ps-Drazin Inverses in Banach Algebras

Huanyin Chen ${ }^{\text {a }}$, Tugce Pekacar Calci ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Hangzhou Normal University, Hangzhou, China
${ }^{b}$ Department of Mathematics, Ankara University, Ankara, Turkey

Abstract

An element a in a Banach algebra \mathcal{A} has ps-Drazin inverse if there exists $p^{2}=p \in \operatorname{comm}^{2}(a)$ such that $(a-p)^{k} \in J(\mathcal{A})$ for some $k \in \mathbb{N}$. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ have ps-Drazin inverses. If $a^{2} b=a b a$ and $b^{2} a=b a b$, we prove that

1. $a b \in \mathcal{A}$ has ps-Drazin inverse.
2. $a+b \in \mathcal{A}$ has ps-Drazin inverse if and only if $1+a^{d} b \in \mathcal{A}$ has ps-Drazin inverse.

As applications, we present various conditions under which a 2×2 matrix over a Banach algebra has ps-Drazin inverse.

1. Introduction

Let \mathcal{A} be a Banach algebra with an identity. The commutant of $a \in \mathcal{A}$ is defined by $\operatorname{comm}(a)=\{x \in$ $\mathcal{A} \mid x a=a x\}$. The double commutant of $a \in \mathcal{A}$ is defined by $\operatorname{comm}^{2}(a)=\{x \in \mathcal{A} \mid x y=y x$ for all $y \in \operatorname{comm}(a)\}$. An element a in a Banach algebra \mathcal{A} has g-Drazin inverse (i.e., generalized Drazin inverse) if there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b a b, a-a^{2} b \in \mathcal{A}^{\text {qnil }}$. The preceding b is unique, if such element exists, and called the g-Drazin inverse of a and denote b by a^{d}. Also, $a^{\pi}=1-a a^{d}$ is called spectral idempotent of a. As is known, $a \in \mathcal{A}$ has g-Drazin inverse if and only if there exists $e^{2}=e \in \operatorname{comm}^{2}(a)$ such that $a+e \in U(\mathcal{A})$ and ae $\in \mathcal{A}^{\text {qnil }}$. Here, $R^{\text {qnil }}=\{x \mid 1-x r \in U(\mathcal{A})$ for any $r \in \operatorname{comm}(x)\}$. Following [10], an element $a \in \mathcal{A}$ has p-Drazin inverse (i.e., pseudo Drazin inverse) if there exists $b \in \mathcal{A}$ such that

$$
b=b a b, b \in \operatorname{comm}^{2}(a), a^{k}-a^{k+1} b \in J(\mathcal{A})
$$

for some $k \in \mathbb{N}$. Evidently, $a \in \mathcal{A}$ has p-Drazin inverse if and only if there exists $e^{2}=e \in \operatorname{comm}^{2}(a)$ such that $a+e \in U(\mathcal{A})$ and $(a e)^{k} \in J(\mathcal{A})$ for some $k \in \mathbb{N}$, if and only if there exists $b \in \mathcal{A}$ such that

$$
b=b a b, b \in \operatorname{comm}^{2}(a),\left(a-a^{2} b\right)^{k} \in J(\mathcal{F})
$$

for some $k \in \mathbb{N}$. Following [4], an element $a \in \mathcal{A}$ has gs-Drazin inverse if there exists $b \in \mathcal{A}$ such that

$$
b=b a b, b \in \operatorname{comm}^{2}(a), a-a b \in \mathcal{A}^{\text {qnil }}
$$

[^0]These generalized inverses in a Banach algebra have extensively studied from different points of view, e.g., [1]-[8], [13] and [14].

Motivating by g-Drazin, p-Drazin and gs-Drazin inverses, we introduce a new kind of generalized inverses in a Banach algebra. An element a in a Banach algebra \mathcal{A} has ps-Drazin inverse if there exists $p^{2}=p \in \operatorname{comm}^{2}(a)$ such that $(a-p)^{k} \in J(\mathcal{A})$ for some $k \in \mathbb{N}$. As in the proof of [8, Lemma 2.2], we easily prove that $a \in \mathcal{A}$ has ps-Drazin inverse if and only if there exists $b \in \mathcal{A}$ such that

$$
b=b a b, b \in \operatorname{comm}^{2}(a),(a-a b)^{k} \in J(\mathcal{A})
$$

for some $k \in \mathbb{N}$.

The purpose of this paper is to investigate further algebraic properties of ps-Drazin inverses. Let $a, b \in \mathcal{A}$ have ps-Drazin inverses. In Section 2, we investigate when the product of a and b has ps-Drazin inverse in a Banach algebra. If $a^{2} b=a b a$ and $b^{2} a=b a b$, we prove that $a b \in \mathcal{A}$ has ps-Drazin inverse. In Section 3, we determine when the sum of a and b has ps-Drazin inverse. We prove that $a+b \in \mathcal{A}$ has ps-Drazin inverse if and only if $1+a^{d} b \in \mathcal{A}$ has ps-Drazin inverse. Finally, in the last section, we present various conditions under which a 2×2 matrix over a Banach algebra has ps-Drazin inverse.

