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Abstract. The aim of this paper is to obtain existence results for an infinite system of second order
differential equations in the sequence space `p for 1 ≤ p < ∞ with the help of a technique associated with
measures of noncompactness and contractive condition of operator type. We also provide some illustrative
examples in support of our existence theorems.

1. Introduction

Kuratowski [12] was first introduced the measure of noncompactness which plays a very significant
rôle in the study of infinite system of differential equations. There are many different types of measures of
noncopactness in metric and topological spaces. We refer the interested reader to [9] for details on various
measures of noncompactness. In the recent past, Banaś and Lecko [10] adopted the technique of measures
of noncompactness to prove several existence results for infinite systems of differential equations in the
classical Banach spaces c0, c and `1, where c0 and c denote the spaces of all null and convergent sequences,
respectively, whereas `1 denotes the set of absolutely summable series. Mursaleen and Mohiuddine [17]
presented a generalization of the existence theorem, which was proved by Banaś and Lecko [10] for `1,
by taking the space `p of absolutely p-summable series. Aghajani and Pourhadi [3] reported the Darbo
type fixed point theorem and used it to obtained existence theorem in `1 for an infinite system of second-
order differential equations through measures of noncompactness and the same result was proved by
Mohiuddine et al. [16] in a more general setting by considering the space `p. On the other hand, Mursaleen
and Rizvi [18] investigated this existence theorem for the Banach sequence spaces c0 and `1. The measure of
noncompactness also has applications in several types of integral equations and differential equations (see,
for example, [4, 6]).
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2. Preliminaries

In this section, we recall some basic facts concerning measures of noncompactness, which is defined
axiomatically in terms of some natural conditions. Denote byR the set of real numbers and putR+ = [0,+∞).
Let (E, ‖ · ‖) be a real Banach space with zero element 0. Let B(x, r) denote the closed ball centered at x with
radius r. The symbol Br stands for the ball B(0, r). For X, a nonempty subset of E,we denote by X and ConvX
the closure and the closed convex hull of X, respectively. Moreover, let us denote by ME the family of
nonempty bounded subsets of E and by NE its subfamily consisting of all relatively compact subsets of E.

Definition 2.1. [8] A mapping µ : ME −→ R+ is said to be a measure of noncompactness in E if it satisfies the
following conditions:

(1◦) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE;

(2◦) X ⊂ Y =⇒ µ(X) ≤ µ(Y);

(3◦) µ(X) = µ(X);

(4◦) µ(ConvX) = µ(X);

(5◦) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1];

(6◦) If {Xn} is a sequence of closed sets fromME such that Xn+1 ⊂ Xn for n = 1, 2, · · · , and if lim
n→∞

µ(Xn) = 0, then

the intersection set X∞ =
∞⋂

n=1
Xn is nonempty.

The subfamily kerµ defined (1◦) represents the kernel of the measure µ of noncompactness and since

µ(X∞) = µ

 ∞⋂
n=1

Xn

 ≤ µ(Xn),

we see that

µ

 ∞⋂
n=1

Xn

 = 0.

Therefore X∞ ∈ kerµ.

Theorem 2.2. (Schauder’s fixed point theorem)[1] Let C be a closed, convex subset of a Banach space E. Then every
compact, continuous map T : C→ C has at least one fixed point.

In what follows, we recall the well known fixed point theorem of Darbo type [8].

Theorem 2.3. (Darbo’s fixed point theorem) Let Ω be a nonempty, bounded, closed and convex subset of a space E
and let T : Ω −→ Ω be a continuous mapping such that there exists a constant k ∈ [0, 1) with the property

µ(TX) ≤ kµ(X),

for any nonempty subset X of Ω. Then T has a fixed point in the set Ω.

In 1969 Meir and Keeler [13] established a fixed point theorem in a metric space (X, d) for mappings satisfying
the condition that for each ε > 0 there exists δ(ε) > 0 such that

ε ≤ d(x, y) < ε + δ(ε) =⇒ d(Tx,Ty) < ε, (1)

for all x, y ∈ X. This condition is called the Meir-Keeler contractive type condition. This well-known result
suggests the notion of a Meir-Keeler function.
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Definition 2.4. A function φ : R+ −→ R+ is said to be a Meir-Keeler function if φ(0) = 0 and for each ε > 0 there
exists δ > 0 such that for any t ∈ R+,

ε ≤ t < ε + δ =⇒ φ(t) < ε.

