexity problems, Duke Math. J., 31(1964), 143-158.
[8] J.-L. Liu, S. Owa, Certain meromorphic p-valent functions, Taiwanese J. Math., 2(1)(1998), 107-110.
[9] J.-L. Liu, H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric functions, Math. Comput. Modelling, 39(2004), 21-34.
[10] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17(1966), 352-357.
[11] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
[12] K. I. Noor, On subclasses of close-to-convex functions of higher order, Int. J. Math. Math. Sci., 15(1992) 279-290.
[13] K. I. Noor, On certain classes of analytic functions, J. Ineq. Pure Appl. Math., 7(2)(2006), Art. 49.
[14] K. I. Noor, On analytic functions related to certain family of integral operators, J. Ineq. Pure Appl. Math., 7(2)(2006), Art. 69.
[15] K. S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotations, Ann. Polon. Math., 31(3)(1975), 311-323.
[16] B. Pinchuk, Functions of bounded boundary rotations, Israel J. Math., 10(1971), 6-16.
[17] S. Ponnusamy, Convolution properties of some classes of meromorphic univalent functions, Proc. Indian Acad. Sci. (Math. Sci.) 103(1)(1993), 73-89.
[18] S. Ponnusamy, Differential subordination concerning starlike functions, Proc. Ind. Acad. Sci. (Math. Sci.) 104(2)(1994), $397-411$.
[19] S. Ponnusamy, Differential subordination and Bazilević functions, Proc. Indian Acad. Sci., 105(1995), 169-186.
[20] H. M. Srivastava, J. Patel, Applications of differential subordinations to certain classes of meromorphically multivalent functions, J. Ineq. Pure Appl. Math., 6(3)(2005), Art. 88.
[21] B. A. Uralegaddi, C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Aust. Math. Soc., 43(1991), 137-140.

[^0]: 2010 Mathematics Subject Classification. 30C45
 Keywords. Analytic functions, meromorphic functions, Bazilević functions, convolution operators
 Received: 16 july 2018; Accepted: 19 September 2018
 Communicated by Dragan S. Djordjević
 Email addresses: mkaouf127@yahoo.com (Mohamed K. Aouf), bulboaca@math.ubbcluj.ro (Teodor Bulboacă), tms00@fayoum. edu.eg (Tamer M. Seoudy)