Throughout the paper, all Banach algebras are complex with an identity. We use $J(\mathcal{A})$ and $U(\mathcal{A})$ to denote the Jacobson radical of \mathcal{A} and the set of all units in \mathcal{A}. $\mathcal{A}^{p d}$ and $\mathcal{A}^{p s}$ denote the sets of all elements having p-Drazin and ps-Drazin inverses in the Banach algebra \mathcal{A}, respectively. \mathbb{N} stands for the set of all natural numbers.

2. Multiplicative property

In this section, we investigate multiplicative property of ps-Drazin inverses. We begin with the relation between ps-Drazin and p-Drazin inverse, which will be used frequently in the sequel.

Theorem 2.1. Let \mathcal{A} be a Banach algebra, and let $a \in \mathcal{A}$. Then $a \in \mathcal{A}$ has $p s$-Drazin inverse if and only if
(1) $a \in \mathcal{A}^{p d}$;
(2) $\left(a-a^{2}\right)^{k} \in J(\mathcal{A})$ for some $k \in \mathbb{N}$.

Proof. \Longrightarrow Write $a=e+w$ with $e^{2}=e \in \operatorname{comm}^{2}(a), w^{k} \in J(\mathcal{F})$ for some $k \in \mathbb{N}$. Then $a+(1-e)=1+w \in U(\mathcal{A})$ and $(a(1-e))^{k}=(1-e) w^{k} \in J(\mathcal{A})$. Therefore, a has p-Drazin inverse. Moreover, $\left(a-a^{2}\right)^{k}=(1-2 e-w)^{k} w^{k} \in J(\mathcal{A})$, as desired.
\Longleftarrow Since $a \in \mathcal{A}$ has p-Drazin inverse, we can find some $b \in \operatorname{comm}^{2}(a)$ such that $b=b a b$ and $\left(a-a^{2} b\right)^{k} \in$ $J(\mathcal{A})$. We check that $(a-1+a b)(b-1+a b)=1-\left(a-a^{2} b\right) \in U(\mathcal{A})$. Hence, $a-1+a b \in U(\mathcal{A})$. Set $e=1-a b$. Then $e^{2}=e \in \operatorname{comm}^{2}(a)$ and $u:=a-e \in U(\mathcal{A})$. Hence, $a-a^{2}=(e+u)-(e+u)^{2}=-u(2 e+u-1)$. This shows that $a-(1-e)=-u^{-1}\left(a-a^{2}\right)$. This implies that $(a-(1-e))^{k} \in J(\mathcal{A})$. This completes the proof.

Corollary 2.2. Let \mathcal{A} be a Banach algebra, and let $a \in \mathcal{A}$. If $a \in \mathcal{A}$ has $p s$-Drazin inverse, then $a \in \mathcal{A}$ has p-Drazin inverse.

We note that the converse of Corollary 2.2 is not true, in general. Let \mathbb{C} be the field of all complex numbers. Then $2 \in \mathbb{C}$ has p-Drazin inverse. But it has no ps-Drazin inverse, as $\left(2^{2}-2\right)^{k}=2^{k} \notin J(\mathbb{C})$ for all $k \in \mathbb{N}$.

Lemma 2.3. (see [12, Lemma 2.6]) Let \mathcal{A} be a Banach algebra with $a^{2} b=a b a$ and $b^{2} a=b a b$. Then, the following hold for any integer $k \in \mathbb{N}$.
(1) $(a b)^{k}=a^{k} b^{k}$.
(2) $(a+b)^{k}=\sum_{i=0}^{k-1} C_{k-1}^{i}\left(a^{k-i} b^{i}+b^{k-i} a^{i}\right)$.

Lemma 2.4. (see [12, Theorem 2.8]) Let \mathcal{A} be a Banach algebra and $a, b \in \mathcal{A}$ have p-Drazin inverse. If $a^{2} b=a b a$ and $b^{2} a=b a b$, then $a b$ has p-Drazin inverse.

Theorem 2.5. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ have $p s$-Drazin inverses. If $a^{2} b=a b a$ and $b^{2} a=b a b$, then $a b \in \mathcal{A}$ has $p s$-Drazin inverse.

Proof. Let a and b have ps-Drazin inverses. Then there exists $m, n \in \mathbb{N}$ such that $\left(a-a^{2}\right)^{m} \in J(\mathcal{A})$ and $\left(b-b^{2}\right)^{n} \in J(\mathcal{A})$ by Theorem 2.1. Let $c=a-a^{2}$.

$$
\begin{aligned}
c^{2} b & =\left(a-a^{2}\right)^{2} b \\
& =\left(a^{2}-2 a^{3}+a^{4}\right) b \\
& =a b a-2 a b a^{2}+a b a^{3} \\
& =\left(a-a^{2}\right) b\left(a-a^{2}\right) \\
& =c b c .
\end{aligned}
$$

Also, $b^{2} c=b^{2}\left(a-a^{2}\right)=b^{2} a-b^{2} a a=b a b-b a b a=b a b-b a^{2} b=b\left(a-a^{2}\right) b=b c b$. Thus, for any integer $k \geq 0$, $\left(\left(a-a^{2}\right) b\right)^{k}=\left(a-a^{2}\right)^{k} b^{k}$ by Lemma 2.3. Similarly, $\left(a^{2}\left(b-b^{2}\right)\right)^{l}=\left(a^{2}\right)^{l}\left(b-b^{2}\right)^{l}$ for any integer $l \geq 0$. Now, let $x=\left(a-a^{2}\right) b$ and $y=a^{2}\left(b-b^{2}\right)$. We show that $x^{2} y=x y x$.