Remark 2.5. It is obvious that if φ is a Meir-Keeler function then φ(t) < t for all t > 0.

We now introduce the notion of weaker Meir-Keeler function as follows:

Definition 2.6. [14, 15] We call ψ : R+ → R+ a weaker Meir-Keeler function if for each ε > 0, there exists δ > 0
such that for any t ≥ 0 with ε ≤ t < ε + δ, there exists n0 ∈N such that ψn0 (t) < ε.

Definition 2.7. [11] A function φ : R+ −→ R+ is said to be a Jachymski function if φ(0) = 0 and for each ε > 0
there exists δ > 0 such that for any t ∈ R+,

ε < t < ε + δ =⇒ φ(t) ≤ ε.

Remark 2.8. [5] Obviously, each Meir-Keeler function is a Jachymski function. However, the converse does not
follow even in the case that φ(t) < t for all t > 0.

The following concept of O( f ; .) and its examples was given by Altun and Turkoglu [5].
Let F([0,∞)) be class of all function f : [0,∞) −→ [0,∞) and let Θ be class of all operators

O(•; .) : F([0,∞)) −→ F([0,∞)), f → O( f ; .)

satisfying the following conditions:

(a) O( f ; t) > 0 for t > 0 and O( f ; 0) = 0,

(b) O( f ; t) ≤ O( f ; s) for t ≤ s,

(c) lim
n→∞

O( f ; tn) = O( f ; lim
n→∞

tn),

(d) O( f ; max{t, s}) = max{O( f ; t),O( f ; s)} for some f ∈ F([0,∞).

Example 2.9. If f : [0,∞) −→ [0,∞) is a Lebesgue integrable mapping which is finite integral on each compact
subset of [0,∞), non-negative and such that for each t > 0,

∫ t

0 f (s)ds > 0, then the operator defined by

O( f ; t) =

∫ t

0
f (s)ds

satisfies the above conditions.

Example 2.10. If f : [0,∞) −→ [0,∞) non-decreasing, continuous function such that f (0) = 0 and f (t) > 0 for
t > 0 then the operator defined by

O( f ; t) =
f (t)

1 + f (t)

satisfies the above conditions.

Let G be class of all function G : [0,∞) × [0,∞) −→ [0,∞) satisfying the following conditions:

(i) max{a, b} ≤ G(a, b) for a, b ≥ 0;

(ii) G is continuous.
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3. Fixed point theorem

First, we define measure of noncompactness and Meir-Keeler condensing operator and to present some
fixed point theorems.

Definition 3.1. Let Ω be a nonempty subset of a Banach space E and µ is a measure of noncompactness on E. We
say that an operator T : Ω −→ Ω is a generalized Meir-Keeler type function if for any ε > 0, there exists δ(ε) > 0
such that for any subset X of Ω

ε ≤ O( f ; G(µ(X), ϕ(µ(X))) < ε + δ =⇒ O( f ; G(µ(T(X)), ϕ(µ(TX)))) < ε, (2)

where ϕ : R+ −→ R+ is continuous function, O(•; .) ∈ Θ and G ∈ G.

We start this section with the first of our main theorems.

Theorem 3.2. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and µ is an arbitrary
measure of noncompactness on E. Let T : Ω −→ Ω be a continuous and generalized Meir-Keeler condensing operator
then T has at least one fixed point and the set of all fixed points of T in Ω is compact.

Proof. By induction, we obtain a sequence {Ωn} such that Ω0 = Ω and Ωn = Conv(TΩn−1), n ≥ 1. TΩ0 =
TΩ ⊆ Ω = Ω0,Ω1 = Conv(TΩ0) ⊆ Ω = Ω0, therefore by continuing this process we have

Ω0 ⊇ Ω1 ⊇ ... ⊇ Ωn ⊇ Ωn+1 ⊇ ...·

If there exists an integer N ≥ 0 such that µ(ΩN) = 0, then ΩN is compact. Thus, Theorem 2.2 implies
that T has a fixed point. Now assume that µ(Ωn) , 0 for n ≥ 0 and also, G(µ(Ωn), ϕ(µ(Ωn)) > 0 and
O( f ; G(µ(Ωn), ϕ(µ(Ωn))) > 0. Define εn = O( f ; G(µ(Ωn), ϕ(µ(Ωn))) and δn = δ(εn) > 0. By the definition of Ωn
and εn < εn + δn we have

εn+1 = O( f ; G(µ(Ωn+1), ϕ(µ(Ωn+1))) = O( f ; G(µ(Conv(TΩn)), ϕ(µ(Conv(TΩn))))
= O( f ; G(µ(TΩn), ϕ(µ(TΩn)))
< O( f ; G(µ(Ωn), ϕ(µ(Ωn)))
= εn.

