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Abstract. Let (X, τ) be a Hausdorff space, where X is an infinite set. The compact complement topology τ?

on X is defined by: τ? = {∅} ∪ {X \M : M is compact in (X, τ)}. In this paper, properties of the space (X, τ?)
are studied in ZF and applied to a characterization of k-spaces, to the Sorgenfrey line, to some statements
independent of ZF, as well as to partial topologies that are among Delfs-Knebusch generalized topologies.
Between other results, it is proved that the axiom of countable multiple choice (CMC) is equivalent with each
of the following two sentences: (i) every Hausdorff first-countable space is a k-space, (ii) every metrizable
space is a k-space. A ZF-example of a countable metrizable space whose compact complement topology is
not first-countable is given.

1. Introduction

The compact complement topology of the real line was considered, for instance, in Example 22 of the
celebrated book by Steen and Seebach "Counterexamples in Topology" ([19]). We investigate this notion
in a much wider context of Hausdorff spaces and of partially topological spaces that belong to the class of
generalized topological spaces in the sense of Delfs-Knebusch (cf. [2] and [14]). Our results are proved in
ZF if this is not otherwise stated. All axioms of ZF can be found in [11].

In Section 2, we give elementary properties of the compact complement topology of a Hausdorff
space. In particular, we show that if a Hausdorff space is locally compact and second-countable, then
its compact complement topology is second-countable, while the compact complement topology of a non-
locally compact metrizable space need not be first-countable. We give an example of a countable metrizable
space whose compact complement topology is not first-countable. In Section 3, a necessary and sufficient
condition for a set to be compact with respect to the compact complement topology of a given Hausdorff
space leads us to a new characterization of k-spaces. A well-known theorem of ZFC states that all first-
countable Hausdorff spaces are k-spaces (cf. Theorem 3.3.20 of [3]). We show that this theorem may fail in
ZF. More precisely, we prove that, ifM is a model of ZF, then all Hausdorff first-countable spaces ofM
are k-spaces if and only if all metrizable spaces inM are k-spaces which holds if and only if the axiom of
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countable multiple choice (Form 126 in [6]) is true inM. In consequence, in some models of ZF there are
metrizable spaces that are not k-spaces. We prove that if the Sorgenfrey line is a k-space, then the real line
with its natural topology is sequential, so the Sorgenfrey line fails to be a k-space in some models of ZF.
In section 4, we introduce a notion of a compact complement partial topology corresponding to a given
partial topology. Partially topological Delfs-Knebusch generalized topological spaces were introduced in
Definition 2.2.67 of [14]; however, a more convenient than in [14] definition of a partial topology was given
in [13].

In this paper, definitions of compact, Lindelöf, regular, completely regular and normal spaces are not the
same as in [3]. Namely, we call a topological space X compact (respectively, Lindelöf ), if every open cover of
X has a finite (respectively, countable) subcover. We omit separation axiom T1 in the definitions of regular,
completely regular and normal spaces from [3]. Our set-theoretic notation is standard. In particular, if X is
a set, then P(X) denotes the power set of X. For weaker forms of the axiom of choice, we use mainly the
notation from [5] and [9].

2. Basic Properties of Compact Complement Topologies

Throughout this article, we assume that τ is a topology on an infinite set X such that (X, τ) is a Hausdorff
space.

Definition 2.1. We denote byK (τ) the collection of all τ-compact sets, i.e. of all sets that are compact in the
space (X, τ). The compact complement topology of (X, τ) is the collection

τ? = {∅} ∪ {X \M : M ∈ K (τ)}.

Since it is true in ZF that a compact subspace of a Hausdorff space is closed (see Theorem 3.1.8 of [3]),
it is easy to check in ZF that τ? is a topology on X. Clearly, if (X, τ) were a finite Hausdorff space, then
τ = τ? = P(X).

For a subset Y of X and a topology T on X, let

T |Y = {V ∩ Y : V ∈ T }.

Then (Y,T |Y) is a topological subspace of (X,T ).

Theorem 2.2. Let Y ⊆ X. The following conditions hold in ZF:

(i) τ?|Y is coarser than τ|Y, i.e., τ?|Y ⊆ τ|Y;
(ii) if Y is compact in (X, τ), then τ?|Y = τ|Y;

(iii) τ?|Y = τ|Y if and only if there exists a τ-compact set C such that Y ⊆ C.