$$
\begin{aligned}
x^{2} y & =\left(a-a^{2}\right) b\left(a-a^{2}\right) b a^{2}\left(b-b^{2}\right) \\
& =\left(a-a^{2}\right)(b a b-b a b a) a^{2}\left(b-b^{2}\right) \\
& =\left(a-a^{2}\right) b a b\left(a^{2}-a^{3}\right)\left(b-b^{2}\right) \\
& =\left(a-a^{2}\right) b a b\left(a^{2} b-a^{2} b^{2}-a^{3} b+a^{3} b^{2}\right) \\
& =\left(a-a^{2}\right) b a b\left(a^{2}-a^{2} b\right)(b-a b) \\
& =\left(a-a^{2}\right) b a b\left(a^{2}-a^{2} b\right)(1-a) b \\
& =\left(a-a^{2}\right) b a^{2}\left(b-b^{2}\right)\left(a-a^{2}\right) b \\
& =x y x .
\end{aligned}
$$

Also,

$$
\begin{aligned}
y^{2} x & =a^{2}\left(b-b^{2}\right) a^{2}\left(b-b^{2}\right)\left(a-a^{2}\right) b \\
& =a^{2}\left(b-b^{2}\right) a^{2} b\left(a b-a^{2} b-b a b+b a^{2} b\right) \\
& =a^{2}\left(b-b^{2}\right) a^{2}\left(b a b-b a b a-b^{2} a b+b^{2} a b a\right) \\
& =a^{2}\left(b-b^{2}\right) a^{2}\left(b a b-b a b a-b a b^{2}+b^{2} a b a\right) \\
& =a^{2}\left(b-b^{2}\right) a^{2} b\left(a b-a^{2} b-a b^{2}+a b b a\right) \\
& =a^{2}\left(b-b^{2}\right) a^{2} b\left(a b-a^{2} b-a b^{2}+a b a b\right) \\
& =a^{2}\left(b-b^{2}\right) a^{2} b\left(a b-a^{2} b-a b^{2}+a^{2} b^{2}\right) \\
& =a^{2}\left(b-b^{2}\right) a^{2} b(1-a) a\left(b-b^{2}\right) \\
& =a^{2}\left(b-b^{2}\right)\left(a-a^{2}\right) b a^{2}\left(b-b^{2}\right) \\
& =y x y .
\end{aligned}
$$

Hence, $\left(a b-(a b)^{2}\right)^{m+n+1}=(x+y)^{m+n+1}=\sum_{i=0}^{m+n} C_{m+n}^{i}\left(x^{m+n+1-i} y^{i}+y^{m+n+1-i} x^{i}\right)$ by Lemma 2.3. As we proved, $x^{k}=\left(\left(a-a^{2}\right) b\right)^{k}=\left(a-a^{2}\right)^{k} b^{k}$ for any integer $k \geq 0$ and $y^{l}=\left(a^{2}\left(b-b^{2}\right)\right)^{l}=\left(a^{2}\right)^{l}\left(b-b^{2}\right)^{l}$ for any integer $l \geq 0$. Also, $\left(a-a^{2}\right)^{m} \in J(\mathcal{A})$ and $\left(b-b^{2}\right)^{n} \in J(\mathcal{A})$ for some $m, n \in \mathbb{N}$, and so we have $\left(a b-(a b)^{2}\right)^{m+n+1} \in J(\mathcal{A})$. Therefore, $a b$ has ps-Drazin inverse by Theorem 2.1 and Lemma 2.4.

Corollary 2.6. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ have $p s$-Drazin inverses. If $a b=b a$, then $a b \in \mathcal{A}$ has $p s$-Drazin inverse.

Proof. It is clear by Theorem 2.5, since the condition $a b=b a$ implies that $a^{2} b=a b a$ and $b^{2} a=b a b$.

3. Additive property

In this section, we concern on the additive properties of ps-Drazin inverses. For the convenience, we use $J^{\#}(\mathcal{A})$ do denote the set of all elements x with $x^{n} \in J(\mathcal{A})$ for some $n \in \mathbb{N}$. We now derive

Lemma 3.1. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ have $p s$-Drazin inverses. If $a b=b a=0$, then $a+b$ has ps-Drazin inverse.

Proof. In view of [10, Theorem 5.4], $a+b$ has p-Drazin inverse. We easily checks that $a+b-(a+b)^{2}=$ $\left(a-a^{2}\right)+\left(b-b^{2}\right) \in J^{\#}(\mathcal{A})$. This completes the proof by Theorem 2.1.

Lemma 3.2. Let \mathcal{A} be a Banach algebra, and let $a, b \in J^{\#}(\mathcal{A})$. If $a^{2} b=a b a$ and $b^{2} a=b a b$, then $a+b \in J^{\#}(\mathcal{A})$.
Proof. Write $a^{m}, b^{n} \in J(\mathcal{A})$ for some $m, n \in \mathbb{N}$. According to Lemma 2.3, we see that $(a+b)^{m+n} \in J(\mathcal{A})$, as desired.

