
Filomat 33:8 (2019), 2201–2209
https://doi.org/10.2298/FIL1908201K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper we introduced the concept of strong probabilistic metric spaces (sPM spaces) and
we show some of its basic properties. In this frame we present several fixed point results for mappings of
contractive type. Our results generalize and unify several fixed point theorems in literature. Finally, we
give some possible applications of our results.

1. Introduction

There are several abstract metric spaces (b−metric, metric-like, cone metric, fuzzy metric, probabilistic
metric see [1]-[21]. Our structure, the structure of strong probabilistic metric spaces is one of them.

In 1942, K. Menger introduced the notion of a probabilistic metric space as a generalization of metric
space in which the distance between p and q is replaced by the distribution functionFp,q ∈ ∆+. Fp,q(x) can be
interpreted as probability that the distance between p and q is less than x. In fact there are several definitions
of probabilistic metric space. The following definition was given by Schweizer and Sklar [17]:

Definition 1.1. Menger probabilistic metric space is an ordered triple (S,F ,T), where S is a non-empty set and
F : S × S → ∆+ (∆+ is the set of all distribution functions F, with F(0) = 0) and T is a t−norm, such that the
following hold

1. (∀p, q ∈ S) Fp,q = Fq,p;
2. (∀p, q ∈ S) (∀u ∈ R+) Fp,q(u) = 1⇔ p = q;
3. (∀p, q, r ∈ S)(∀u, v > 0) T(Fp,r(u),Fr,q(v)) ≤ Fp,q(u + v).

Definition 1.2. A function T : [0, 1]2
→ [0, 1] is called a t−norm if

T1) (∀a ∈ [0, 1]) T(a, 1) = a;

T2) (∀a, b ∈ [0, 1]) T(a, b) = T(b, a);

T3) (∀a, b, c, d ∈ [0, 1]) a ≥ c ∧ b ≥ d ⇒ T(a, b) ≥ T(c, d);
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T4) (∀a, b, c ∈ [0, 1]) T(a,T(b, c)) = T(T(a, b), c).

Sehgal [18], Sehgal and Bharucha-Reid [19] initiated the study of contraction mappings in probabilistic
metric spaces. They introduced the notion of contraction (refer as B-contraction) and proved that contractive
mapping on complete Menger probabilistic metric space (S,F ,T), with t−norm T = min has a unique fixed
point. Subsequently, Sherwood [20] improved their results and so the development of fixed point theory
in probabilistic metric spaces began. Since then many papers in this direction have been published (for
references see [4] for example). This article is our contribution to fixed point theory in probabilistic metric
spaces.

2. Strong probabilistic metric spaces

Let ∆+ be the set of all distribution functions F : R → [0, 1] (nondecreasing, leftcontinuous with
sup
u∈R

F(u) = 1 such that F(0) = 0).

Definition 2.1. [17] The ordered pair (S,F ), where S is a nonempty set andF : S×S→ ∆+ is a weak probabilistic
metric space (briefly wPM space) if the following conditions are satisfied:

F1) (∀p, q ∈ S) Fp,q = Fq,p;

F2) (∀u ∈ R+) Fp,q(u) = 1⇔ p = q;

F3) (∀p, q, r ∈ S)(∀u, v > 0) Fp,r(u) = 1,Fr,q(v) = 1⇒ Fp,q(u + v) = 1.

For Fp,q(u) we often use F (p, q,u), or F (p, q; u).
Remark. Obviously every Menger probabilistic metric space is a wPM space.

Now, for every p ∈ S let us define the set

C(S,F , p) = {{pn} ∈ SN : lim
n→∞
Fpn,p(u) = 1,∀u > 0}.

Remark. Sets C(S,F , p), p ∈ S are nonempty since for pn = p, n ∈N, {pn} ∈ C(S,F , p).