Proof. To prove (i), it suffices to show that τ? ⊆ τ. Let U ∈ τ? and U , ∅. Then U = X \M for a compact
subspace M of (X, τ). Since a compact subspace of a Hausdorff space is closed, M is closed in (X, τ). Hence,
U ∈ τ and, in consequence, τ? ⊆ τ.

(ii) Suppose that Y is τ-compact and V ∈ τ. Since (X, τ) is Hausdorff, the set Y is τ-closed, so A = Y∩(X\V)
is a τ-closed subset of the τ-compact set Y. Hence, A is τ-compact. Notice that V ∩ Y = Y ∩ (X \ A). This
implies that V ∩ Y ∈ τ?|Y and τ|Y ⊆ τ?|Y.

(iii) If C is a τ-compact set such that Y ⊆ C, then since it follows from (ii) that τ|C = τ?|C, we immediately
deduce that τ|Y = τ?|Y. Finally, suppose that Y is a subset of X such that τ?|Y = τ|Y. Let V ∈ τ and
∅ , V ∩ Y , Y. Since V ∩ Y ∈ τ?|Y, there exists a τ-compact set K0 such that V ∩ Y = Y \ K0. Fix x0 ∈ V ∩ Y.
Then x0 < K0. By the τ-compactness of K0, there exists a pair U1,U2 of disjoint members of τ such that
x0 ∈ U1 and K0 ⊆ U2. Of course, U2 ∩ Y , ∅ because V ∩ Y , Y. Since U1 ∩ Y and U2 ∩ Y are both in τ?|Y,
there exist τ-compact sets K1,K2 such that Ui ∩Y = Y \Ki for i ∈ {1, 2}. Let K = K1 ∪K2. Then K is τ-compact
and Y = Y \ (U1 ∩U2) = (Y \U1) ∪ (Y \U2) ⊆ K1 ∪ K2 = K.

Corollary 2.3. (X, τ) is compact if and only if τ = τ?.
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Remark 2.4. In general, τ?|Y is not equal to (τ|Y)?. For instance, if Y is the open interval (0, 1) of R, while
τnat is the usual topology of R, then τ?nat|Y , (τnat|Y)?.

If this does not lead to misunderstanding, we shall denote the space (R, τnat) by R and call it the real
line.

From the fact that τ? ⊆ τ, we have the following obvious results:

Proposition 2.5. (i) If (X, τ) is separable, so is (X, τ?).

(ii) If (X, τ) is hereditarily separable, so is (X, τ?).

(iii) If (X, τ) is Lindelöf, so is (X, τ?).

(iv) If (X, τ) is hereditarily Lindelöf, so is (X, τ?).

(v) If (X, τ) is connected, so is (X, τ?).

The statement that every infinite set is Dedekind infinite (Form 9 in [6]) is denoted by Fin in Definition
2.13 of [5].

Theorem 2.6. The following sentences are equivalent in ZF:

(i) Fin.
(ii) For every discrete space (X, τ), the space (X, τ?) is hereditarily separable.

(iii) For every uncountable discrete space (X, τ), the space (X, τ?) is separable.

Proof. Let (X, τ) be a discrete space, i.e. τ = P(X). If X is countable, then, of course, (X, τ?) is hereditarily
separable. Consider the case when Y ⊆ X and Y is uncountable. If Fin holds, then Y is Dedekind infinite, so
Y contains an infinitely countable subset. It is clear that when D is an infinitely countable subset of Y, then
D is dense in (Y, τ?|Y). Hence, (i) implies (ii). It is obvious that (ii) implies (iii) and that (iii) implies (i).

Corollary 2.7. It is consistent with ZF that there exists an uncountable discrete space (X, τ) such that (X, τ?) is
separable and not hereditarily separable.

Proof. LetM be any model of ZF in which R contains an uncountable Dedekind finite set. For instance,M
can be Cohen’s original modelM1 of [6]. Then if τ is the discrete topology on R, the space (R, τ?) is not
hereditarily separable because for each uncountable Dedekind finite subset Y ofR, the space (Y, τ?|Y) is not
separable. Of course, (R, τ?) is separable because R is Dedekind infinite.