Therefore {εn} is a positive decreasing sequence of real numbers and there exists γ ≥ 0 such that εn → γ
as n → ∞. We claim that γ = 0. Suppose, on the contrary, that γ > 0, then there exists n0 such that n > n0
implies γ ≤ εn < γ + δ(γ), therefore by the definition of generalized Meir-Keeler condensing operator,
εn+1 < γ which is a contradiction. Therefore γ = 0, that is, εn → 0 as n→∞. Therefore

O( f ; lim
n→∞

G(µ(Ωn), ϕ(µ(Ωn)))) = 0,

which from (a), implies that

lim
n→∞

G(µ(Ωn), ϕ(µ(Ωn))) = 0. (3)

Using (3) and (i) of property G, we get

lim
n→∞

µ(Ωn) = lim
n→∞

ϕ(µ(Ωn)) = 0.

Now since Ωn is a nested sequence, in view of (6◦) of Definition 2.1, we conclude that Ω∞ =
∞⋂

n=1
Ωn

is nonempty, closed and convex subset of Ω. Moreover, we know that Ω∞ belong to kerµ. So Ω∞ is
compact and invariant under the mapping T. Consequently, Theorem 2.2 implies that T has a fixed point
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in Ω∞. Since Ω∞ ⊂ Ω, the proof is completed. Now suppose that Fix(T) = {x ∈ Ω : Tx = x} and
ε0 = O( f ; G(µ(Fix(T)), ϕ(µ(Fix(T)))). If ε0 , 0 then by (2) and T(Fix(T)) = Fix(T), we have

O( f ; G(µ(Fix(T)), ϕ(µ(Fix(T)))) = O( f ; G(µ(T(Fix(T))), ϕ(µ(T(Fix(T)))))
< ε0

= O( f ; G(µ(Fix(T)), ϕ(µ(Fix(T)))),

which is a contradiction. So ε0 = 0 and Fix(T) is relatively compact and since T is a continuous function so
the set of fixed points of T in Ω is compact.

An immediate consequence of Theorem 3.2 is the following.

Theorem 3.3. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and µ is an arbitrary
measure of noncompactness on E. Let T : Ω −→ Ω be a continuous and for any ε > 0, there exists δ(ε) > 0 such that
for any subset X of Ω

ε ≤ G(µ(X), ϕ(µ(X)) < ε + δ =⇒ G(µ(T(X)), ϕ(µ(TX))) < ε, (4)

where ϕ : R+ −→ R+ is continuous function and G ∈ G. Then T has at least one fixed point and the set of all fixed
points of T in Ω is compact.

Remark 3.4. Take G(a, b) = a + b and ϕ ≡ 0 in Theorem 3.3. Then Theorem 2.2 of [2] is obtained.

Proposition 3.5. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and µ is an arbitrary
measure of noncompactness on E. Let T : Ω −→ Ω and ϕ : R+ −→ R+ be two continuous functions. If for some
k ∈ (0, 1)

O( f ; G(µ(TX), ϕ(µ(TX))) ≤ k O( f ; G(µ(X), ϕ(µ(X))), (5)

is satisfied, where O(•; .) ∈ Θ and G ∈ G. Then T is a generalized Meir-Keeler type function.

Proof. Suppose that (5) is satisfied. For all ε > 0, one can easily check that (2) is satisfied with δ(ε) =
( 1

k − 1)ε.

Remark 3.6. Take G(a, b) = a + b, ϕ ≡ 0 and O( f ; t) = t in Proposition 3.5. Then Darbo’s fixed point theorem is
obtained.

The following corollary gives us a fixed point theorem with a contractive condition of integral type.

Corollary 3.7. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E, ϕ : R+ −→ R+ and
T : Ω→ Ω are continuous functions, such that for any X ⊆ Ω one has∫ G(µ(T(X)),ϕ(µ(TX)))

0
f (s) ds ≤ k

∫ G(µ(X),ϕ(µ(X))))

0
f (s) ds,

where µ is an arbitrary measure of noncompactness, G ∈ G and f : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping
which is summable (i.e. with finite integral) on each compact subset of [0,∞), non-negative and such that for each
ε > 0,

∫ ε
0 f (s) ds > 0 and k ∈ (0, 1). Then T has at least one fixed point in Ω.

