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Abstract. The purpose of the present paper is to introduce a subclass of meromorphic functions by using
the convolution operator, that generalizes some well-known classes previously defined by different authors.
We discussed inclusion results, radius problems, and some connections with a certain integral operator.

1. Introduction

Let H(U) be the class of functions analytic in the open unit disk U = {z ∈ C : |z| < 1}, and let Σ(p,n) denote
the class of all meromorphic functions of the form

f (z) =
1
zp +

∞∑
j=n

a jz j, z ∈ U̇ = U \ {0}
(
p,n ∈N = {1, 2, 3, . . . }

)
. (1)

Let Pk(α) be the class of functions 1, analytic in U, satisfying the condition 1(0) = 1 and∫ 2π

0

∣∣∣∣∣Re 1(z) − α
1 − α

∣∣∣∣∣ dθ ≤ kπ, (2)

where z = reiθ, 0 < r < 1, k ≥ 2 and 0 ≤ α < 1. This class was introduced by Padmanabhan and
Parvatham [15], and as a special case we note that the classPk(0) was introduced by Pinchuk [16]. Moreover,
P(α) := P2(α) is the class of analytic functions 1 in U, with 1(0) = 1, and the real part greater than α.

Remark 1.1. (i) Like in [13] and [14], from the definition (2) it can easily be seen that the function 1, analytic in U,
with 1(0) = 1, belongs to Pk(α) if and only if there exists the functions 11, 12 ∈ P(α) such that

1(z) =

(
k
4

+
1
2

)
11(z) −

(
k
4
−

1
2

)
12(z). (3)
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Received: 16 july 2018; Accepted: 19 September 2018
Communicated by Dragan S. Djordjević
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(ii) Notice that, if 1 ∈ H(U) with 1(0) = 1, then there exist functions 11, 12 ∈ H(U) with 11(0) = 12(0) = 1, such
that the function 1 can be written in the form (3). For example, taking

11(z) =
1(z) − 1

k
+
1(z) + 1

2
and 12(z) =

1(z) + 1
2

−
1(z) − 1

k
,

then 11, 12 ∈ H(U), and 11(0) = 12(0) = 1.
(iii) Using the fact that P(α) is the class of functions with real part greater than α, from the above representation

formula it follows that

Pk (α2) ⊂ Pk (α1) , if 0 ≤ α1 < α2 < 1.

(iv) It is well-known from [12] that the class Pk(α) is a convex set.

We recall the differential operatorDm
λ,p : Σ(p,n)→ Σ(p,n), defined as follows:

D
0
λ,p f (z) = f (z),

D
m
λ,p f (z) = (1 − λ)Dm−1

λ,p f (z) + λ

(
zp+1
D

m−1
λ,p f (z)

)′
zp =

1
zp +

∞∑
j=n

[
1 + λ( j + p)

]m a jz j,
(
λ ≥ 0, p ∈N, m ∈N

)
, (4)

where the function f ∈ Σ(p,n) is given by (1). This operator could be written by using the Hadamard
(convolution) product, like

D
m
λ,p = ϕp,n(λ,m; z) ∗ f (z), (5)

where

ϕp,n(λ,m; z) =
1
zp +

∞∑
j=n

[
1 + λ( j + p)

]m z j.

From the expansion formula (4) it is easy to verify the differentiation relation

λz
(
D

m
λ,p f (z)

)′
= Dm+1

λ,p f (z) −
(
1 + λp

)
D

m
λ,p f (z). (6)

Remark 1.2. The operator Dm
λ,p was defined and studied by Aouf et al. [2] and Aouf and Seoudy [3], and we note

that:
(i) The operator Dm

1,p = Dm
p was introduced and studied by Aouf and Hossen [1], Liu and Owa [8], Liu and

Srivastava [9], and Srivastava and Patel [20].
(ii) The operatorDm

1,1 = Dm was introduced and studied by Uralegaddi and Somanatha [21]. More general results
than the work [21], with a different notation for convolution (to distinguish from the analytic case) were obtained in
[17].

Next, by using the convolution operatorDm
λ,p we will introduce the subclass of p–valent Bazilević functions

of Σ(p,n) as follows:

Definition 1.3. A function f ∈ Σ(p,n) is said to be in the class ΣBm
k (p, λ;γ, µ, α) if it satisfies the condition

(
1 − γ

) (
zp
D

m
λ,p f (z)

)µ
+ γ
D

m+1
λ,p f (z)

Dm
λ,p f (z)

(
zp
D

m
λ,p f (z)

)µ
∈ Pk(α),

(
k ≥ 2, γ ≥ 0, µ > 0, 0 ≤ α < 1

)
,

where all the powers represent the principal branches, i.e. log 1 = 0.
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We need to remark that, since the left-hand side function from the above definition need to be analytic in
U, we implicitly assumed thatDm

λ,p f (z) , 0 for all z ∈ U̇.
To prove our main results, the following lemma will be required in our investigation. We emphasize

that slightly general situation than the above lemma is covered in [18], which might be useful to cover the
case of nonlinear differential subordination.