Proposition 2.8. For every Hausdorff space (X, τ), the space (X, τ?) is T1.

Proof. Let x ∈ X. Since finite sets are compact, we have that X \ {x} is open in (X, τ?). Hence, (X, τ?) is a
T1-space.

Proposition 2.9. (X, τ) is not compact if and only if (X, τ?) is not Hausdorff. Moreover, if (X, τ) is not compact,
then any two non-empty τ?-open sets have a non-empty intersection.

Proof. Assume that (X, τ) is not compact. Let U and V be any two non-empty open sets in (X, τ?). Then X\U
and X\V are compact in (X, τ), so (X\U)∪(X\V) is compact in (X, τ). Hence, X , (X\U)∪(X\V) = X\(U∩V).
This implies that U ∩ V , ∅; thus, (X, τ?) is not Hausdorff. On the other hand, if we assume that (X, τ?) is
not Hausdorff, then, since (X, τ) is Hausdorff, we have τ , τ?, so (X, τ) is not compact by Corollary 2.3.

Corollary 2.10. If (X, τ) is not compact, then the following conditions are satisfied:

(i) every set V ∈ τ? is connected in (X, τ?);
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(ii) (X, τ?) is connected and locally connected.

Proof. Suppose that (X, τ) is not compact and that ∅ , V ∈ τ?. If V were disconnected in (X, τ?), there would
exist a pair U,W of non-empty disjoint members of τ? which would contradict Proposition 2.9. Hence, V is
connected in (X, τ?). This is why (i) holds. Of course, (ii) follows from (i).

Remark 2.11. Some authors call a topological space hyperconnected or irreducible if all open sets of this
space are connected. In the light of Corollary 2.10, if (X, τ) is not compact, the space (X, τ?) is hyperconnected.

Theorem 2.12. If (X, τ) is locally compact and second-countable, then (X, τ?) is second-countable.

Proof. Assume that B is a countable open base of a locally compact Hausdorff space (X, τ). Let A be the
collection of all sets U ∈ B which have compact closures clτU in (X, τ). By the local compactness of (X, τ),
the collectionA is an open base of (X, τ). Let [A]<ω be the collection of all finite subcollections ofA. We put

B
? = {X \ clτ(

⋃
C) : C ∈ [A]<ω}.

Then B? is a countable subcollection of τ?. To check that B? is an open base of (X, τ?), let us consider any
non-empty set V ∈ τ? and a point x ∈ V. Let K = X \ V and letU be the collection of all U ∈ A such that
x < clτU. Since (X, τ) is Hausdorff, we have K ⊆

⋃
U. By the compactness of K, there exists a finiteUK ⊆ U

such that K ⊆
⋃
UK. Let W = X \ clτ(

⋃
UK). Then W ∈ B?, x ∈W and W ⊆ V.

The axiom of countable choice, denoted by CC in [5], states that every non-empty countable collection
of non-empty sets has a choice function (see Form 8 in [6]). The axiom of countable choice for R, denoted
by CC(R) in [5], states that every non-empty countable collection of non-empty subsets of R has a choice
function (see Form 94 in [6]).

Remark 2.13. In view of Exercise E3 to Section 4.6 of [5], CC(R) is equivalent to the statement: for every
second-countable topological space Z, every open base of Z contains a countable open base of Z. Let us
notice that, ifM is a model of ZF in which there exists a dense infinite Dedekind finite subset D of R, then
it holds true inM that the collection B? of all sets of the form R \

⋃
i∈n+1[ai, bi] with n ∈ ω, ai, bi ∈ D and

ai < bi for each i ∈ n + 1 is an open base of (R, τ?nat) which does not contain a countable open base of (R, τ?nat).

We recall that a topological space (Z,T ) is submetrizable if there exists a metrizable topology T ′ on Z
such that T ′ ⊆ T .

Theorem 2.14. The following conditions are equivalent:

(i) (X, τ?) is metrizable;
(ii) (X, τ?) is submetrizable;

(iii) (X, τ) is a compact metrizable space.

