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Abstract. The purpose of this paper is to study the existence and multiplicity of solutions to the following
Kirchhoff equation with singular nonlinearity and Riemann-Liouville Fractional Derivative:

(Pλ)



(
a + b

∫ T

0
|0Dα

t (u(t))|pdt
)p−1

tDα
T

(
Φp(0Dα

t u(t))
)

=
λ1(t)
uγ(t) + f (t,u(t)), t ∈ (0,T);

u(0) = u(T) = 0,

where a ≥ 1, b, λ > 0, p > 1 are constants, 1
p < α ≤ 1, 0 < γ < 1, 1 ∈ C([0, 1]) and f ∈ C1([0,T] × R,R).

Under appropriate assumptions on the function f , we employ variational methods to show the existence
and multiplicity of positive solutions of the above problem with respect to the parameter λ.

1. Introduction

The theory of fractional calculus may be used to the description of memory and hereditary properties of
various materials and processes. The mathematical modelling of systems and processes has had a growing
development in fields as physics, chemistry, aerodynamics, electro-dynamics of complex medium, polymer
rheology (see e.g. [4], [18], [19]). In fact, the subject of fractional differential equations has been gaining more
importance and attention in ordinary and partial differential equations involving both Riemann-Liouville
and Caputo fractional derivatives. For details and examples, one may refer to monographs [24, 28] and
papers [1, 2, 25–27], and references cited therein. In particular, in the qualitative theory of fractional dif-
ferential equations, the existence of almost periodic, asymptotically almost periodic, almost automorphic,
asymptotically almost automorphic, and pseudo-almost periodic solutions has attracted great attention.

In the sequel of the above-mentioned works with the new approach to the theory of fractional differential
equations, here, in this paper, we investigate the existence of multiple solutions of the Kirchhoff fractional
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problem involving Riemann-Liouville fractional derivative and singular nonlinearity:

(Pλ)



(
a + b

∫ T

0 |0Dα
t (u(t))|pdt

)p−1

tDα
T

(
Φp(0Dα

t u(t))
)

=
λ1(t)
uγ(t) + f (t,u(t)), t ∈ (0,T);

u(0) = u(T) = 0,

where a ≥ 1, b λ > 0, p > 1 are constants. 1
p < α ≤ 1, 0 < γ < 1 < p < r and 1 ∈ C([0,T]), and Φp : R→ R is

the p-laplacian defined by
Φp(s) = |s|p−2s (s , 0), Φp(0) = 0.

While f ∈ C ([0,T] ×R,R) is positively homogeneous of degree r− 1 that is f (x, tu) = tr−1 f (x,u) holds for all
(x,u) ∈ [0,T] ×R. Put F(x, s) :=

∫ s

0 f (x, t)dt and satisfying suitable growth conditions. Precisely, we assume
the following:

(H1) F : [0,T] ×R −→ R is homogeneous of degree r that is

F(x, tu) = trF(x,u) (t > 0) for all x ∈ [0,T], u ∈ R.

(H2) F±(x,u) = max(±F(x,u), 0) , 0 for all u , 0.

Note that, from (H1), f leads to the so-called Euler identity

u f (x,u) = rF(x,u)

and

|F(x,u)| ≤ K|u|r for some constant K > 0. (1.1)

Problem (Pλ) is related to the stationary version of the Kirchhoff equation presented by Kirchhoff in 1883
[23] given by the equation

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0
|
∂u
∂x
|
2dx

)∂2u
∂x2 = 0, (1.2)

which extends the classical d’Alembert’s wave equation by considering the effects of the changes in the
length of the strings during the vibrations. The parameters in the above equation have the following
meanings: L is the length of the string, h is the area of the cross-section, E is the young modulus of the
material, ρ is the mass density and ρ0 is the initial tension. A feature of problem (1.2) is that the equation
contains a nonlocal coefficient ρ0

h + E
2L

∫ L

0 |
∂u
∂x |

2dx, which depends on the average 1
2L

∫ L

0 |
∂u
∂x |

2dx.Nonlocal effect
also finds its applications in biological systems. Moreover, problem (Pλ) has a solid theoretical significance
and a sharp physical background. For instance, this problem describes the surface tension of the height of
a thin liquid film on a solid surface in lubrication approximation (see [6, 13]).

A parabolic version of problem (1.2) can be used to describe the growth and movement of a particular
species. The movement, modeled by the integral term, is assumed to be dependent on the energy of the
entire system with u being its population density. Alternatively, the movement of particular species may
be subject to the total population density within the domain (for instance, the spreading of bacteria), which
gives rise to nonlocal parabolic equations. We refer to [30] for details.

Recently, the study of the fractional elliptic equations with regular nolinearities and without a Kirchhoff
coefficient has been attracted lot of interest by researchers in nonlinear analysis. The fractional boundary
value problem using variational methods has been studied in [3, 5, 7, 16, 17, 20, 21, 31, 32] with references
therein. Also, existence and multiplicity results for the Kirchhoff equations with regular nolinearities are
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shown an always increasing interest. We refer the interested readers to [10–12, 29].

Motivated by above results, in the present paper, we show the existence and multiplicity of nontrivial,
non-negative solutions of the Kirchhoff fractional problem involving Riemann-Liouville fractional Deriva-
tive and singular nonlinearity (Pλ).

We give below the precise statements of results that we will prove.

Theorem 1.1. Assume that the hypothesis (H1)-(H3) are satisfied. Then, there exists Λ0 such that for all λ ∈ (0,Λ0),
problem possesses at least two nontrivial positive solutions.