Lemma 1.4. [19] If 1 is an analytic function in U, with 1(0) = 1, and if λ1 is a complex number satisfying Reλ1 ≥ 0,
λ1 , 0, then

Re
[
1(z) + λ1z1′(z)

]
> α, z ∈ U, (0 ≤ α < 1)

implies

Re 1(z) > β, z ∈ U,

where β is given by

β = α + (1 − α)(2β1 − 1), β1 =

∫ 1

0

(
1 + tReλ1

)−1
dt, (7)

and β1 is an increasing function of Reλ1, and 1
2 ≤ β1 < 1. The estimate is sharp in the sense that the bound cannot

be improved.

In this paper we investigate several properties of the class ΣBm
k (p, λ;γ, µ, α) associated with the operator

D
m
λ,p, like inclusion results, radius problems, and some connections with the generalized Bernardi–Libera–

Livingston integral operator introduced in [6].

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that k ≥ 2, γ ≥ 0, µ > 0, 0 ≤ α < 1, and
all the powers represent the principal branches, i.e. log 1 = 0.

Theorem 2.1. If f ∈ ΣBm
k (p, λ;γ, µ, α), then(

zp
D

m
λ,p f (z)

)µ
∈ Pk(β), (8)

where β is given by (7), with λ1 =
γλ

µ
.

Proof. Since the implication is obvious for γ = 0, suppose that γ > 0. Let f be an arbitrary function in
ΣBm

k (p, λ;γ, µ, α), and denote

1(z) :=
(
zp
D

m
λ,p f (z)

)µ
. (9)

It follows that 1 is analytic in U, with 1(0) = 1, and according to the part (ii) of Remarks 1.1 the function 1
can be written in the form

1(z) =

(
k
4

+
1
2

)
11(z) −

(
k
4
−

1
2

)
12(z), (10)

where 11 and 12 are analytic in U, with 11(z) = 12(z) = 1.
From the part (i) of Remarks 1.1 we have that 1 ∈ Pk(β), if and only if the function 1 has the representation

given by the above relation, where 11, 12 ∈ P(α). Consequently, supposing that 1 is of the form (10), we will
prove that 11, 12 ∈ P(α).
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Using the differentiation formula (6) and the notation (9), after an elementary computation we obtain

(
1 − γ

) (
zp
D

m
λ,p f (z)

)µ
+ γ
D

m+1
λ,p f (z)

Dm
λ,p f (z)

(
zp
D

m
λ,p f (z)

)µ
=

1(z) +
γλ

µ
z1′(z). (11)

Now, using the representation formula (3), we have

1(z) +
γλ

µ
z1′(z) = (12)(

k
4

+
1
2

) [
11(z) +

γλ

µ
z1′1(z)

]
−

(
k
4
−

1
2

) [
12(z) +

γλ

µ
z1′2(z)

]
.

Since f ∈ ΣBm
k (p, λ;γ, µ, α), from the relations (11) and (12) it follows that

1i(z) +
γλ

µ
z1′i (z) ∈ P(α), i = 1, 2. (13)

To prove our result we need to show that (13) implies 1i ∈ P(β), i = 1, 2. Thus, the conditions (13) are
equivalent to

Re
[
1i(z) + λ1z1′i (z)

]
> α, z ∈ U,

with λ1 =
γλ

µ
. According to Lemma 1.4, it follows that 1i ∈ P(β), where β is given by (7), with λ1 =

γλ

µ
.

Thus, according to the part (i) of Remarks 1.1 and to the representation formula (3) we obtain the desired
result.

Theorem 2.2. If 0 ≤ γ1 < γ2, then

ΣBm
k
(
p, λ;γ2, µ, α

)
⊂ ΣBm

k
(
p, λ;γ1, µ, α

)
.

Proof. If we consider an arbitrary function f ∈ ΣBm
k

(
p, λ;γ2, µ, α

)
, then ϕ2 ∈ Pk(α), where

ϕ2(z) :=
(
1 − γ2

) (
zp
D

m
λ,p f (z)

)µ
+ γ2

D
m+1
λ,p f (z)

Dm
λ,p f (z)

(
zp
D

m
λ,p f (z)

)µ
.