Proof. Of course, (i) implies (ii). Assume (ii). If (X, τ) is not compact, then (X, τ?) is not Hausdorff
by Proposition 2.9. Hence, (ii) implies that (X, τ) is compact. In this case, τ = τ? by Corollary 2.3.
In consequence, (X, τ) is both compact and submetrizable. Since every compact submetrizable space is
metrizable, (ii) implies (iii). That (iii) implies (i) follows from Corollary 2.3.

Proposition 2.15. Let x0 ∈ X. Then {x0} is of type Gδ in (X, τ?) if and only if X \ {x0} is a σ-compact subspace of
(X, τ).

Proof. Necessity. Suppose that {Un : n ∈ ω} ⊆ τ? and {x0} =
⋂

n∈ω Un. Then the sets Kn = X \ Un are all
compact in (X, τ) and X \ {x0} =

⋃
n∈ω Kn, so X \ {x0} is σ-compact in (X, τ).

Sufficiency. Suppose that X \ {x0} =
⋃

n∈ω Cn where all the sets Cn are compact in (X, τ). Then the sets
Vn = X \ Cn are all open in (X, τ?) and {x0} =

⋂
n∈ω Vn.
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Corollary 2.16. If (X, τ) is not σ-compact, then the following conditions are satisfied:

(i) there does not exist a one-point set of type Gδ in (X, τ?);
(ii) (X, τ?) is not first-countable;

(iii) (X, τ?) is not second-countable;
(iv) (X, τ?) is not quasi-metrizable.

Remark 2.17. We denote by S the Sorgenfrey line, i.e. the topological space (R, τS) where τS is the topology
on R which has as an open base the collection of all half-open intervals [a, b) where a, b ∈ R and a < b. The
Sorgenfrey line is one of the most frequently used examples of a submetrizable, quasi-metrizable but not
metrizable space, so we shall pay a special attention to it.

The countable union theorem (Form 31 in [6], abbreviated to CUT in [5]) states that countable unions of
countable sets are countable sets. Let CUT(R) be the statement: for every family {An : n ∈ ω} of countable
subsets of R, the union

⋃
n∈ω An is countable (see Form 6 in [6])). It is easy to prove in [ZF + CUT(R)] that

the Sorgenfrey line is not σ-compact by using the following simple argument: since all compact subsets of S
are countable, if S were σ-compact, R would be a countable union of countable sets; however, R cannot be
a countable union of countable sets because R is uncountable. This is not a proof in ZF that the Sorgenfrey
line is not σ-compact because CUT(R) fails in some models of ZF (see Theorem 10.6 of [7]).

Proposition 2.18. In every model of ZF, the Sorgenfrey line is not σ-compact.

Proof. Consider any countable collection {Kn : n ∈ ω} of compact sets of the Sorgenfrey line. Then all the
sets Kn are countable, closed in R and they do not have left accumulation points in R. Therefore, each Kn
is nowhere dense in R. Since R is a separable completely metrizable space, by Theorem 4.102 of [5], the
interior in R of the set

⋃
n∈ω Kn is empty. Hence, R ,

⋃
n∈ω Kn.

Corollary 2.19. The compact complement topology of the Sorgenfrey line is not first-countable.

Corollary 2.20. The compact complement topology of the Sorgenfrey line is not quasi-metrizable.

Proposition 2.21. The compact complement topology of the real line R is quasi-metrizable.

Proof. For x ∈ R, let m(x) = min{n ∈ ω : |x| < n}. For each x ∈ R and n ∈ ω, we define a set G(n, x) by putting:

G(n, x) = (x −
1

2n+1 , x +
1

2n+1 ) ∪ (−∞,−m(x) − n − 2) ∪ (m(x) + n + 2,+∞).

It is clear that, for each x ∈ R, the collection B(x) = {G(n, x) : n ∈ ω} is a base of neighbourhoods of x in
(R, τ?nat). One can check by a simple calculation that the following condition is satisfied: for all x, y ∈ R and
n ∈ ω, if y ∈ G(n + 1, x), then G(n + 1, y) ⊆ G(n, x). Let us notice that Theorem 10.2 of [4] (Chapter 10 of [12])
holds true in ZF, so we can infer from it that (R, τ?nat) is quasi-metrizable in ZF.