This paper is organized as follows: In Section 2, some definitions and properties on the fractional
calculus are presented. The section 3 is devoted to proof some lemmas in preparation for the proof of our
main result. While, existence of two solutions (Theorem 1.1) will be presented in sections 4 and 5.

2. Preliminaries

In this section, we give some background theory on the concept of fractional calculus, in particular the
Riemann-Liouville operators and results which will used throughout this paper. Let us start by introduce
the definition of the fractional integral in the sense of Riemann-Liouville.

Definition 2.1. (See [1]) Let [a, b] (−∞ < a < b < ∞) be a finite interval on the real axis R and u be a real-valued
function defined almost everywhere (a.e.) on (a, b). The Riemann-Liouville left-sided and right-sided fractional
integrals of a function u

a+Iαt u(t) = aIαt u(t) =
(

a+Iαt u
)

(t) =
(

aIαt u
)

(t)

and

tIαb−u(t) = tIαb u(t) =
(

tIαb−u
)

(t) =
(

tIαb u
)

(t)

of order α ∈ R+ are defined by

aIαt u(t) :=
1

Γ(α)

∫ t

a
(t − s)α−1u(s) ds (t ∈ (a, b]) (2.1)

and

tIαb u(t) :=
1

Γ(α)

∫ b

t
(s − t)α−1u(s) ds (t ∈ [a, b)) (2.2)

respectively. Here Γ is the familiar Gamma function.

Let [a, b] (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real axis R = (−∞,∞). We denote by Lp(a, b)
(1 ≤ p ≤ ∞) the set of those Lebesgue complex-valued measurable functions u on [a, b] for which ‖u‖p < ∞,
where

‖u‖p =

(∫ b

a
|u(t)|p dt

)1/p

(1 ≤ p < ∞)

and

‖u‖∞ = ess sup
a≤x≤b

|u(x)|.
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If u ∈ L1(a, b), then aIαt u and tIαb u are defined a.e. on (a, b).

Let [a, b] (−∞ ≤ a < b ≤ ∞) and m ∈ N0 := {0, 1, 2, . . .}. We denote by Cm[a, b] a space of functions u
which are m times continuously differentiable on [a, b] with the norm

‖u‖Cm =

m∑
k=0

‖u(k)
‖C =

m∑
k=0

max
t∈[a,b]

∣∣∣u(k)(t)
∣∣∣ (m ∈N0) . (2.3)

In particular, for m = 0, C0[a, b] ≡ C[a, b] is the space of continuous functions u on [a, b] with the norm

‖u‖C = max
t∈[a,b]

|u(t)|. (2.4)

When [a, b] is a finite interval and 0 ≤ γ < 1, we introduce the weighted space Cγ[a, b] of functions u
given on (a, b], such that the function (t − a)γ u(t) ∈ C[a, b], and

‖u‖Cγ = ‖(t − a)γ u(t)‖C, C0[a, b] = C[a, b]. (2.5)

Definition 2.2. (See [1]) The Riemann-Liouville left-sided and right-sided fractional derivatives of a function u

a+Dα
t u(t) = aDα

t u(t) =
(

a+Dα
t u

)
(t) =

(
aDα

t u
)

(t)

and

tDα
b−u(t) = tDα

b u(t) =
(

tDα
b−u

)
(t) =

(
tDα

b u
)

(t)

of order α ∈ R+
∪ {0} are defined by

aDα
t u(t) : =

( d
dt

)n (
aIn−α

t u(t)
)

=
1

Γ(n − α)

( d
dt

)n ∫ t

a
(t − s)n−α−1 u(s) ds (n = [α] + 1; t > a)

(2.6)

and

tDα
b u(t) : =

(
−

d
dt

)n (
tIn−α

b u(t)
)

=
1

Γ(n − α)

(
−

d
dt

)n ∫ b

t
(s − t)n−α−1 u(s) ds (n = [α] + 1; t < b),

(2.7)

respectively, where [α] means the integral part of α.

Remark 2.3. From [24, pp. 2-3], if u is absolutely continuous on [a, b], then the fractional derivatives aDα
t u and

tDα
b u exist almost everywhere on [a, b] and can be represented in the forms

aDα
t u(t) = aI1−α

t u′(t) +
u(a)

(t − a)αΓ(1 − α)
(2.8)

and

tDα
b u(t) = −tI1−α

b u′(t) +
u(b)

(b − t)αΓ(1 − α)
. (2.9)

In particular, we have

aDα
t u(t) = aI1−α

t u′(t) and tDα
b u(t) = −tI1−α

b u′(t) (u(a) = 0 = u(b)). (2.10)
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The left-sided and right-sided Caputo fractional derivatives C
a Dα

t u(t) and C
t Dα

b u(t) of order α ∈ R+
∪{0}with, here,

0 < α < 1 are defined by

C
a Dα

t u(t) = aDα
t [u(t) − u(a)] (2.11)

and

C
t Dα

b u(t) = tDα
b [u(t) − u(b)], (2.12)

respectively.
We find from (2.8)–(2.12) that, if u is absolutely continuous on [a, b], u(a) = 0 = u(b), and 0 < α < 1, then the

Riemann-Liouville fractional integrals and the Caputo fractional derivatives coincide:

C
a Dα

t u(t) = aI1−α
t u′(t) and C

t Dα
b u(t) = − tI1−α

b u′(t). (2.13)

The semigroup property of the fractional integration operators aIαt and tIαb are given by the following
remark.