Theorem 3.8. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and µ is an arbitrary
measure of noncompactness on E. Let T : Ω −→ Ω be a continuous. Suppose that there exists a Jachymski function
φ : R+ −→ R+ such that φ(t) < t for all t > 0 and

O( f ; G(µ(T(X)), ϕ(µ(TX)))) ≤ φ(O( f ; G(µ(X), ϕ(µ(X)))), (6)

for any subset X of Ω, where ϕ : R+ −→ R+ is continuous function, O(•; .) ∈ Θ and G ∈ G. Then T has at least one
fixed point.
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Proof. By induction, we obtain a sequence {Ωn} such that Ω0 = Ω and Ωn = Conv(FΩn−1), n ≥ 1. If there exists
an integer N ≥ 0 such thatµ(ΩN) = 0, then ΩN is compact. Thus, Theorem 2.2 implies that T has a fixed point.
Now assume that µ(Ωn) , 0 for n ≥ 0 and also, G(µ(Ωn), ϕ(µ(Ωn)) > 0 and O( f ; G(µ(Ωn), ϕ(µ(Ωn))) > 0. By
(6), we have

O( f ; G(µ(Ωn+1), ϕ(µ(Ωn+1))) = O( f ; G(µ(Conv(TΩn)), ϕ(µ(Conv(TΩn))))
= O( f ; G(µ(TΩn), ϕ(µ(TΩn)))
≤ φ[O( f ; G(µ(Ωn), ϕ(µ(Ωn)))]
< O( f ; G(µ(Ωn), ϕ(µ(Ωn))).

(7)

Then {O( f ; G(µ(Ωn), ϕ(µ(Ωn)))}n∈N is non-increasing and thus it converges to some point ε ≥ 0. Of course,
ε < O( f ; G(µ(Ωn), ϕ(µ(Ωn))) for all n ∈N. If ε > 0, then there exists δ = δ(ε) such that

ε < t < ε + δ =⇒ φ(t) ≤ ε.

Take nδ ∈N such that O( f ; G(µ(Ωn), ϕ(µ(Ωn))) < ε+ δ for all n ≥ nδ. Therefore φ(O( f ; G(µ(Ωn), ϕ(µ(Ωn)))) ≤
ε, so by (7), O( f ; G(µ(Ωn+1), ϕ(µ(Ωn+1))) ≤ ε for all n ∈ N, a contradiction. Consequently ε = 0 and
lim
n→∞

µ(Ωn) = 0. Since the sequence (Ωn) is nested, in view of axiom (6◦) of Definition 2.1 we deduce that

the set Ω∞ =

∞⋂
n=1

Ωn is nonempty, closed and convex subset of the set Ω. Moreover, the set Ω∞ is invariant

under the operator T and belongs to Kerµ. Consequently, Theorem 2.2 implies that T has a fixed point in
Ω∞. Since Ω∞ ⊂ Ω, the proof is completed.

As a consequence of Theorems 3.8 we obtain the Corollary 3.9.

Corollary 3.9. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and µ is an arbitrary
measure of noncompactness on E. Let T : Ω −→ Ω be a continuous function. Suppose that there exists a Meir-Keeler
function φ : R+ −→ R+ such that

O( f ; G(µ(T(X)), ϕ(µ(TX)))) ≤ φ(O( f ; G(µ(X), ϕ(µ(X)))),

for any subset X of Ω, where ϕ : R+ −→ R+ is continuous function, O(•; .) ∈ Θ and G ∈ G. Then T has at least one
fixed point.

Proof. Apply Remarks 2.5 and 2.8, and Theorem 3.8.

4. Solvability of an infinite system of second order differential equations in `p
(
1 ≤ p < ∞

)
In our discussion, we study an infinite system of second order differential equation by transforming the

system into an infinite system of integral equation with the help of Green’s function.
Mursaleen [19] defined the Hausdorff measure of noncompactnessχ, for the Banach space

(
`p, ‖ . ‖`p

)
,
(
1 ≤ p < ∞

)
as follows.