We are going to give a simple ZF-example of a countable metrizable space whose compact complement
topology is not first-countable. We shall use the following lemma in this and in the third section:

Lemma 2.22. Let us assume that {An : n ∈ ω} is a collection of non-empty pairwise disjoint sets, A =
⋃

n∈ω An and
Z = A ∪ {∞} where ∞ < A. For x, y ∈ Z let d(x, y) = d(y, x) and d(x, x) = 0; for each pair x, y of distinct points
of Z, let d(x, y) = max{ 1

2n , 1
2m } if x ∈ An and y ∈ Am; moreover, let d(x,∞) = 1

2n if x ∈ An. Then the function
d : Z × Z → R is a metric on Z such that A is not closed in (Z, τ(d)), while each An is a clopen discrete subspace of
(Z, τ(d)) where τ(d) is the topology on Z induced by d.

Proof. Using the fact that max{a, b} ≤ max{a, c} + max{c, b} for all non-negative real numbers a, b, c, one can
easily check that d is a metric on Z. Since ∞ ∈ clτ(d)A, the set A is not closed in (Z, τ(d)). It is obvious that
each An is a clopen discrete subspace of (Z, τ(d)).
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Example 2.23. Let An = {n} ×ω for each n ∈ ω and let A =
⋃

n∈ω An Take a point∞ < A and put Z = A∪ {∞}.
Consider the metric d on Z defined in Lemma 2.22. Suppose that the point (0, 0) has a countable base
{Vn : n ∈ ω} of open neighbourhoods in (Z, τ(d)?) where τ(d) is as in Lemma 2.22. We may assume that
Vn ⊆ V0 for each n ∈ ω. The sets Z \ Vn are all τ(d)-compact, while the sets An are not τ(d)-compact
because they are infinite discrete subspaces of (Z, τ(d)). Hence, An ∩ Vn , ∅ for each n ∈ ω. For n ∈ ω,
let an = min{m ∈ ω : (n,m) ∈ An ∩ Vn}. We define points xn ∈ An ∩ Vn by putting xn = (n, an) for n ∈ ω.
Notice that the set K = {xn : n ∈ ω \ {0}} ∪ {∞} is τ(d)-compact, while (0, 0) < K. Then V = Z \ K is an
open neighbourhood of (0, 0) in (Z, τ(d)?). There must exist n ∈ ω such that Vn ⊆ V. This is impossible
because Vn ⊆ V0 and xn ∈ Vn for each n ∈ ω \ {0}. The contradiction obtained proves that (Z, τ(d)?) is
not first-countable. Obviously, (Z, τ(d)) is σ-compact because Z is countable. Of course, (Z, τ(d)) is second-
countable as a separable metrizable space. The point∞ is not a point of local compactness of (Z, τ(d)). This
example shows that, in Theorem 2.12, the assumption of local compactness of (X, τ) cannot be replaced by
the assumption that the set of points of non-local compactness of (X, τ) is finite.

An arbitrary example of a metrizable second-countable not σ-compact space also shows that the as-
sumption of local compactness is essential in Theorem 2.12.

Example 2.24. Let X = R \ Q and let τ = τnat|X. Then the space of irrationals (X, τ) is second-countable.
That (X, τ) is not σ-compact in ZF can be shown by using the facts that the Baire category theorem holds in
ZF in the class of separable completely metrizable spaces (see Theorem 4.102 of [5]) and that every compact
subspace of (X, τ) is nowhere dense in (X, τ). This is why the compact complement topology (τnat|X)? is not
first-countable, so it is not second-countable. Of course, the space of irrationals is not locally compact at
each one of its points.

Remark 2.25. It was shown in Theorem 2.7 of [20] that if T is the co-finite topology on a set Z, then the
space (Z,T ) is quasi-metrizable if and only if Z is a countable union of finite sets. Now, suppose that τ is
the discrete topology on X, i.e. τ is the power set P(X) of X. Then τ? is the co-finite topology on X. Hence,
for τ = P(X), the space (X, τ?) is quasi-metrizable if and only if X is a countable union of finite sets. In some
models of ZF in which a countable union of finite sets can fail to be countable, even when X is uncountable
and τ = P(X), then (X, τ?) can be quasi-metrizable (see [20]).