Definition 2.2. [5] The ordered pair (S,F ), is a strong probabilistic metric space (sPM space) if (S,F ) is a weak
probabilistic metric space and F satisfied condition

F4) there exists C > 0 such that

(∀p, q ∈ S) {pn} ∈ C(S,F , p) ⇒ Fp,q(u) ≥ lim inf
n→∞

Fpn,q(
u
C

), ∀u > 0.

Example 2.3. Every Menger probabilistic metric space (S,F ,T) with continuous t−norm T is a strong probabilistic
metric space.

We only have to prove that F4) is satisfied for some C > 0. Let p, q ∈ S and {pn} ∈ C(S,F , p). From
Fp,q(u) ≥ T(Fp,pn ( u

2 ),Fpn,q( u
2 )), for every n ∈N, all u > 0, and continuity of T it follows that

Fp,q(u) ≥ lim inf
n→∞

T(Fp,pn (
u
2

),Fpn,q(
u
2

))

≥ T(1, lim inf
n→∞

Fpn,q(
u
2

)) = lim inf
n→∞

Fpn,q(
u
2

),

for all u > 0, so F4) is satisfied for C = 2.

Example 2.4. Every (Menger) probabilistic b−metric space is a strong probabilistic metric space.
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Let us recall that (Menger) probabilistic b−metric space [15] is a quadruple (S,F b,T, s), where S is nonempty
set, F b is function from S × S into ∆+, T is continuous t−norm, s ≥ 1 is a real number, and the following
conditions are satisfied for all p, q, r ∈ S.

Fb
1) F b

p,q(u) = 1, for all u > 0⇔ p = q;

Fb
2) F b

p,q(u) = F b
q,p(u) for all u > 0 ;

Fb
3) F b

p,q(s(u + v)) ≥ T(F b
p,r(u),F b

r,q(v), for all u, v > 0.

We have just to prove that F b satisfies condition F4). Let p ∈ S and {pn} ∈ C(S,F , p). For every q ∈ S, by
the property Fb

3), we have

F
b

p,q(u) ≥ T(F b
p,pn

(
u
2s

),F b
pn,q(

u
2s

)),

for every natural number n and all u > 0.
Hence, we have

F
b

p,q(u) ≥ T(1, lim inf
n→∞

F
b

pn,q(
u
2s

)) = lim inf
n→∞

F
b

pn,q(
u
2s

).

The property F4) is then satisfied with C = 2s.

Example 2.5. Let S = R+
0 and for all p, q ∈ S the functions

F
(1)

p,q (u) =

{ min{p,q}+u
max{p,q}+u , u > 0

0, u ≤ 0
,

F
(2)

p,q (u) =


m
√

pm+qm
2 +u

max{p,q}+u , u > 0
0, u ≤ 0

(m > 0),

are in ∆+ and obviously conditions F1), F2) and F3) are satisfied.
Now, let sequence {pn} ∈ C(S,F (1), p). It means that

F
(1)

pn,p(u)→ 1, n→∞, for all u > 0, so

1 − F (1)
pn,p(u) =

max{pn, p} −min{pn, p}
max{pn, p} + u

→ 0, n→∞, for all u > 0.

But, then pn → p, n→∞, in usual topology on R so for any q ∈ S

lim
n→∞
F

(1)
pn,q(u) = F (1)

p,q (u), , ∀u > 0,

and F4) is satisfied for C = 1.
We just prove that (S,F (1)) is a strong probabilistic metric space.

Similarly, one can prove that (S,F ) for Fp,q(u) = F (2)
p,q (u), u ∈ R, is a strong probabilistic metric space.

Remark. In general case, in any nontrivial sPM space constant C ≥ 1.

Definition 2.6. Let (S,F ) be a strong probabilistic metric space. Let {pn} be a sequence in S and p ∈ S. We say that
{pn} F −converges to p if

{pn} ∈ C(S,F , p).