χ (B) = lim
n→∞

sup
x∈B

 ∞∑
k=n

| xk |
p


1/p , (8)

where x(t) = (xi(t))∞i=1 ∈ `p for each t ∈ [0, 1] and B ∈ M`p .
Consider the infinite system of second order differential equations

x
′′

i (t) + fi (t, x1, x2, x3, ...) = 0, (9)

where xi(0) = xi(1) = 0, t ∈ [0, 1] and i = 1, 2, 3, · · · .
Let C(I,R) denote the space of all continuous real functions on the interval I = [0, 1] and let C2(I,R) be the
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class of functions with second continuous derivatives on I. A function u ∈ C2(I,R) is a solution of (9) if and
only if u ∈ C(I,R) is a solution of the infinite system of integral equation

xi(t) =

∫ 1

0
G(t, s) fi(s, x(s))ds, (10)

where fi(t, x) ∈ C(I,R), i = 1, 2, 3, · · · and t ∈ I and the Green’s function associated to (9) is given by (see [18])

G(t, s) =

{
t (1 − s) , 0 ≤ t ≤ s ≤ 1,
s (1 − t) , 0 ≤ s ≤ t ≤ 1. (11)

The solution of the infinite system (9) in the sequence space `1 has been studied by Aghajani and Pourhadi
[3]. In our study, we establish the existence of solution of the infinite system (9) for the sequence space
`p

(
1 ≤ p < ∞

)
. Assume that

(A1) The functions fi are defined on the set I × R∞ and take real values. The operator f defined on the
space I × `p into `p as

(t, x)→
(

f x
)

(t) =
(

f1(t, x), f2(t, x), f3(t, x), ...
)

is such that the class of all functions
((

f u
)

(t)
)

t∈I is equicontinuous at every point of the space `p;

(A2) The following inequality holds:

| fn (t, x1, x2, x3, ...) |p≤ hn(t) | xn(t) |p

where hn(t) is real function defined on I, such that the sequence (hn(t)) is equibounded on I.

Let us introduce

H0 = sup
n∈N,t∈I

{hn(t)} ;

(A3) The function ϕ : R+ −→ R+ is nondecreasing and continuous such that ϕ(λt) ≤ λϕ(t), for λ ≥ 0, and
ϕ(0) = 0, ϕ(t) > 0 for every t > 0.

Theorem 4.1. Under the hypothesis (A1) − (A2), infinite system (9) has at least one solution x(t) = (xi(t)) ∈ `p for
all t ∈ [0, 1] .

Proof. By using (10) and (A2), we have for all t ∈ I,

‖ x(t) ‖p`p
=

∞∑
i=1

∣∣∣∣∣∣
∫ 1

0
G(t, s) fi(s, x(s))ds

∣∣∣∣∣∣
p

≤

∞∑
i=1

∫ 1

0
|G(t, s)|p

{
hi(s) |xi|

p} ds

=

∫ 1

0
|G(t, s)|p

 ∞∑
i=1

hi(s) |xi|
p

 ds

Since x(t) ∈ `p therefore
∞∑

i=1
|xi(t)|p < M < ∞(say) and

∫ 1

0 |G(t, s)|p ds ≤ 1
4p(p+1) .

Hence we get

‖ x(t) ‖p`p
≤

H0M
4p(p + 1)

= rp
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i.e. ‖ x(t) ‖`p≤ r.
Let x0(t) =

(
x0

i (t)
)

where x0
i (t) = 0, ∀ t ∈ I.

Consider B̄ = B̄
(
x0, r1

)
, the closed ball centered at x0 and radius r1 ≤ r, thus B̄ is an non-empty, bounded,

closed and convex subset of `p. Consider the operator F = (Fi) on C
(
I, B̄

)
defined as follows. For t ∈ I,

(F x) (t) = {(Fix) (t)} =
{∫ 1

0
G(t, s) fi(s, x(s))ds

}
,

where x(t) = (xi(t)) ∈ B̄ and xi(t) ∈ C(I,R). We have that (F x) (t) = {(Fix) (t)} ∈ `p for each t ∈ I. Since(
fi (t, x(t))

)
∈ `p for each t ∈ I, we have

∞∑
i=1

|(Fix) (t)|p =

∞∑
i=1

∣∣∣∣∣∣
∫ 1

0
G(t, s) fi(s, x(s))ds

∣∣∣∣∣∣
p

≤ rp < ∞.

Also (Fix) (t) satisfies boundary conditions i.e.

(Fix) (0) =

∫ 1

0
G(0, s) fi(s, x(s))ds =

∫ 1

0
0. fi(s, x(s))ds = 0,

and

(Fix) (1) =

∫ 1

0
G(1, s) fi(s, x(s))ds =

∫ 1

0
0. fi(s, x(s))ds = 0.