The following question does not seem to be trivial:

Question 2.26. What are, expressed in terms of τ, simultaneously necessary and sufficient conditions for (X, τ?) to
be quasi-metrizable when (X, τ) is a σ-compact quasi-metrizable space?

Remark 2.27. Let us consider the case when (X, τ) is not compact. We notice that if p and p̂ are properties
such that a topological space Z has p if and only if Z is Hausdorff and has p̂, then, in view of Proposition
2.9, the space (X, τ?) does not have p. In particular, (X, τ?) is not a Ti-space for i ∈ {2, 3, 3 1

2 , 4, 5, 6}. It is easily
seen that (X, τ?) is neither regular, nor completely regular, nor normal. Every continuous mapping from
(X, τ?) to a Hausdorff space is constant.

Theorem 2.28. Let A ⊆ X. Then A is τ?-compact if and only if A ∩ K is τ-closed for each τ-compact set K.

Proof. Necessity. Suppose that A is τ?-compact. Let K be a τ-compact set. Since (X, τ) is Hausdorff, to show
that A∩K is τ-closed, it suffices to check that A∩K is τ-compact. Let F be a collection of τ-closed sets such
that the collectionH = {F∩A∩K : F ∈ F } is centered. The sets A∩K∩F for F ∈ F are all τ?|A-closed. Since
A is τ?-compact andH is a centered collection of τ?|A-closed sets, we have that

⋂
H , ∅. This proves that

A ∩ K is τ-compact.
Sufficiency. Now, suppose that A∩K is τ-compact for each τ-compact set K. We may assume that A , ∅.

LetU be a non-empty collection of non-empty sets such thatU ⊆ τ?, while A ⊆
⋃
U. Fix any set U0 ∈ U.

The set C0 = X \U0 is τ-compact, so A∩C0 is τ-compact as a τ-closed subset of a τ-compact set. Notice that
A ∩ C0 ⊆

⋃
U and, by Theorem 2.2,U ⊆ τ. By the τ-compactness of A ∩ C0, there exists a finite collection

V ⊆ U such that A ∩ C0 ⊆
⋃
V. Then A ⊆ U0 ∪

⋃
V. This proves that A is τ?-compact.
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Corollary 2.29. For every Hausdorff space (X, τ), the space (X, τ?) is compact.

A topological space (Z,T ) is called jointly partially metrizable on compact subspaces, if there is a metric d
on Z such that, for every compact subspace A of (Z,T ), the restriction of d to A × A generates the subspace
topology T |A on A (see [1]).

Example 2.30. The space (R, τnat) is metrizable, hence jointly partially metrizable on compact subspaces.
But (R, τ?nat) is not jointly partially metrizable on compact subspaces since it is compact and not metrizable
for it is not Hausdorff.

A topological space Z is called C-normal if there exists a normal space Y and a bijective function f : Z→ Y
such that the restriction f |A : A→ f (A) is a homeomorphism for each compact subspace A of Z (see [8]).

Example 2.31. The space (R, τnat) is C-normal. But (R, τ?nat) is not C-normal since it is compact and not
normal.

3. k-Spaces

Let us recall that a Hausdorff space Z is called a k-space if, for every set A ⊆ Z, it holds true that A is
closed in Z if and only if A ∩ K is closed in Z for each compact set K in Z (see Section 3.3 of [3]).

We deduce directly from Theorem 2.28 the following characterization of k-spaces:

Theorem 3.1. For every Hausdorff space (X, τ), it holds true in ZF that (X, τ) is a k-space if and only if every
τ?-compact subset of X is τ-closed.

We recall definitions of sequential and Fréchet-Urysohn spaces for completeness.

Definition 3.2. Let Z be a topological space and A ⊆ Z. Then:

(i) As denotes the set of all points z ∈ Z such that there exists a sequence (zn)n∈ω of points of A \ {z}which
converges in Z to the point z;

(ii) A is called sequentially closed if As
⊆ A;

(iii) the sequential closure of A in Z is the set sclZ(A) = As
∪ A;

(iv) Z is called sequential (resp. Fréchet-Urysohn) if every sequentially closed subset of Z is closed in Z
(resp. for every F ∈ P(Z) the equality sclZ(F) = clZ(F) holds).