Lemma 3.3. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ have ps-Drazin inverses. If $a b=b a$ and $1+a^{d} b \in \mathcal{A}$ has $p s$-Drazin inverse, then $a+b \in \mathcal{A}$ has $p s$-Drazin inverse.

Proof. Clearly, $\left(1+a^{d} b\right)-\left(1+a^{d} b\right)^{2}=-\left(1+a^{d} b\right) a^{d} b \in J^{\#}(\mathcal{A})$ since $1+a^{d} b$ has ps-Drazin inverse. Hence, $a^{d} b+\left(a^{d}\right)^{2} b^{2} \in J^{\#}(\mathcal{A})$. Thus, $a a^{d} b+a^{d} b^{2} \in J^{\#}(\mathcal{A})$. Also, $b-b^{2} \in J^{\#}(\mathcal{A})$ since $b \in \mathcal{A}^{p s}$. So $a^{d}\left(b-b^{2}\right) \in J^{\#}(\mathcal{A})$ as well. Therefore, $a a^{d} b+a^{d} b=\left(a a^{d} b+a^{d} b^{2}\right)+a^{d}\left(b-b^{2}\right) \in J^{\#}(\mathcal{A})$. Then, $2 a b=\left(a^{2} a^{d} b+a a^{d} b\right)-\left(a^{2} a^{d}-a\right) b-\left(a a^{d}-a\right) b \in J^{\#}(\mathcal{A})$. Consequently, $(a+b)-(a+b)^{2}=\left(a-a^{2}\right)+\left(b-b^{2}\right)-2 a b \in J^{\#}(\mathcal{A})$. Furthermore, $a+b$ has p-Drazin inverse since $1+a^{d} b$ has p-Drazin inverse (see [12, Theorem 2.10]). So we have $a+b \in \mathcal{A}^{p s}$.

Theorem 3.4. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$ have $p s$-Drazin inverses. If $a^{2} b=a b a$ and $b^{2} a=b a b$, then $a+b \in \mathcal{A}$ has $p s$-Drazin inverse if and only if $1+a^{d} b \in \mathcal{A}$ has $p s$-Drazin inverse.

Proof. \Longrightarrow Let $a+b$ has ps-Drazin inverses. Write $1+a^{d} b=x+y$ where $x=1-a a^{d}$ and $y=a^{d}(a+b)$. Then $x \in \mathcal{A}^{p s}$ and $x y=0$. Moreover, we see that $y x=a^{d}(a+b)\left(1-a a^{d}\right)=a^{d} b\left(1-a^{d} a\right)=\left(a^{d}\right)^{2}(a b)\left(1-a a^{d}\right)=0$, as $a \in \operatorname{comm}(a b)$. WE easily check that $\left(a^{d}\right)^{2}(a+b)=a^{d}(a+b) a^{d},(a+b)^{2} a^{d}=(a+b) a^{d}(a+b)$. Since a has ps-Drazin inverse, it has p-Drazin inverse and by we can find some $k \in \mathbb{N}$ such that $\left(a-a^{2}\right)^{k} \in J(\mathcal{A})$. In view of [12, Theorem 2.3], a^{d} has p-Drazin inverse. We easily check that $a^{d}-\left(a^{d}\right)^{2}=-\left(a^{d}\right)^{3}\left(a-a^{2}\right)$, and so $\left(a^{d}-\left(a^{d}\right)^{2}\right)^{k} \in J((\mathcal{A}))$. In light of Theorem 2.1, a^{d} has ps-Drazin inverse. By hypothesis, $a+b \in \mathcal{A}^{p s}$, and so $y \in \mathcal{A}^{p s}$. Therefore $1+a^{d} b \in \mathcal{A}^{p s}$ by Lemma 3.1.
\Longleftarrow Step 1. Clearly, $1+\left(a^{2} a^{d}\right)^{d}\left(a a^{d}\right) b=1+\left(a a a^{d}\right)^{d}\left(a a^{d} b\right)=1+a^{d} a a^{d} a a^{d} b=1+a\left(a^{d}\right)^{2} b=1+a^{d} b \in \mathcal{A}^{p s}$. Also, $\left(a^{2} a^{d}\right)\left(a a^{d} b\right)=\left(a a^{d} b\right)\left(a^{2} a^{d}\right)$. Since $a\left(a a^{d}\right)=\left(a a^{d}\right) a$ and $\left(a a^{d}\right) b=b\left(a a^{d}\right)$, it follows by Corollary 2.6 that $a^{2} a^{d}$ and $a a^{d} b$ have ps-Drazin inverses. Hence, we have $a^{2} a^{d}+a a^{d} b=a a^{d}(a+b) \in \mathcal{F}^{p s}$ by applying Lemma 3.3 to $a^{2} a^{d}$ and $a a^{d} b$.
Step 2. Assume that $b \in J^{\#}(\mathcal{A})$. Then $\left(1-a a^{d}\right)(a+b)=x+y$ where $x=\left(a-a^{2} a^{d}\right)$ and $y=\left(1-a a^{d}\right) b$. Then $x^{2} y=x y x$ and $y^{2} x=y x y$. Also, $x=a-a^{2} a^{d} \in J^{\#}(\mathcal{A})$ and $y=\left(1-a a^{d}\right) b \in J^{\#}(\mathcal{A})$ since $b \in J^{\#}(\mathcal{A})$. Hence, $\left(1-a a^{d}\right)(a+b)=x+y \in J^{\#}(\mathcal{A})$. Choose $p=a a^{d}$. Then

$$
a+b=\left(\begin{array}{cc}
p(a+b) p & 0 \\
(1-p)(a+b) p & (1-p)(a+b)(1-p)
\end{array}\right)_{p} .
$$