Remark 2.4. ( [24, Lemma 2.3]) If α, β ∈ R+, then the equations(
aIαt aIβt u

)
(t) =

(
aIα+β

t u
)

(t) and
(

tIαb tI
β
bu

)
(t) =

(
tI
α+β
b u

)
(t) (2.14)

are satisfied at almost every point t ∈ [a, b] for f (t) ∈ Lp(a, b) (1 ≤ p ≤ ∞). If α + β > 1, then the relations in (2.14)
hold at any point of [a, b].

The following assertion shows that the fractional differentiation is an operation inverse to the fractional
integration.

Remark 2.5. ( [24, Lemma 2.4]) If α ∈ R+ and f (t) ∈ Lp(a, b) (1 ≤ p ≤ ∞), then the following equalities(
aDα

t aIαt u
)

(t) = f (t) and
(

tDα
b tIαb u

)
(t) = f (t) (2.15)

hold almost everywhere on [a, b].

Remark 2.6. ([24, Lemma 2.4]) The fractional integration operators aIαt and tIαb with α ∈ R+ are bounded in Lp(a, b)
(1 ≤ p ≤ ∞):

‖aIαt u‖p ≤
(b − a)α

Γ(1 + α)
‖u‖p and ‖tIαb u‖p ≤

(b − a)α

Γ(1 + α)
‖u‖p. (2.16)

In the same way, we give another classical result on the boundedness of the left fractional integral from
Lp(a, b) to Ca(a, b) which completes Remark 2.6 in the case 0 < 1

p < α < 1.

Remark 2.7. ( [9, Property 4]) Let 0 < 1
p < α < 1 and q =

p
p−1 . Then, for any u ∈ Lp(a, b), aIαt u is Hölder continuous

on (a, b] with exponent α − 1
p > 0, that is, there exists a constant M ∈ R+ such that∣∣∣aIαt2

u (t2) − aIαt1
u (t1)

∣∣∣ ≤M (t2 − t1)α−1/p

for any a < t1 < t2 ≤ b. Moreover, limt→a aIαt u(t) = 0. Consequently, aIαt u can be continuously extended by 0 at
t = a. Finally, for any u ∈ Lp(a, b), aIαt u ∈ Ca(a, b), and

‖aIαt u‖∞ ≤
(b − a)α−

1
p

Γ(α)
(
(α − 1)q + 1

) 1
q

‖u‖p. (2.17)

The following formula which is often called fractional integration by parts will also be required.
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Remark 2.8. ( [9, Property 3]) Let 0 < α < 1 and p, q are such that

p ≥ 1, q ≥ 1 and
1
p

+
1
q
≤ 1 + α

(and p , 1 , q in the case 1/p + 1/q = 1 + α). Then, for all u ∈ Lp(a, b) and all v ∈ Lq(a, b), we have∫ b

a
aIαt u(t) · v(t) dt =

∫ b

a
u(t) · tIαb v(t) dt, (2.18)

and ∫ b

a
u(t) C

a Dα
t v(t) dt = v(t)tI1−α

b u(t)
∣∣∣t=b

t=a +

∫ b

a
v(t) aDα

t u(t) dt. (2.19)

Moreover, if v(a) = v(b) = 0, then we have∫ b

a
u(t) aDα

t v(t) dt =

∫ b

a
v(t) C

a Dα
t u(t) dt. (2.20)

3. Nehari manifold and fibering map analysis

To show the existence of solutions to the problem (Pλ), we will use critical point theory (see, e.g., [22]). We
begin by introduce some notations and results which will be used. The set of all functions u ∈ C∞([0, 1],R)
with u(0) = u(1) = 0 is denoted by C∞0 ([0, 1],R). For α ∈ R+, we define the fractional derivative space Eα,p0 as
the closure of C∞0 ([0, 1],R) with the norm

‖u‖α,p =
(
‖u‖pp + ‖C0 Dα

t u‖pp
) 1

p . (3.1)

We summarize some properties for the space Eα,p0 in the following remark.

Remark 3.1. (see [22, Remark 3.1])

(i) The space Eα,p0 is the space of functions u ∈ Lp[0, 1] having an α-order Caputo fractional derivative C
0 Dα

t u ∈
Lp[0, 1] and u(0) = u(1) = 0.

(ii) For any u ∈ Eα,p0 (0 < α < 1), since u(0) = 0, we have (see (2.11))

C
0 Dα

t u(t) = 0Dα
t u(t) (t ∈ [0, 1]). (3.2)

(iii) The space Eα,p0 is a reflexive and separable Banach space.

Lemma 3.2. [22, Proposition 3.2] Let 0 < α ≤ 1 and 1 < p < ∞. Then, for all u ∈ Eα,p0 , we have

‖u‖p ≤
Tα

Γ(α + 1)
‖0Dα

t u‖p. (3.3)

Moreover, if α > 1
p and 1

p + 1
p̃ = 1, we have

‖u‖∞ ≤
Tα−

1
p

Γ(α)
(
(α − 1)p̃ + 1

) 1
p̃

‖0Dα
t u‖p. (3.4)



M. Kratou / Filomat 33:7 (2019), 2073–2088 2079

Incorporating (3.2) and (3.3) into the norm (3.1), we can consider the space Eα,p0 with respect to the form

‖u‖α,p = ‖0Dα
t u‖p (3.5)

in the following analysis.

Lemma 3.3. (see [22, Proposition 3.3]) Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and the sequence {un}

converges weakly to u in Eα,p0 , i.e., {un}⇀ u. Then, {un} → u in C([0, 1]), that is, ‖un − u‖∞ → 0 as n→∞.