Proposition 2.7. Let (S,F ) be a strong probabilistic metric space and (p, q) ∈ S2. If {pn} F −converges to p and {pn}

F −converges to q, then p = q.
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Proof. Let {pn} ∈ C(S,F , p) and {pn} ∈ C(S,F , q). By property F4)

Fp,q(u) ≥ lim inf
n→∞

Fpn,q(
u
C

) = 1, ∀u > 0,

i.e. Fp,q(u) = 1, for all u > 0, which implies, by F1) property, that p = q. �

Definition 2.8. Let (S,F ) be a PM space. We say that {pn} is a F−Cauchy sequence if

lim
n,m→∞

Fpn,pm (u) = 1, ∀u > 0.

Also, we say that (S,F ) is F−complete PM space if every F−Cauchy sequence in S is F−convergent to some
element in S.

Let (S,F ) be a probabilistic metric space and f : S→ S. Let for any p0 ∈ S

O(p0; f ) ∈ { f np0 : n ∈N ∪ {0}},

where f n = f ◦ f ◦ ... ◦ f . The set O(p0; f ) is the orbit of f at p0.
LetDO(p0; f ) : R→ [0, 1] (the diameter of O(p0; f )) be defined by

DO(p0; f )(u) = sup
v<u

inf
p,q∈O(p0; f )

Fp,q(v).

If sup
u∈R
DO(p0; f )(u) = 1, we say that the orbitO(p0; f ) is probabilistic bounded. Hence, O(p0; f ) is probabilistic

bounded if and only ifDO(p0; f ) ∈ ∆+, i.e. DO(p0; f ) is a probability distribution function.

3. Contraction principle in strong probabilistic metric space and some generalizations

V. H. Sehgal introduced the notion of contraction mapping (B−contraction) in probabilistic metric space
[18].

Definition 3.1. Let (S,F ) be a probabilistic metric space and f : S → S. The mapping f is a λ−contraction,
λ ∈ (0, 1), if

F f p1, f p2 (u) ≥ Fp1,p2 (
u
λ

),

for all p1, p2 ∈ S and u > 0.

Now we are going to prove a generalization of fixed point result proved in Menger probabilistic metric
space by Sherwood [20].

Theorem 3.2. Let (S,F ) be a F−complete strong probabilistic metric space and f : S → S a λ−contraction. If
DO(p0; f ) ∈ ∆+, for some p0 ∈ S, then there exists a unique fixed point p of f and sequence { f np0} F −converges to p.
Moreover, { f nq} F −converges to p for any q ∈ X.

Proof. Let pn = f np0, n ∈N. We shall prove that {pn} is an F−Cauchy sequence. For m,n ∈N, m > n,

Fpn,pm (u) = F f np0, f mp0 (u) ≥ F f n−1p0, f m−1p0 (
u
λ

) ≥ ... ≥ Fp0, f m−np0 (
u
λn ) ≥ DO(p0; f )(

u
λn )→ 1, n→∞, ∀u > 0.

Hence, {pn} is F−Cauchy sequence in S, and since S is F−complete, it follows the existence of p ∈ S such
that {pn} F −converges to p. Let us prove that f p = p. Since

F f n+1p0, f p(u) ≥ F f np0,p(
u
λ

)→ 1, n→∞, ∀u > 0,
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{pn} is F−convergent to f p. Now by Proposition 2.7: f p = p. Let us prove that p is a unique fixed point of f
If we suppose that f q = q, for some q ∈ S, then

Fp,q(u) = F f p, f q(u) ≥ Fp,q(
u
λ

) ≥ ... ≥ Fp,q(
u
λn )→ 1, n→∞,∀u > 0,

so Fp,q(u) = 1, for all u > 0, and consequently q = p.
Now for any q ∈ X and all n ∈N

F f nq,p(u) = F f nq, f np(u) ≥ ... ≥ Fq,p(
u
λn )

so F f nq,p(u)→ 1, n→∞, for all u > 0 which means that { f nq} also F−converges to p. �
Over the years, various extensions and generalizations of contraction principle have appeared in liter-

ature. Lj. Ćirić introduced the notion of a quasicontractions as one of the most general contractive type
mappings. He proved that quasicontraction on complete metric space possesses a unique fixed point.