According to Theorem 2.1 we have

ϕ1(z) :=
(
zp
D

m
λ,p f (z)

)µ
∈ Pk(β),

where β is given by (7), with λ1 =
γλ

µ
. Since β = α + (1 − α)(2β1 − 1) and 1

2 ≤ β1 < 1, it follows that β ≥ α,

and from the part (ii) of Remarks 1.1 we conclude that Pk(β) ⊂ Pk(α), hence ϕ1 ∈ Pk(α).
A simple computation shows that

(
1 − γ1

) (
zp
D

m
λ,p f (z)

)µ
+ γ1

D
m+1
λ,p f (z)

Dm
λ,p f (z)

(
zp
D

m
λ,p f (z)

)µ
=(

1 −
γ1

γ2

)
ϕ1(z) +

γ1

γ2
ϕ2(z). (14)

Since the class Pk(α) is a convex set (see the part (iv) of Remarks 1.1), it follows that right-hand side of (14)
belongs to Pk(α) for 0 ≤ γ1 < γ2, which implies that f ∈ ΣBm

k

(
p, λ;γ1, µ, α

)
.
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Let us define the integral operator Jc,p : Σ(p,n)→ Σ(p,n) by

Jc,p f (z) =
c + 1
zc+p+1

∫ z

0
tc+p f (t)dt (c > −1). (15)

We will give a short proof that this operator is well-defined, as follows. If the function f ∈ Σ(p,n) is of the
form (1), then the definition (15) can be written

Jc,p f (z) =
1
zp

c + 1
zc+1

∫ z

0
tc (tp f (t)

)
dt =

1
zp

c + 1
zc+1

∫ z

0
tcϕ(t)dt =

c + 1
zp Ic,pϕ(z),

where

Ic,pϕ(z) =
1

zc+1

∫ z

0
tcϕ(t)dt

and

ϕ(z) = zp f (z) = 1 +

∞∑
j=n

a jz j+p, z ∈ U, (16)

is analytic in U. We see that integral operator Ic,p defined above is similar to that of Lemma 1.2c. of [11].
According to this lemma, it follows that Ic,p is an analytic integral operator for any function ϕ of the form
(16) whenever Re c > −1, and Jc,p f ∈ Σ(p,n) has the form

Jc,p f (z) =
1
zp + (c + 1)

∞∑
j=n

a j

j + p + c + 1
z j, z ∈ U.

The operator Jc,p was introduced by Kumar and Shukla [6], connected with the Bernardi–Libera–
Livingston integral operators (see [4], [7] and [10]).

Theorem 2.3. If f ∈ Σ(p,n), the integral operator Jc,p is given by (15), γ ≥ 0 and µ > 0, then

(1 − γ)
(
zp
D

m
λ,p Jc,p f (z)

)µ
+ γ zp

D
m
λ,p f (z)

(
zp
D

m
λ,p Jc,p f (z)

)µ−1
∈ Pk(α),

implies that(
zp
D

m
λ,p Jc,p f (z)

)µ
∈ Pk(β),

where β is given by (7), with λ1 =
γ

µ(c + 1)
.

Proof. Like in the remark mentioned after the Definition 1.3, since the left-hand side function from the above
definition need to be analytic in U, we implicitly assumed thatDm

λ,p Jc,p f (z) , 0 for all z ∈ U̇.
The implication is obvious for γ = 0, hence suppose that γ > 0. Differentiating the relation (15) we have

z
(
Jc,p f (z)

)′
= (c + 1) f (z) − (c + p + 1)Jc,p f (z),

and using the fact thatDm
λ,p and Jc,p commute, this implies

z
(
D

m
λ,p Jc,p f (z)

)′
= (c + 1)Dm

λ,p f (z) − (c + p + 1)Dm
λ,p Jc,p f (z). (17)
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If we let

1(z) :=
(
zp
D

m
λ,p Jc,p f (z)

)µ
,

then by part (ii) of Remarks 1.1 the function 1 can be written in the form (10), where 11 and 12 are analytic
in U, with 11(0) = 12(0) = 1. According to the the part (i) of Remarks 1.1 we need to prove that 11, 12 ∈ P(β).

Using (17), from the above relation we have

(1 − γ)
(
zp
D

m
λ,p Jc,p f (z)

)µ
+ γ zp

D
m
λ,p f (z)

(
zp
D

m
λ,p Jc,p f (z)

)µ−1
=

1(z) +
γ

µ(c + 1)
z1′(z) =

(
k
4

+
1
2

) [
11(z) +

γ

µ(c + 1)
z1′1(z)

]
−(

k
4
−

1
2

) [
12(z) +

γ

µ(c + 1)
z1′2(z)

]
∈ Pk(α).

Now, from the part (i) of Remarks 1.1 it follows that

1i(z) +
γ

µ(c + 1)
z1′i (z) ∈ P(α), i = 1, 2,

and from Lemma 1.4 we conclude that 1i ∈ P(β), i = 1, 2, with β given by (7) and λ1 =
γ

µ(c + 1)
.

The following result represents the converse of Theorem 2.1.