Associated to the problem (Pλ) we define the functional Eλ : Eα,p0 → R given by

Eλ(u) =
1

bp2

(
a + b‖u‖pα,p

)p
−

λ
1 − γ

∫ T

0
1(t)|u|1−γ dt −

1
r

∫ T

0
F(t,u) dt −

ap

bp2 .

One can easily verify that the energy functional Eλ(u) is not bounded below on the space Eα,p0 . But we will
show that Eλ(u) is bounded below on this Nehari manifold and we will extract solutions by minimizing the
functional on suitable subsets. In order to investigate the problem (Pλ), we define the constraint set

Nλ :=
{
u ∈ Eα,p0 \ {0} : t(u)u = 0

}
,

where t(u) is the zero of the map Φu : (0,∞)→ R defined as

Φu(t) = Eλ(tu).

Now as we know that the Nehari manifold is closely related to the behaviour of the functions Φu : s 7→ Eλ(su)
for s > 0 defined by

Φu(s) =
1

bp2

(
a + bsp

‖u‖pα,p
)p
−
λs1−γ

1 − γ

∫ T

0
1(t)|u|1−γ dt −

sr

r

∫ T

0
F(t,u) dt −

ap

bp2 .

Such maps are called fiber maps and were introduced by Drabek and Pohozaev in [14]. For u ∈ Eα,p0 , we
have

Φ′u(s) =
(
a + bsp

‖u‖pα,p
)p−1

sp−1
‖u‖pα,p −

λ
sγ

∫ T

0
1(t)|u(t)|1−γdt − sr−1

∫ T

0
F(t,u(t))dt,

Φ′′u (s) = (p − 1)sp−2
‖u‖pα,p

(
a + bsp

‖u‖pα,p
)p−1

+ bp(p − 1)s2p−2
‖u‖2p

α,p

(
a + bsp

‖u‖pα,p
)p−2

+ λ
γ

sγ+1

∫ T

0
1(t)|u(t)|1−γdt − (r − 1)sr−2

∫ T

0
F(t,u(t))dt.

Note thatNλ contains every nonzero solution of (Pλ), and u ∈ Nλ if and only if(
a + b‖u‖pα,p

)p−1
‖u‖pα,p − λ

∫ T

0
1(t)|u|1−γ dt −

∫ T

0
F(t,u) dt = 0. (3.6)

Lemma 3.4. Let u ∈ Eα,p0 , then tu ∈ Nλ if and only if Φ′u(t) = 0.

Proof. Let su ∈ Nλ. This means that

0 =
(
a + b‖su‖pα,p

)p−1
‖su‖pα,p − λ

∫ T

0
1(t)|su|1−γ dt −

∫ T

0
F(t, su) dt

= Φ′u(s).

This give the proof of the Lemma 3.4.
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From the lemma 3.4, we have that the elements in Nλ correspond to stationary points of the maps
Φu(t) and in particular, u ∈ Nλ if and only if Φ′u(1) = 0. Hence, it is natural to split Nλ into three parts
corresponding to local minima, local maxima and points of inflection Φu(s) defined as follows:

N
+
λ = {u ∈ Nλ : Φ′′u (1) > 0} =

{
su ∈ Eα,p0 : Φ′u(s) = 0,Φ′′u (s) > 0

}
,

N
−

λ = {u ∈ Nλ : Φ′′u (1) < 0} =
{
su ∈ Eα,p0 : Φ′u(s) = 0,Φ′′u (s) < 0

}
,

N
0
λ = {u ∈ Nλ : Φ′′u (1) = 0} =

{
su ∈ Eα,p0 : Φ′u(s) = 0,Φ′′u (s) = 0

}
.

Our first result is the following

Lemma 3.5. Eλ is coercive and bounded below onNλ.

Proof. Let u ∈ Nλ. Then, using (1.1) and (3.4), we obtain∫ T

0
F(t,u(t))dt ≤ K

∫ T

0
|u|rdt ≤

KT1+r(α− 1
p )

βr ‖u‖r, (3.7)

and ∫ T

0
1(t)|u|1−γdt ≤ ‖1‖∞

∫ T

0
|u|1−γdt ≤ ‖1‖∞

T1+(1−γ)(α− 1
p )

β1−γ ‖u‖1−γ. (3.8)

Consequently, from (3.7) and (3.8), we obtain

Eλ(u) =
1

bp2

(
a + b‖u‖pα,p

)p
−

λ
1 − γ

∫ T

0
1(t)|u|1−γ dt −

1
r

∫ T

0
F(t,u) dt −

ap

bp2

=
(
a + b‖u‖α,p

)p
(

1
bp2 (a + b‖u‖pα,p) −

1
r
‖u‖pα,p

)
− λ

(
1

1 − γ
−

1
r

) ∫ T

0
1(t)|u|1−γ dt −

ap

bp2

≥

(
a + b‖u‖α,p

)p
(

a
bp2 + (

1
p2 −

1
r

)‖u‖pα,p

)
− λ

(
1

1 − γ
−

1
r

)
T1+(1−γ)(α− 1

p )
‖1‖∞

(Γ(α))1−γ ((α − 1)p̃ + 1
) 1−γ

p̃

‖u‖1−γα,p −
ap

bp2 .

Since 0 < 1 − γ < p2 < r, Eλ(u) is coercive and bounded below on Nλ. The proof of the Lemma 3.5 is now
completed.

Lemma 3.6. Given u ∈ N−λ (respectively N+
λ ) with u ≥ 0, for all v ∈ Eα,p0 with v ≥ 0, there exist ε > 0 and a

continuous function ω such that for all k ∈ R with |k| < ε we have

ω(0) = 1 and ω(u + kv) ∈ N−λ (respectively N+
λ ).