Since $p(a+b) p=p(a+b) \in \mathcal{A}^{p s}$ and $(1-p)(a+b)(1-p)=(1-p)(a+b) \in \mathcal{A}^{p s}, a+b \in \mathcal{A}^{p s}$.
Step 3. Choose $p=b b^{d}$. Then $a=\left(\begin{array}{cc}a_{1} & 0 \\ * & a_{2}\end{array}\right)_{p}$ and $b=\left(\begin{array}{cc}b_{1} & 0 \\ * & b_{2}\end{array}\right)_{p}$ where $a_{1}=p a p, a_{2}=(1-p) a(1-p)$, $b_{1}=p b p$ and $b_{2}=(1-p) b(1-p)$. Hence,

$$
a+b=\left(\begin{array}{cc}
a_{1}+b_{1} & 0 \\
* & a_{2}+b_{2}
\end{array}\right)_{p}
$$

Obviously, $a_{1}, b_{1} \in \mathcal{A}^{p s}$ and $a_{1} b_{1}=b_{1} a_{1}$. As in Step 1, we see that $1+a_{1}^{d} b_{1} \in \mathcal{A}^{p s}$. Therefore $a_{1}+b_{1} \in \mathcal{A}^{p s}$ by Lemma 3.3. As $b^{2} a=b a b$, we see that $b a \in \operatorname{comm}(b)$, and so $b^{d}(b a)=(b a) b^{d}$. This implies that $a_{2}=$ $\left(1-b b^{d}\right) a\left(1-b b^{d}\right)=\left(a-b b^{d} a\right)\left(1-b b^{d}\right)=a\left(1-b b^{d}\right)=a-a\left(b b^{d}\right)$. It is easy to verify that $a^{2}\left(b b^{d}\right)=a\left(b b^{d}\right) a$ and $\left(b b^{d}\right)^{2} a=\left(b b^{d}\right) a\left(b b^{d}\right)$. It follows by Theorem 2.5 that $a b b^{d}$ has ps-Drazin inverse. Moreover, we see that $a^{2}\left(b b^{d}\right)=(a b a) b^{d}=a\left(b b^{d}\right) a$. We verify that $1-a^{d} a\left(b b^{d}\right)=1-a^{d}(a b) b^{d}=1-(a b)(a b)^{d}$ has ps-Drazin inverse by Theorem 2.5. As in the proof of [15, Theorem 3.3], we see that $a_{2} \in \mathcal{A}^{p s}$. Clearly, $b_{2} \in J^{\#}(\mathcal{A}), a_{2}^{2} b_{2}=a_{2} b_{2} a_{2}$ and $b_{2}^{2} a_{2}=b_{2} a_{2} b_{2}$. By Step 2, $a_{2}+b_{2} \in \mathcal{A}^{p s}$. Consequently, $a+b \in \mathcal{A}^{p s}$.

We see that the condition in Theorem 3.4 is a generalization of the commutativity of a and b. But we have,

Example 3.5. Let $a=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), b=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \in M_{2}\left(\mathbb{Z}_{2}\right)$. Then $a^{2} b=a b a, b^{2} a=b a b$. In this case $a, b, 1+a^{d} b \in M_{2}\left(\mathbb{Z}_{2}\right)$ has $p s$-Drazin inverse and $a b \neq b a$.

4. Splitting in Banach algebras

The goal of this section is to use splitting approach to determine when an element in a Banach algebra has ps-Drazin inverse. We derive

Lemma 4.1. Let \mathcal{A} be a Banach algebra. If $a, d \in \mathcal{A}$ have ps-Drazin inverses, then $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in M_{2}(\mathcal{A})$ has $p s$-Drazin inverse.

Proof. In view of Theorem 2.1, $a, d \in \mathcal{A}$ have p-Drazin inverse and $\left(a-a^{2}\right)^{k},\left(b-b^{2}\right)^{k} \in J(\mathcal{A})$ for some $k \in \mathbb{N}$. In view of [10, Theorem 5.3], $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in M_{2}(\mathcal{A})$ has p-Drazin inverse. On the other hand, we have some $z \in \mathcal{A}$ such that

$$
\begin{aligned}
\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)-\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)^{2}\right)^{2 k} & =\left(\begin{array}{cc}
\left(a-a^{2}\right)^{k} & z \\
0 & \left(d-d^{2}\right)^{k}
\end{array}\right)^{2} \\
& =\left(\begin{array}{cc}
\left(a-a^{2}\right)^{2 k} & \left(a-a^{2}\right)^{k} z+z\left(d-d^{2}\right)^{k} \\
0 & \left(d-d^{2}\right)^{2 k}
\end{array}\right)^{2} \\
& \in J\left(M_{2}(\mathcal{A})\right) .
\end{aligned}
$$

According to Theorem 2.1, we complete the proof.
Theorem 4.2. Let \mathcal{A} be a Banach algebra, and let $a, d \in \mathcal{A}$ have $p s$-Drazin inverses. If $b c=d c=0$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{A})$ has $p s$-Drazin inverse.