Theorem 2.4. If f ∈ Σ(p,n) such that
(
zp
D

m
λ,p f (z)

)µ
∈ Pk(α), then ρp f (ρz) ∈ ΣBm

k (p, λ;γ, µ, α), with

ρ = min


−nγλ +

√
µ2 + n2γ2λ2

µ


1
n

; r0

 (18)

where

r0 =

 min
{
r > 0 : ϕ(r) = 0

}
, if ∃ r > 0 : ϕ(r) = 0

1, if @ r > 0 : ϕ(r) = 0,
(19)

and

ϕ(r) = (2α − 1)r2n + 2
[
2α − 1 − n(1 − α)

γλ

µ

]
rn + 1.

Proof. For an arbitrary f ∈ Σ(p,n) such that
(
zp
D

m
λ,p f (z)

)µ
∈ Pk(α), let 1 be defined as in (9), i.e.(

zp
D

m
λ,p f (z)

)µ
= 1(z) ∈ Pk(α). (20)

From the part (i) of Remarks 1.1 we have that (20) holds if and only if

1(z) =

(
k
4

+
1
2

)
11(z) −

(
k
4
−

1
2

)
12(z),

where 11, 12 ∈ P(α).
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Using the above representation formula, like in the proof of Theorem 2.1 we deduce that

(
1 − γ

) (
zp
D

m
λ,p f (z)

)µ
+ γ
D

m+1
λ,p f (z)

Dm
λ,p f (z)

(
zp
D

m
λ,p f (z)

)µ
=(

k
4

+
1
2

) [
11(z) +

γλ

µ
z1′1(z)

]
−

(
k
4
−

1
2

) [
12(z) +

γλ

µ
z1′2(z)

]
,

and substituting Gi(z) :=
1i(z) − α

1 − α
, i = 1, 2, we finally obtain

(
1 − γ

) (
zp
D

m
λ,p f (z)

)µ
+ γ
D

m+1
λ,p f (z)

Dm
λ,p f (z)

(
zp
D

m
λ,p f (z)

)µ
=(

k
4

+
1
2

) [
(1 − α)

(
G1(z) +

α
1 − α

+
γλ

µ
zG′1(z)

)]
−(

k
4
−

1
2

) [
(1 − α)

(
G2(z) +

α
1 − α

+
γλ

µ
zG′2(z)

)]
,

where G1,G2 ∈ P(0).
To prove our result we need to determine the value of ρ, such that

Re
[
Gi(z) +

α
1 − α

+
γλ

µ
zG′i (z)

]
> 0, for |z| < ρ, i = 1, 2,

whenever G1,G2 ∈ P(0).
Since f ∈ Σ(p,n), using the well-known estimates [5] for the class P(0), i.e.∣∣∣zG′i (z)

∣∣∣ ≤ 2nrn Re Gi(z)
1 − r2n , |z| ≤ r < 1, i = 1, 2,

Re Gi(z) ≥
1 − rn

1 + rn , |z| ≤ r < 1, i = 1, 2,

we conclude that

Re
[
Gi(z) +

α
1 − α

+
γλ

µ
zG′i (z)

]
≥

α
1 − α

+ Re Gi(z) −
γλ

µ

∣∣∣zG′i (z)
∣∣∣ ≥

α
1 − α

+ Re Gi(z)
[
1 −

γλ

µ
2nrn

1 − r2n

]
, (21)

for all |z| ≤ r < 1 and i = 1, 2.

A simple calculation shows that 1 −
γλ

µ
2nrn

1 − r2n ≥ 0 (0 ≤ r < 1) if and only if

r ∈

0,
−nγλ +

√
µ2 + n2γ2λ2

µ


1
n

 , (22)

and assuming that (22) holds, from (21) we obtain

Re
[
Gi(z) +

α
1 − α

+
γλ

µ
zG′i (z)

]
≥

α
1 − α

+
1 − rn

1 + rn

[
1 −

γλ

µ
2nrn

1 − r2n

]
,

|z| ≤ r < 1, for i = 1, 2.
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It is easy to check that the right-hand side of the above inequality is greater or equal than zero if and only if

r ∈ [0,min {1; r0}] ,

where r0 is given by (19), and combining this with (22) we obtain our result.

Remark 2.5. (i) For the special case n = 1, it follows that if f ∈ Σ(p, 1) then

ρ = min

−γλ +
√
µ2 + γ2λ2

µ
; r0

 .
(ii) We remark that for the special case n = 1 and α = 0, the formula (18) reduces to

ρ = −

(
1 +

γλ

µ

)
+

√(
1 +

γλ

µ

)2

+ 1.

(iii) Putting λ = 1 in the above results, we obtain the similar results associated with the operatorDm
p .

(iv) Taking λ = p = 1 in the above results, we obtain the similar results involving the operatorDm.
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