Proof. We introduce the function ψ : R ×R −→ R define by:

ψ(t, k) = tp+γ−1
(
a + b‖u + kv‖pα,p

)p−1
‖u + kv‖pα,p − λ

∫ T

0
1(s)(u + kv)1−γds − tr+γ−1

∫ T

0
F(s,u + kv)ds.

Hence,

ψt(t, k) = (p + γ − 1)tp+γ−2
(
a + b‖u + kv‖pα,p

)p−1
‖u + kv‖pα,p − (r + γ − 1)tr+γ−2

∫ T

0
F(s,u + kv)ds,

is continuous on R ×R. Since u ∈ N−λ ⊂ Nλ, we have ψ(1, 0) = 0, and

ψt(1, 0) = (p + γ − 1)
(
a + b‖u‖pα,p

)p−1
‖u‖pα,p − (r + γ − 1)

∫ T

0
F(t,u)dt < 0.
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Therefore, applying the implicit function theorem to the function ψ at the point (1, 0). So, we obtain the
existence of a parameter δ > 0 and a positive continuous function ω satisfying

ω(0) = 1, ω(k)(u + kv) ∈ Nλ, ∀ k ∈ R, |k| < δ.

Hence, taking ε > 0 possibly smaller enough, we get

ω(k)(u + kv) ∈ N−λ , ∀ k ∈ R, |k| < ε.

The case u ∈ N+
λ may be obtained in the same way. This completes the proof of the Lemma 3.6.

Lemma 3.7. There exists Λ0, such that for 0 < λ < Λ0 there exist s− and s+ such that

Φu(s0) = Φu(s1)

and
Φ′u(s0) < 0 < Φ′u(s1);

that is, s0u ∈ N−λ and s1u ∈ N+
λ .

Proof. Fix u ∈ Eα,p0 . Then it follows that

Φ′u(s) =
(
a + bsp

‖u‖pα,p
)p−1

sp−1
‖u‖pα,p −

λ
sγ

∫ T

0
1(t)|u(t)|1−γdt − sr−1

∫ T

0
F(t,u(t))dt

≥ sp−1
‖u‖pα,p −

λ
sγ

∫ T

0
1(t)|u(t)|1−γdt − sr−1

∫ T

0
F(t,u(t))dt

= sp−1
(
‖u‖pα,p − ψ(s)

)
whereψ(s) = λs1−p−γ

∫ T

0 1(t)|u(t)|1−γdt+sr−p
∫ T

0 F(t,u(t))dt. Since, the first derivative of the functionψ is given
by

ψ′(s) = λ(1 − p − γ)s−p−γ
∫ T

0
1(t)|u(t)|1−γdt + (r − p)sr−p−1

∫ T

0
F(t,u(t))dt,

it is simple to verify that ψ(s), attains it’s maximum at

smax =

λ(1 − p − γ)
∫ T

0 1(t)|u(t)|1−γdt

(r − p)
∫ T

0 F(t,u(t))dt


1

r+γ−1

.

Moreover,

ψ(smax) =

(
r − p

p + γ − 1
+ 1

)
sr−p

max

∫ T

0
F(t,u(t))dt

=

(
r − p

p + γ − 1
+ 1

) λ(1 − p − γ)
∫ T

0 1(t)|u(t)|1−γdt

(r − p)
∫ T

0 F(t,u(t))dt


r−p

r+γ−1 ∫ T

0
F(t,u(t))dt

=

(
r + γ − 1
p + γ − 1

) (
λ(1 − p − γ)

r − p

) r−p
r+γ−1

(∫ T

0
1(t)|u(t)|1−γdt

) r−p
r+γ−1

(∫ T

0
F(t,u(t))dt

) p+γ−1
r+γ−1

≤

(
r + γ − 1
p + γ − 1

) (
λ(1 − p − γ)

r − p

) r−p
r+γ−1

(∫ T

0
1(t)|u(t)|1−γdt

) r−p
r+γ−1

(∫ T

0
F(t,u(t))dt

) p+γ−1
r+γ−1

.
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Consequently, from (3.7) and (3.8), one has

ψ(smax) ≤

(
r + γ − 1
p + γ − 1

) (
λ(1 − p − γ)

r − p

) r−p
r+γ−1

‖1‖∞T1+(1−γ)(α− 1
p )

β1−γ


(r−p)(γ−1)
p(r+γ−1)

KT1+r(α− 1
p )

βr


r(1−p−γ)
p(r+γ−1)

‖u‖pα,p.

Hence, ‖u‖pα,p > ψ(smax) and so Φ′u(s) > 0 for all

0 < λ <
r − p

1 − p − γ

(
p + γ − 1
r + γ − 1

) r+γ−1
r−p

(
‖1‖∞β1−γ

T1+(1−γ)(α− 1
p )

) 1−γ
p(r−p)

(
βr

KT1+r(α− 1
p )

) r(p+γ−1)
p(r−p)

On the other hand, we have

Φ′u(s) =
(
a + bsp

‖u‖pα,p
)p−1

sp−1
‖u‖pα,p −

λ
sγ

∫ T

0
1(t)|u(t)|1−γdt − sr−1

∫ T

0
F(t,u(t))dt

≤

(
a + bsp

‖u‖pα,p
)p
−
λ
sγ

∫ T

0
1(t)|u(t)|1−γdt − sr−1

∫ T

0
F(t,u(t))dt

since 1 − γ < p < r, there exist 0 < s0 < smax < s1 such that Φ′u(s0) < 0, Φ′u(s1) < 0. Note that N0
λ = ∅, we

deduce that there exist s1, s0 such that Φ′u(s1) = Φ′u(s0) = 0 and Φ′′u (s1) > 0 > Φ′′u (s0) = 0. Thus, Φu has a local
minimum at s = s0 and a local maximum at s = s1, that is Φu is decreasing in (0, s0) and increasing in (s0, s1).
Hence, s1u ∈ N+

λ and s0u ∈ N−λ . The proof of Lemma 3.7 is now completed.