We are going to prove fixed point theorem for quasicontraction mappings on sPM spaces.

Definition 3.3. Let (S,F ) be a (strong) probabilistic metric space and k ∈ (0, 1). A mapping f : S→ S is said to be
a probabilistic Ćirić quasicontraction if for every p, q ∈ S and every t > 0, the following is satisfied:

F f p, f q(kt) ≥ min{Fp,q(t),Fp, f p(t),Fq, f q(t),Fp, f q(t),F f p,q(t)}.

Theorem 3.4. Let (S,F ) be a F−complete strong probabilistic metric space and f : S → S a probabilistic Ćirić
quasicontraction for some k ∈ (0, 1). If there exists p0 ∈ S such that DO(p0; f ) ∈ ∆+ and Ck < 1, then { f np0}

F −converges to unique fixed point ω of f on S.

Proof. Let n ∈N. Since f is a probabilistic Ćirić quasicontraction for all i, j ∈N0 and t > 0

F f n+ip0, f n+ jp0
(t) ≥ min{F f n+i−1p0, f n+ j−1p0

(
t
k

),F f n+i−1p0, f n+ip0
(

t
k

),

F f n+ j−1p0, f n+ jp0
(

t
k

),F f n+i−1p0, f n+ jp0
(

t
k

),F f n+ip0, f n+ j−1p0
(

t
k

)}

which implies that

DO( f np0; f )(t) ≥ DO( f n−1p0; f )(
t
k

) ≥ ... ≥ DO(p0; f )(
t

kn ), ∀t > 0.

Using the above inequality, we have that

F f np0, f n+mp0 (t) ≥ DO( f np0; f )(t) ≥ DO(p0; f )(
t

kn )

for every m,n ∈N. Hence,
lim
n→∞
F f np0, f n+mp0 (t) = 1,

for all t > 0 which means that { f np0} is a F−Cauchy sequence in F−complete probabilistic metric space.
Let { f np0} F −converges to some ω ∈ S. Moreover, by property F4)

F f np0,ω(t) ≥ lim inf
m→∞

F f np0, f n+mp0 (
t
C

) ≥ DO(p0; f )(
t

Ckn )

for all n ∈N0 and t > 0. Now

F f p0, fω(t) ≥ min{Fp0,ω(
t
k

),Fp0, f p0 (
t
k

),Fω, fω(
t
k

),Fp0, fω(
t
k

),F f p0,ω(
t
k

)}

≥ min{DO(p0; f )(
t

Ck
),DO(p0; f )(

t
k

),Fω, fω(
t
k

),Fp0, fω(
t
k

)}
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F f 2p0, fω(t) ≥ min{DO(p0; f )(
t

Ck2 ),DO(p0; f )(
t

k2 ),Fω, fω(
t
k

),Fp0, fω(
t

k2 )}.

By induction we get

F f np0, fω(t) ≥ min{DO(p0; f )(
t

Ckn ),DO(p0; f )(
t

kn ),Fω, fω(
t
k

),Fp0, fω(
t

kn )}

for each n ∈N, so

Fω, fω(t) ≥ lim inf
n→∞

F f np0, fω(
t
C

) ≥ Fω, fω(
t

Ck
) ≥ ... ≥ Fω, fω(

t

(Ck) j ),

for all j ∈ N. Since Ck < 1, we have Fω, fω(t) = 1, for all t > 0. Therefore ω = fω. Suppose that f u = u for
some u ∈ S. Then

Fu,ω(t) = F f u, fω(t) ≥ min{Fu,ω(
t
k

),Fu, f u(
t
k

),Fω, fω(
t
k

),Fu, fω(
t
k

),Fω, f u(
t
k

)}

= Fu,ω(
t
k

) ≥ ... ≥ Fu,ω(
t

km )

for every m ∈N. It implies that Fu,ω(t) = 1, for all t > 0 so u = ω, and ω is an unique fixed point of f on S.�
Remark. It is easy now to prove that if

F f p, f q(kt) ≥ min{Fp,q(t),Fp, f q(t),F f p,q(t)}

for all p, q ∈ S and t > 0, the condition Ck < 1 in Theorem 3.4 can be relaxed with k < 1.
Now, we are going to introduce an interesting subclass of strong PM spaces.