Since ‖ (F x) (t) − x0(t) ‖`p≤ r thus F is self mapping on B̄. The operator F is continuous on C
(
I, B̄

)
by the

assumption (A1).
Now, we shall show that F is a generalized Meir-Keeler type function.
For ε > 0, we need to find δ > 0 such that ε ≤ χ

(
B̄
)

+ ϕ(χ
(
B̄
)
) < ε + δ =⇒ χ

(
F B̄

)
+ ϕ(χ

(
F B̄

)
) < ε.

We have

χ
(
F B̄

)
+ ϕ

(
F B̄

)
= lim

n→∞

sup
x(t)∈B̄

∑
k≥n

∣∣∣∣∣∣
∫ 1

0
G(t, s) fk(s, x(s))ds

∣∣∣∣∣∣
p

1
p
 + ϕ

 lim
n→∞

sup
x(t)∈B̄

∑
k≥n

∣∣∣∣∣∣
∫ 1

0
G(t, s) fk(s, x(s))ds

∣∣∣∣∣∣
p

1
p



≤ lim
n→∞

sup
x(t)∈B̄

∑
k≥n

∫ 1

0
|G(t, s)|p

(
hk(s) |xk(s)|p

)
ds


1
p
 + ϕ

 lim
n→∞

sup
x(t)∈B̄

∑
k≥n

∫ 1

0
|G(t, s)|p

(
hk(s) |xk(s)|p

)
ds


1
p



≤ lim
n→∞

sup
x(t)∈B̄


∫ 1

0
|G(t, s)|p

H0

∑
k≥n

|xk(s)|p
 ds


1
p
 + ϕ

 lim
n→∞

sup
x(t)∈B̄


∫ 1

0
|G(t, s)|p

H0

∑
k≥n

|xk(s)|p
 ds


1
p



≤
H1/p

0

4(p + 1)1/pχ
(
B̄
)

+ ϕ

 H1/p
0

4(p + 1)1/pχ
(
B̄
)

≤
H1/p

0

4(p + 1)1/p

[
χ
(
B̄
)

+ ϕ(χ
(
B̄
)
)
]
.

Hence χ
(
F B̄

)
+ ϕ

(
F B̄

)
≤

H1/p
0

4(p+1)1/p [χ
(
B̄
)

+ ϕ(χ(B̄)] < ε =⇒ χ
(
B̄
)

+ ϕ(χ(B̄) < 4ε(p+1)1/p

H1/p
0

.

Taking δ =
4(p + 1)1/p

−H1/p
0

H1/p
0

ε, we get ε ≤ χ
(
B̄
)

+ ϕ(χ(B̄) < ε + δ. Therefore F is a generalized Meir-Keeler

type function defined on the set B̄ ⊂ `p. So F satisfies all the conditions of Theorem 3.2 with O( f ; t) = t and
G(a, b) = a + b which implies F has a fixed point in B̄. This is a required solution of the system (9).
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Example 4.2. Let us consider the following system of second order differential equations

d2xn(t)
dt2 + fn (t, x(t)) = 0, (12)

where fn (t, x(t)) = et cos
( t

n2

)
xn(t), ∀ n ∈N, t ∈ I = [0, 1] .

We have
∞∑

k=1

∣∣∣ fn (t, x(t))
∣∣∣p ≤ ep

∞∑
k=1
|xk(t)|p < ∞ if x(t) = (xi(t)) ∈ `p where 1 ≤ p < ∞.

Let us consider a positive arbitrary real number ε > 0 and x(t) ∈ `p. Taking y(t) ∈ `p with

‖ x(t) − y(t) ‖`p< δ =
ε
e
,

| fn(t, x(t)) − fn(t, y(t))| = |et cos
( t

n2

)
xn(t) − et cos

( t
n2

)
yn(t)| ≤ e |u(t) − v(t)| < eδ = ε

which implies the equicontinuity of
(
( f x)(t)

)
t∈I on `p. Again, we have for all n ∈N and t ∈ I∣∣∣ fn(t, x(t))

∣∣∣p ≤ ept
|xn(t)|p = hn(t) |xn(t)|p ,

where hn(t) = ept is real function on I and the sequence {hn(t)} is equibounded on I. Thus, by Theorem 4.1, the system
(12) has unique solution in `p.
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[9] J. Banaś, K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 60,

Marcel Dekker, New York, 1980.
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