Now, we prove the following crucial Lemma:

Lemma 3.8. Suppose λ ∈ (0,Λ0),N0
λ = ∅.

Proof. We proceed by contradiction to prove thatN0
λ = ∅ for all λ ∈ (0,Λ0). Let us suppose that there exists

u0 ∈ N
0
λ. Then, it follows that

Φ′′u (s) = (p − r)‖u‖pα,p
(
a + b‖u‖pα,p

)p−1
+ bp(p − 1)‖u‖2p

α,p

(
a + b‖u‖pα,p

)p−2

+ λ(r + γ − 1)
∫ T

0
1(t)|u(t)|1−γdt

= (p + γ − 1)‖u‖pα,p
(
a + b‖u‖pα,p

)p−1
+ bp(p − 1)‖u‖2p

α,p

(
a + b‖u‖pα,p

)p−2

− (r + γ − 1)
∫ T

0
F(t,u)dt. (3.9)

Furthermore, if u ∈ N0
λ, then

(p + γ − 1)
ap−1

p
‖u‖pα,p ≤ (p + γ − 1)‖u‖pα,p

(
a + b‖u‖pα,p

)p−1
+ bp(p − 1)‖u‖2p

α,p

(
a + b‖u‖pα,p

)p−2

= (r + γ − 1)
∫ T

0
F(t,u)dt

≤ (r + γ − 1)
KT1+r(α− 1

p )

βr ‖u‖rα,p
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and

(p − r)
ap−1Γ(α + 1)

pTα
‖u‖pα,p ≤ (p − r)‖u‖pα,p

(
a + b‖u‖pα,p

)p−1

≤ (p − r)‖u‖pα,p
(
a + b‖u‖pα,p

)p−1
− bp(p − 1)‖u‖2p

α,p

(
a + b‖u‖pα,p

)p−2

≤ λ(r + γ − 1)
∫ T

0
1(t)|u(t)|1−γdt

≤ λ(r + γ − 1)‖1‖∞
T1+(1−γ)(α− 1

p )

β1−γ ‖u‖1−γα,p .

Consequently,

 ap−1(p + γ − 1)βr

p(r + γ − 1)KT1+r(α− 1
p )


1

r−p

≤ ||u||α,p ≤

λp(r + γ − 1)‖1‖∞T1+α(1−γ)(α− 1
p )

ap−1(p − r)β1−γΓ(α + 1)


1

p+γ−1

. (3.10)

Therefore,

λ ≥ Λ0 :=

 ap−1(p + γ − 1)βr

p(r + γ − 1)KT1+r(α− 1
p )


p+γ−1

r−p ap−1(p − r)β1−γΓ(α + 1)

p(r + γ − 1)‖1‖∞T1+α+(1−γ)(α− 1
p )
.

HenceN0
λ = ∅ for all λ ∈ (0,Λ0).

By Lemmas 3.5 and 3.7, we can writeNλ = N+
λ ∪N

−

λ and define

c+
λ = inf

u∈N+
λ

Eλ(u) and c−λ = inf
u∈N−λ

Eλ(u).

4. Existence of minimizer onN+

λ

In this section, we will show that the minimum of Eλ is achieved in N+
λ . Also, we show that this

minimizer is also the first solution of (Pλ).

Lemma 4.1. If 0 < λ < Λ0, then for all u ∈ N+
λ , c+

λ < 0.

Proof. Let u ∈ N+
λ , then we have φ′′u0

(1) > 0 which gives

(p − 1)‖u‖pα,p
(
a + b‖u‖pα,p

)p−1
+ bp(p − 1)‖u‖2p

α,p

(
a + b‖u‖pα,p

)p−2
+ λγ

∫ T

0
1(t)|u(t)|1−γdt

−(r − 1)
∫ T

0
F(t,u(t))dt > 0. (4.1)

Now multiplying equation (3.6) by (r − 1) and subtracting from equation (4.1), we get

λ(r + γ − 1)
∫ T

0
1(t)|u|1−γ dt > ‖u‖pα,p

(
a + b‖u‖pα,p

)p−2 (
(r − p)a + b‖u‖pα,p(r − p2)

)
. (4.2)
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Now using equation (3.6) and (4.2), we get

Eλ(u) =
1

bp2

(
a + b‖u‖pα,p

)p
−

λ
1 − γ

∫ T

0
1(t)|u|1−γ dt −

1
r

∫ T

0
F(t,u) dt −

ap

bp2

=
(
a + b‖u‖pα,p

)p−1
(

a
bp2 + (

1
p2 −

1
r

)‖u‖pα,p

)
− λ

(
1

1 − γ
−

1
r

) ∫ T

0
1(t)|u|1−γ dt −

ap

bp2

≤

(
a + b‖u‖pα,p

)p−1
(

a
bp2 + (

1
p2 −

1
r

)‖u‖pα,p

)
−

(
(r − p)a + b‖u‖pα,p(r − p2)

)
r(1 − γ)

‖u‖pα,p
(
a + b‖u‖pα,p

)p−2

≤ −b
(

(r − p2)(p2
− (1 − γ))

p2r(1 − γ)

) (
a + b‖u‖pα,p

)p−2
‖u‖2p

α,p < 0

since 0 < a < 1, and b > 0. Thus,

c+
λ = inf

u∈N+
λ

Eλ(u) < 0 for all λ ∈ (0,Λ0). (4.3)

Theorem 4.2. If 0 < λ < Λ0, then there exists u0 ∈ N
+
λ satisfying Eλ(u0) = infu∈N+

λ
Eλ(u).