Proof. Clearly, we have $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=p+q$, where

$$
p=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right), q=\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right)
$$

In view of Lemma 4.1, $p \in M_{2}(\mathcal{A})$ has ps-Drazin inverse. As $q^{2}=0$, we easily see that $q \in M_{2}(\mathcal{A})$ has ps-Drazin inverse. Moreover,

$$
q^{2} p=0=\left(\begin{array}{cc}
0 & 0 \\
c b c & 0
\end{array}\right)=q p q
$$

and

$$
p^{2} q=\left(\begin{array}{cc}
a b c+b d c & 0 \\
d^{2} c & 0
\end{array}\right)=0=\left(\begin{array}{ll}
b c a & b c b \\
d c a & d c b
\end{array}\right)=p q p
$$

Clearly, $q^{d}=0$, and so $1+q^{d} p=1$ has ps-Drazin inverse. Therefore, $p+q \in \mathcal{A}$ has ps-Drazin inverse, by Theorem 3.4. This completes the proof.

Corollary 4.3. Let \mathcal{A} be a Banach algebra, and let $a, d \in \mathcal{A}$ have $p s$-Drazin inverses. If $b c=0$ and $d c=c$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{A})$ has $p s$-Drazin inverse.

Proof. Since $d c=c,-(1-d) c=0$. So in light of Theorem 4.2, $I_{2}-\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{A})$ has ps-Drazin inverse since $b c=0$ and $-(1-d) c=0$. Thus, we can find an idempotent $E \in \operatorname{comm}^{2}\left(I_{2}-\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$ such that

$$
\left(I_{2}-\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-E\right)^{k} \in J\left(M_{2}(\mathcal{A})\right) \text { for some } k \in \mathbb{N}
$$

and so

$$
\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-\left(I_{2}-E\right)\right)^{k} \in J\left(M_{2}(\mathcal{A})\right)
$$

Clearly, $I_{2}-E \in \operatorname{comm}^{2}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$. This completes proof.
Next we consider another splitting of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and get the alternative results.
Theorem 4.4. Let \mathcal{A} be a Banach algebra, and let $a, d \in \mathcal{A}$ have $p s$-Drazin inverses. If $b c=c b=0$ and $d c=c a$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{F})$ has $p s$-Drazin inverse.

Proof. We see that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=p+q
$$

where

$$
p=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right), q=\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right) .
$$

In view of Lemma 4.1, p has ps-Drazin inverse. Since $q-q^{2} \in J\left(M_{2}(\mathcal{A})\right)$ and $q \in \mathcal{A}^{p d}, q$ has ps-Drazin inverse by Theorem 2.1. Clearly, $q^{d}=0$, and so $1+q^{d} p$ has ps-Drazin inverse. From $b c=c b=0$ and $d c=c a$, we see that

$$
p q=\left(\begin{array}{ll}
b c & 0 \\
d c & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
c a & c b
\end{array}\right)=q p
$$

In light of Lemma 3.3, $p+q$ has ps-Drazin inverse, as asserted.
Example 4.5. Let A, B, C be operators, acting on separable Hilbert space $l_{2}(\mathbb{N})$, defined as follows respectively:

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right) \\
& B\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(x_{1},-x_{1}, 0,0, \cdots\right) \\
& C\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(0, x_{1}+x_{2}, x_{3}, x_{4}, \cdots\right) \\
& D\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)=\left(-x_{1}, x_{2}, x_{3}, x_{4}, \cdots\right)
\end{aligned}
$$

Then we easily check that $B C=C B=0$ and $D C=C A$. In light of Theorem 4.4, the operator matrix $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ has $p s$-Drazin inverse. In this case, $D C \neq 0$.

Lemma 4.6. Let \mathcal{A} be a Banach algebra, and let $a \in \mathcal{A}$ have $p s$-Drazin inverse. If $e^{2}=e \in \operatorname{comm}(a)$, then $e a \in \mathcal{A}$ has ps-Drazin inverse.

Proof. Since $e \in \mathcal{A}^{p s}$, we easily obtain the result by Theorem 2.5.
Let $a \in \mathcal{A}$ have ps-Drazin inverse. Then it has g-Drazin inverse. We use a^{π} to denote the spectral idempotent of a, i.e., $a^{\pi}=1-a a^{d}$. We now derive

Theorem 4.7. Let \mathcal{A} be a Banach algebra, and let $a, d \in \mathcal{A}$ have $p s$-Drazin inverses. If $b c=c b=0, c a\left(1-a^{\pi}\right)=d^{\pi} d c$ and $a^{\pi} a b=b d\left(1-d^{\pi}\right)$, then $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{A})$ has ps-Drazin inverse.