Definition 3.5. Ordered pair (S,F ) is a m−strong probabilistic metric space (msPM space) if F satisfied
conditions F1), F2), F3) and

F∗4) there exists C > 0 such that for all p, q ∈ S,

{pn} ∈ C(S,F , p), {qn} ∈ C(S,F , q) ⇒ Fp,q(t) ≥ lim inf
n→∞

Fpn,qn (
t
C

),

for all t > 0.

Remark. Since sequence pn = p, for all n ∈N, F−converges to p every msPM space is sPM space.

Example 3.6. Every Menger probabilistic metric space (with continuous t−norm T) is msPM space.
Namely, for {pn} ∈ C(S,F , p) and {qn} ∈ C(S,F , q) in Menger probabilistic metric space

Fp,q(t) ≥ T(Fp,pn (
t
2

),Fpn,q(
t
2

)) ≥ T(Fp,pn (
t
2

),T(Fpn,qn (
t
4

),Fqn,q(
t
4

))),

for all t > 0, so

Fp,q(t) ≥ T(1,T(lim inf
n→∞

Fpn,qn (
t
4

), 1)) = lim inf
n→∞

Fpn,qn (
t
4

), t > 0,

and for C = 4 condition F∗4) is satisfied.

Example 3.7. Similarly, one can prove that every (Menger) probabilistic b−metric space is a ms PM space.

Example 3.8. Spaces from Example 2.5 are m−strong probabilistic metric spaces too.

In this class of spaces we can prove the next generalization of probabilistic contraction principle.

Definition 3.9. Let (S,F ) be a PM space and f : S→ S. The f is a mapping with contractive iterate at a point
if for some λ ∈ (0, 1) and every p ∈ S, there exists n(p) ∈N such that for any q ∈ S and all t > 0

F f n(p)p, f n(p)q(λt) ≥ Fp,q(t).
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Theorem 3.10. Let (S,F ) be a F−complete m−strong probabilistic metric space and f : S → S a mapping with
contractive iterate at a point. If for some p0 ∈ S, DO(p0; f ) ∈ ∆+, then there exists a unique fixed point u of f and
u = lim

k→∞
f kp0.

Proof. Let p1 = f n(p0)p0, p2 = f n(p1)p1, ... pk+1 = f n(pk)pk, k ∈N. For all m, k ∈N and j = n(pk+m−1) + n(pk+m−2) +
· · · + n(pk), hold

Fpk,pk+m (t) = F f n(pk−1)pk−1, f j+n(pk−1)pk−1
(t) ≥ Fpk−1, f jpk−1

(
t
λ

) ≥ . . .Fp0, f jp0
(

t
λk

) ≥ DO(p0; f )(
t
λk

)→ 1, k→∞,

for all t > 0 so {pk} is F−Cauchy in F−complete m−strong probabilistic metric space. Let {pk} F −converges
to u ∈ S. We are going to prove that f n(u)u = u. From the inequality

F f n(u)u, f n(u)pk
(t) ≥ Fu,pk (

t
λ

)→ 1, k→∞,

for all t > 0, it follows that { f n(u)pk} F −converges to f n(u)u. On the other side

Fpk , f n(u)pk
(t) ≥ Fpk−1, f n(u)pk−1

(
t
λ

) ≥ . . .Fp0, f n(u)p0
(

t
λk

) ≥ ... ≥ DO(p0; f )(
t
λk

)→ 1, k→∞,

for all t > 0.
Now, by condition F∗4):