Proof. Since Eλ is bounded below on Nλ and so on N+
λ . Then, using the Ekeland variational principle [15],

there exist a minimizing sequence {un} ⊂ N
+
λ such that

Eλ(un)→ inf
u∈N+

λ

Eλ(u) as n→∞.

Since Eλ is coercive, {un} is bounded in Eα,p0 . Then there exists a subsequence, still denoted by un and u0 ∈ Eα,p0
such that, as n→∞,

un ⇀ u0, weakly in Eα,p0

un → u0, strongly in Lq(Ω) for all 1 ≤ q < p∗,

un → u0, a.e. in Ω.

Now, using Lemma 3.3, we get that, as n→∞,∫ T

0
1(t)u1−γ

n dt ≤
∫ T

0
1(t)u1−γ

0 dt +

∫ T

0
1(t) | un − u0 |

1−γ dt

≤

∫ T

0
1(t)u1−γ

0 dx + T1(t) ‖ un − u0 ‖
1−γ
∞

=

∫ T

0
1(t)u1−γ

0 dt + o(1).

Similarly ∫ T

0
1(t)u1−γ

0 dt ≤
∫ T

0
u1−γ

n dt +

∫ T

0
1(t) | un − u0 |

1−γ dt

≤

∫ T

0
1(t)u1−γ

n dt + T1(t) ‖ un − u0 ‖
1−γ
∞

=

∫ T

0
1(t)u1−γ

n dt + o(1).
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Thus,∫ T

0
1(t)u1−γ

n dt =

∫ T

0
1(t)u1−γ

0 dx + o(1). (4.4)

On the other hand, by [8] there exists l ∈ Lr(RN) such that

|un(x)| ≤ l(x), as n→∞

for any 1 ≤ r < p∗. Therefore by Dominated convergence Theorem we have that

lim
n→∞

∫ T

0
F(t,un)dt =

∫ T

0
F(t,u0)dt. (4.5)

Moreover, by Lemma (3.7), there exists s1 such that s1u0 ∈ N
+
λ,µ. Now, we shall prove un → u0 strongly in

Eα,p0 . Suppose otherwise, then either

||u0||Eα,p0
≤ lim inf

n→∞
||un||Eα,p0

.

Thus, since un ∈ N
+
λ , one has

lim
n→∞

Φ′un
(s1) = lim

n→∞

(a + bsp
‖un‖

p
α,p

)p−1
sp−1

1 ‖un‖
p
α,p −

λ

sγ1

∫ T

0
1(t)|un(t)|1−γdt − sr−1

1

∫ T

0
F(t,un(t))dt


>

(
a + bsp

1‖u‖
p
α,p

)p−1
sp−1

1 ‖u‖
p
α,p −

λ

sγ1

∫ T

0
1(t)|u(t)|1−γdt − sr−1

1

∫ T

0
F(t,u(t))dt = Φ′u0

(s1) = 0

Therefore, Φ′un
(s1) > 0 for n large enough. Since un ∈ N

+
λ , we have smax(un) > 1. Moreover Φ′un

(1) = 0 and
Φun (1) is increasing for s ∈ (0, smax(un)). This implies that Φun (s) < 0 for all s ∈ (0, 1] and n sufficiently large.
We obtain 1 < s1 < smax(u0). But s1u0 ∈ N

+
λ and

Eλ(s1u0) = inf
1<s<smax(u0)

Eλ(su0).

Which implies that
Eλ(s1u0) < Eλ(u0) = lim

n→∞
Eλ(un) = c+

λ

which gives a contradiction. Thus, un → u0 strongly in Eα,p0 , and Eλ(u0) = infu∈N+
λ

Eλ(u). The proof of the
Theorem 4.2 is now completed.

5. Existence of minimizer onN−
λ

In this section, we shall show the existence of second solution by proving the existence of minimizer of
Eλ onN−λ .

Lemma 5.1. If 0 < λ < Λ0, then for all u ∈ N+
λ , c−λ > 0.

Proof. Let v ∈ N−λ , then we have φ′′v (1) < 0 which gives,

(p + γ − 1)
ap−1

p
‖v‖pα,p ≤ (p + γ − 1)‖u‖pα,p

(
a + b‖v‖pα,p

)p−1
+ bp(p − 1)‖v‖2p

α,p

(
a + b‖v‖pα,p

)p−2

≤ (r + γ − 1)
KT1+r(α− 1

p )

βr ‖v‖rα,p,
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this implies

‖v‖α,p ≥

 (p + γ − 1)ap−1βγ

p(r + γ − 1)KT1+r(α− 1
p )


1

r−p

.