Proof. Let

$$
p=\left(\begin{array}{cc}
a\left(1-a^{\pi}\right) & b \\
0 & d d^{\pi}
\end{array}\right), q=\left(\begin{array}{cc}
a a^{\pi} & 0 \\
c & d\left(1-d^{\pi}\right)
\end{array}\right) .
$$

Then $M=p+q$. In view of Lemma 4.1, p has ps-Drazin inverse. Likewise, q has ps-Drazin inverse. It is easy to verify that

$$
p q=\left(\begin{array}{cc}
0 & b d\left(1-d^{\pi}\right) \\
d d^{\pi} c & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & a a^{\pi} b \\
c a\left(1-a^{\pi}\right) & 0
\end{array}\right)=q p .
$$

One easily checks that

$$
p^{d}=\left(\begin{array}{cc}
\left(a\left(1-a^{\pi}\right)\right)^{d} & x \\
0 & d^{d} d^{\pi}
\end{array}\right)=\left(\begin{array}{cc}
a^{d} & x \\
0 & 0
\end{array}\right)
$$

where $x=\left(a^{d}\right)^{2} \sum_{n=0}^{\infty}\left(a^{d}\right)^{n} b\left(d d^{\pi}\right)^{n}$. Hence,

$$
p^{d} q=\left(\begin{array}{cc}
a^{d} & x \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a a^{\pi} & 0 \\
c & d\left(1-d^{\pi}\right)
\end{array}\right)=\left(\begin{array}{cc}
x c & x d\left(1-d^{\pi}\right) \\
0 & 0
\end{array}\right)
$$

where $x c=\left(a^{d}\right)^{2}\left(b+\sum_{n=1}^{\infty}\left(a^{d}\right)^{n} b\left(d d^{\pi}\right)^{n}\right) c=0$ as $b c=0, b\left(d d^{\pi}\right)^{n} c=0$. Moreover, we have

$$
\begin{aligned}
x d\left(1-d^{\pi}\right) & =\left(a^{d}\right)^{2}\left(b+\sum_{n=1}^{\infty}\left(a^{d}\right)^{n} b\left(d d^{\pi}\right)^{n}\right) d\left(1-d^{\pi}\right) \\
& =\left(a^{d}\right)^{2}\left(b+b d\left(1-d^{\pi}\right)\right) \\
& =\left(a^{d}\right)^{2}\left(b+a^{\pi} a b\right) \\
& =\left(a^{d}\right)^{2} b
\end{aligned}
$$

and so $p^{d} q=\left(\begin{array}{cc}0 & \left(a^{d}\right)^{2} b \\ 0 & 0\end{array}\right)$. Thus, $1+p^{d} q$ is invertible. So, it has p-Drazin inverse. Further, we have

$$
\begin{aligned}
\left(1+p^{d} q\right)-\left(1+p^{d} q\right)^{2} & =-p^{d} q\left(1+p^{d} q\right) \\
& =\left(\begin{array}{cc}
0 & -\left(a^{d}\right)^{2} b \\
0 & 0 \\
0 & -\left(a^{d}\right)^{2} b \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & \left(a^{d}\right)^{2} b \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\\
& =\in J^{\#}(\mathcal{A}) .
\end{array}\right. \\
& =\text {. }
\end{aligned}
$$

In light of Theorem 2.1, $1+p^{d} q \in \mathcal{A}^{p s}$. Therefore, we complete the proof by Theorem 3.4.
Finally, we concern on the ps-Drazin inverse for a operator matrix M has ps-Drazin inverse. Here,

$$
M=\left(\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right)
$$

where $A, D \in L(X)$ has ps-Drazin inverses and X is a complex Banach space. Then M is a bounded linear operator on $X \oplus X$.

Lemma 4.8. Let \mathcal{A} be a Banach algebra, and let $A \in M_{m \times n}(\mathcal{A}), B \in M_{n \times m}(\mathcal{A})$ and $k \in \mathbb{N}$. Then $A B \in M_{m}(\mathcal{A})$ has $p s$-Drazin inverse if and only if $B A \in M_{n}(\mathcal{A})$ has $p s$-Drazin inverse.

Proof. Suppose that $A B \in M_{m}(\mathcal{A})$ has ps-Drazin inverse. Then $A B \in M_{m}(\mathcal{A})$ has p-Drazin inverse and $\left(A B-(A B)^{2}\right)^{k} \in M_{m}(J(\mathcal{A}))$. In light of [10, Theorem 3.6], $B A$ has p-Drazin inverse. One easily checks that

$$
\left(B A-(B A)^{2}\right)^{k+1}=B\left(A B-(A B)^{2}\right)^{k}(A-A B A) \in M_{n}(J(\mathcal{A}))
$$

According to Theorem 2.1, $B A \in M_{n}(\mathcal{A})$ has ps-Drazin inverse, as asserted.
Lemma 4.9. Let \mathcal{A} be a Banach algebra, and let $a, b \in \mathcal{A}$. If a, b have $p s$-Drazin inverses and $a b=0$, then $a+b \in \mathcal{A}$ has ps-Drazin inverse.