Fu, f n(u)u(t) ≥ lim inf
k→∞

Fpk , f n(u)pk
(

t
C

) = 1,

for all t > 0. This implies that u = f n(u)u. Let us prove that f n(u)ω = ω, for some ω ∈ S, implies ω = u. Since

Fu,ω(t) = F f n(u)u, f n(u)ω(t) ≥ Fu,ω(
t
λ

) ≥ ... ≥ Fu,ω(
t
λk

)

for all k ∈ N and all t > 0, we have Fu,ω(t) = 1, for all t > 0, so by property F1) u = ω. Now f u = f f n(u)u =
f n(u) f u implies that f u = u.

At the end let us prove that u = lim
k→∞

f kp0. For any k ∈ N, k ≥ n(u), there exist m ∈ N and 0 ≤ r < n(u)

such that k = m · n(u) + r. Then, we have that

F f kp0,u(t) = F f m·n(u)+rp0, f n(u)u(t) ≥ ... ≥ F f rp0,u(
t
λm ),

for all t > 0. If k→∞, then m→∞ so
F f kp0,u(t)→ 1, k→∞,

for all t > 0, and { f kp0} F −converges to u. The proof is completed. Moreover, it is easy now to see that { f kq}
F −converges to u for every q ∈ S. �

4. Applications

The essence of filtering the image is to choose a window with odd number of pixels that belong to image.
The middle pixel is going to be replaced with a pixel that is the most similar to all the others pixels in that
window. Different algorithms for image filtering give different criteria for choosing this pixel that is going
to replace middle pixel. This window slides through whole image, process of selecting a pixel is the same
for all windows.

In this paper we use UIQI (Universal Image Quality Index) quality index, introduced in [22]. This index
isn’t using error summation method like other image quality measures. It models any image distortion
as a combination of three factors: loss of correlation, luminance distortion and contrast distortion. This
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measure method of image quality considers human visual system characteristics. It is lot more complicated
image quality measure than PSNR that was usually used to measure image quality. PSNR is mathematically
defined measure that is easy to calculate and it is independent of viewing conditions and human perception
of image quality. For RGB images we will get three indexes, calculated for each plane of image. One of
the criteria for determining image quality can be sharpness of the image. Sharpness is defined by the
boundaries between zones of different tones or colors.

In this paper we are representing the application of metric-like functions from the Example 2.5, for m = 1.
Noise that we applied on original image is 10% of salt&pepper noise. The image was filtered by using two
metrics like in paper of Valentin, Morillas and Sapena [21]. For the metric that considers similarity in colors
we applied metric-like function that we defined in paper, setting for parameter m value 1. For the metric
that considers spatial closeness we’ve chosen the same metric s as in [21], for Euclidean norm we’ve taken
max norm.

In the paper we compared image filtered with our metric-like function to image filtered by VMF (vector
median filter). The result was that our image has slightly lower values for corresponding UIQI image
quality, but much higher sharpness. This is very important in cases where details in image are needed to
be reproduced. We have used for measuring sharpness image quality metrics introduced in [16].

For image filtered by VMF with window size 3, UIQI is equal to vector (calculated for all three colors)
[0.546475813084152, 0.673989789093080, 0.525819221430506].

For image filtered by VMF with window size 3, UIQI is equal to vector (calculated for all three colors)
[0.546475813084152, 0.673989789093080, 0.525819221430506].

The sharpness for image filtered by VMF is 0.690730837789661.

The sharpness for image filtered by our metric is 0.927492447129909.

Figure 1. Lena, 256 ∗ 256, K = 384, t = 2.8,
window size=3

Figure 2. Lena, 256 ∗ 256, VMF filtered,
window size=3
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Figure 3. Lena, 256 ∗ 256 Figure 4. Lena, 256 ∗ 256, 10% salt&pepper noise
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