Subsequently,

Eλ(v) ≥

(
a + b‖v‖α,p

)p
(

a
bp2 + (

1
p2 −

1
r

)‖v‖pα,p

)
− λ

(
1

1 − γ
−

1
r

)
T1+(1−γ)(α− 1

p )
‖1‖∞

(Γ(α))1−γ ((α − 1)p̃ + 1
) 1−γ

p̃

‖v‖1−γα,p

≥
ap−1

p
‖v‖pα,p + (

1
p2 −

1
r

)bpap−2
‖v‖2p

α,p − λ

(
1

1 − γ
−

1
r

)
T1+(1−γ)(α− 1

p )
‖1‖∞

(Γ(α))1−γ ((α − 1)p̃ + 1
) 1−γ

p̃

‖v‖1−γα,p

= ‖v‖1−γα,p

ap−1

p
‖v‖p+γ−1

α,p + (
1
p2 −

1
r

)bpap−2
‖v‖2p+γ−1

α,p − λ

(
1

1 − γ
−

1
r

)
T1+(1−γ)(α− 1

p )
‖1‖∞

(Γ(α))1−γ ((α − 1)p̃ + 1
) 1−γ

p̃


≥

 (p + γ − 1)ap−1βγ

p(r + γ − 1)KT1+r(α− 1
p )


1−γ
r−p

ap−1

p

 (p + γ − 1)ap−1βγ

p(r + γ − 1)KT1+r(α− 1
p )


p+γ−1

r−p

+ (
1
p2 −

1
r

)bpap−2

 (p + γ − 1)ap−1βγ

p(r + γ − 1)KT1+r(α− 1
p )


2p+γ−1

r−p

− λ

(
1

1 − γ
−

1
r

)
T1+(1−γ)(α− 1

p )
‖1‖∞

(Γ(α))1−γ ((α − 1)p̃ + 1
) 1−γ

p̃

 .
Thus, if 0 < λ < Λ0, then Eλ(v) > k0 for all v ∈ N−λ,µ for some k0 = k0(γ, β, p, a,T, λ, r, p̃,Γ) > 0. Therefore
c−λ > k0 follows from the definition c−λ . This completes the proof of the Lemma 5.1.

Theorem 5.2. If 0 < λ < Λ0, then there exists v0 ∈ N
−

λ satisfying Eλ(v0) = infv∈N−λ
Eλ(v).

Proof. Since Eλ is bounded below on Nλ,µ and so on N−λ . Then, there exists {vn} ⊂ N
−

λ be a sequence such
that

Eλ(vn)→ inf
v∈N−λ

Eλ(v) as n→∞.

Since Eλ is coercive, {vn} is bounded in Eα,p0 . Then there exists a subsequence, still denoted by vn and v0 ∈ Eα,p0
such that, as n→∞,

vn ⇀ v0 weakly inEα,p0

vn → v0 strongly in Lq(Ω) for all 1 ≤ q < p∗,

vn → v0 a.e. in Ω.

Moreover, as in Lemma 4.2, we have

lim
n→∞

∫ T

0
1(t)|vn|

1−γdt =

∫ T

0
1(t)|v0|

1−γdt

and

lim
n→∞

∫ T

0
F(t, vn)dt =

∫ T

0
F(t, v0)dt.

Moreover, by Lemma (3.7), there exists s0 such that s0v0 ∈ N
−

λ . Now, we prove vn → v0 strongly in Eα,p0 .
Suppose otherwise, then either

||v0||Eα,p0
≤ lim inf

n→∞
||vn||Eα,p0
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Thus, since vn ∈ N
−

λ , Eλ(s0v0) ≤ Eλ(v0), for all s0 ≥ 0 we have

Eλ(s0v0) < lim
n→∞

Eλ(s0vn) ≤ lim
n→∞

Eλ(vn) = c−λ

which gives a contradiction. Thus, vn → v0 strongly in Eα,p0 and Eλ(v0) = infv∈N−λ
Eλ(v). The proof of the

Theorem 5.2 is now completed.

Proof. [Proof of Theorem 1.1] Now to prove the Theorem 1.1, let us start by proving the existence of
non-negative solutions. First, by Theorems 4.2, 5.2, we conclude that there exist u0 ∈ N

+
λ , v0 ∈ N

−

λ satisfying

Eλ(u0) = inf
u∈N+

λ

Eλ(u)

and
Eλ(v0) = inf

v∈N−λ
Eλ(v).

Moreover, since Eλ(u0) = Eλ(|u0|) and |u0| ∈ N
+
λ and similarly Eλ(v0) = Eλ(|v0|) and (|v0|) ∈ N−λ , so we may

assume (u0, v0) ≥ 0. By Lemma 3.4, we may assume that (u0, v0) are nontrivials nonnegatives solutions of
problem (Pλ). Finally, it remain to show that the solutions found in Theorems 4.2, 5.2, are distinct. Since
N
−

λ ∩N
+
λ = ∅, then, (u0, v0) are distinct. The proof of the Theorem 1.1 is now completed.

6. Conclusion

Theorem 1.1 shows the multiplicity of positive solutions for a class of Kirchhoff fractional problem
involving Riemann-Liouville fractional Derivative and singular nonlinearity by using the Nehari manifold
approach and some variational techniques. This result generalises Theorem 1.1 and 1.2 in [12] which only
concerns the case when the nonlinearity f (t, x) is (p2

−1)-superlinear in x at infinity and the nonlinearity f (t, x)
is (p2

− 1)-sublinear in x at infinity. The proof used to prove Theorem 1.1 does not modify the quasilinear
operator Φp(s) = |s|p−2s (s , 0), Φp(0) = 0 in (Pλ). Therefore, this approach could be considered for more
general quasilinear operators to get multiplicity results. We suggest to extend the methods developed in
this paper to the more general framework of Musielak-Orlicz-Sobolev spaces for a collection of stationary
problems studied in these function spaces.
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