Proof. Let $A=(1, b)$ and $B=\binom{a}{1}$. By the similar technique to the Lemma 4.1, $B A=\left(\begin{array}{cc}a & a b \\ 1 & b\end{array}\right)$ has ps-Drazin inverse. By virtue of Lemma 4.8, $A B=a+b \in \mathcal{A}$ has ps-Drazin inverse, as asserted.

Theorem 4.10. Let $A \in L(X)$ has $p s$-Drazin inverse, $D \in L(X)$ and M be given by (4.1). Let $W=A A^{d}+A^{d} B C A^{d}$. If $A W$ has $p s$-Drazin inverse,

$$
A^{\pi} B C=0, D=C A^{d} B
$$

then M has $p s$-Drazin inverse.
Proof. We easily see that

$$
M=\left(\begin{array}{cc}
A & B \\
C & C A^{d} B
\end{array}\right)=P+Q
$$

where

$$
P=\left(\begin{array}{cc}
A & A A^{d} B \\
C & C A^{d} B
\end{array}\right), Q=\left(\begin{array}{cc}
0 & A^{\pi} B \\
0 & 0
\end{array}\right)
$$

By hypothesis, we verify that $Q P=0$. Clearly, Q has ps-Drazin inverse. Furthermore, we have

$$
P=P_{1}+P_{2}, P_{1}=\left(\begin{array}{cc}
A^{2} A^{d} & A A^{d} B \\
C A A^{d} & C A^{d} B
\end{array}\right), P_{2}=\left(\begin{array}{cc}
A A^{\pi} & 0 \\
C A^{\pi} & 0
\end{array}\right)
$$

and $P_{2} P_{1}=0$. By virtue of Theorem 4.2, P_{2} has ps-Drazin inverse. Obviously, we have

$$
P_{1}=\binom{A A^{d}}{C A^{d}}\left(\begin{array}{ll}
A & A A^{d} B
\end{array}\right)
$$

By hypothesis, we see that

$$
\left(\begin{array}{ll}
A & A A^{d} B
\end{array}\right)\binom{A A^{d}}{C A^{d}}=A W
$$

has ps-Drazin inverse. In light of Lemma 4.8, P_{1} has ps-Drazin inverse. Thus, P has ps-Drazin inverse by Lemma 4.9. According to Lemma 4.9, M has ps-Drazin inverse. Therefore, we complete the proof.

Acknowledgement

The authors would like to thank the referee for his/her careful reading and valuable remarks that improved the presentation of our work. The second author thanks the Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support.

References

[1] C. Deng, D. S. Cvetkovic-Ilic and Y. Wei, Some results on the generalized Drazin inverse of operator matrices, Linear and Multilinear Algebra 58(2010), 503-521.
[2] C. Deng and Y. Wei, New additive results for the generalized Drazin inverse, J. Math. Anal. Appl., 370(2010), 313-321.
[3] D.S. Djordjevic and Y. Wei, Additive results for the generalized Drazin inverse, J. Aust. Math. Soc., 73(2002), 115-125.
[4] O. Gurgun, Properties of generalized strongly Drazin invertible elements in general rings, J. Algebra Appl. 16 (2017) 1750207 [13 pages], DOI: 10.1142/S0219498817502073.
[5] H. Lian and Q. Zenf, An extension of Cline's formula for generalized Drazin inverse, Turk. J. Math., 40(2016), 161-165.
[6] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, B. Malays. Math. Sci. So., 37(2014), 37-42.
[7] V.G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo, II. Ser., Published online: 09 February 2017, Doi: 10.1007/s12215-017-0298-6.
[8] D. Mosic, Extensions of Jacobson's lemma for Drazin inverses, Aequationes. Math., Published online: 04 April 2017, Doi: 10.1007/s00010-017-0476-9.
[9] Z. Wang, A class of Drazin inverses in rings, Filomat, 31(2017), 1781-1789.
[10] Z. Wang and J. Chen, Pseudo Drazin inverses in associative rings and Banach algebras, Linear Algebra Appl., 437(2012), 1332-1345.
[11] H. Zhu and J. Chen, Additive property of pseudo Drazin inverse of elements in Banach algebras, Filomat, 28(2014), $1773-1781$.
[12] H. Zhu; J. Chen and P. Patricio, Representations for the pseudo Drazin inverse of elements in a Banach algebra, Taizanese J. Math., 19(2015), 349-362.
[13] G. Zhuang; J. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra Appl., 436(2012), 742-746.
[14] H. Zou and J. Chen, On the pseudo Drazin inverse of the sum of two elements in a Banach algebra, Filomat, 31(2017), $2011-2022$.
[15] H. Zou; D. Mosic and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, Turk. J. Math., 41(2017), 548-563.

[^0]: 2010 Mathematics Subject Classification. 15A09; Secondary 32A65, 16E50
 Keywords. ps-Drazin inverse; multiplicative property; additive property; Banach algebra.
 Received: 07 July 2018; Accepted: 02 January 2019
 Communicated by Dragana Cvetković Ilić
 Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY17A010018).
 Corresponding author: Tugce Pekacar Calci
 Email addresses: huanyinchen@aliyun.com (Huanyin Chen), tcalci@ankara.edu.tr (Tugce Pekacar Calci)