In some texts, Fréchet-Urysohn spaces are called Fréchet spaces (see, for instance, [3] and [5]). It is well
known that the following series of implications hold true in ZFC and, in general, none of them is reversible
in ZFC (see, e.g. Sections 1.6 and Theorem 3.3.20 of [3]):

• Z is Hausdorff and first-countable → Z is Hausdorff and Fréchet-Urysohn → Z is Hausdorff and
sequential→ Z is a k-space.

Of course, the proof of Theorem 3.3.20 of [3] shows that it is true in ZF that every Hausdorff sequential
space is a k-space. That even R can fail to be sequential in a model of ZF is shown in Theorem 4.55 of
[5]. The second part of Theorem 3.3.20 of [3], which states that every first-countable Hausdorff space is a
k-space, does not have a proof in ZF. Therefore, since we work in ZF, it is natural to ask about set-theoretical
statuses of the following sentences:

(a) Every first-countable Hausdorff space is a k-space.
(b) R is a k-space.
(c) Every subspace of R is a k-space.
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In this section, we are going to prove that (a) is equivalent with the axiom of countable multiple choice
(i.e. Form 126 in [6]), while (b) holds in ZF and (c) is independent of ZF. We shall also show that even the
Sorgenfrey line can fail to be a k-space in a model of ZF.

We recall that the axiom of countable multiple choice, denoted by CMC in [5], states that, for every
collection {An : n ∈ ω} of non-empty sets there exists a collection {Fn : n ∈ ω} of non-empty finite sets such
that Fn ⊆ An for each n ∈ ω. It was shown in [9] that CMC is equivalent with Form 126D of [6], i.e with the
following sentence denoted by WCMC:

WCMC: For every denumerable family A of disjoint non-empty sets there is an infinite set C ⊆
⋃
A

such that, for each A ∈ A the intersection A ∩ C is finite.
More information about WCMC can be found in [9] and in Note 132 of [6].
If A is a denumerable collection of pairwise disjoint non-empty sets, then every infinite set C ⊆

⋃
A

such that C ∩ A is finite for each A ∈ A is called a partial multiple choice set ofA.

Theorem 3.3. The following conditions are all equivalent in ZF:
(i) CMC;

(ii) every Hausdorff first-countable space is a k-space;
(iii) every metrizable space is a k-space.

Proof. Let Y be a first-countable Hausdorff space and let D be a subset of Y which is not closed in Y. Fix
in Y an accumulation point y of D such that y < D. Let B(y) = {Un : n ∈ ω} be a countable base of open
neighbourhoods of y in Y such that Un+1 ⊂ Un for each n ∈ ω. Since Y is Hausdorff, we can find a strictly
increasing sequence (kn)n∈ω of positive integers such that the set Dn = D∩ (Ukn \Ukn+1 ) is non-empty for each
n ∈ ω. Suppose that CMC holds. By CMC, there exists a sequence (Cn)n∈ω of non-empty finite sets such
that Cn ⊆ Dn for each n ∈ ω. Then the set C = {y} ∪

⋃
n∈ω Cn is compact in Y, while y is an accumulation

point of D∩C and y < D∩C. Thus D∩C is not closed in Y. Therefore, Y is a k-space if CMC holds. Hence,
(i) implies (ii). It is obvious that (ii) implies (iii). To complete the proof, it suffices to show that (iii) implies
WCMC.

Now, let us assume that WCMC is false. Suppose that A = {An : n ∈ ω} is a collection of pairwise
disjoint non-empty sets without a partial multiple choice set. Put A =

⋃
n∈ω An. Take a point∞ < A and put

Z = A ∪ {∞}. Consider the metric d on Z defined in Lemma 2.22, as well as the topology τ(d) on Z induced
by d. Let K be a compact subspace of (Z, τ(d)). Since each An is a discrete clopen subspace of (Z, τ(d)), the
sets K ∩ An are all finite. If K were infinite, then K would be a partial multiple choice set ofA. Hence, K is
finite, so A ∩ K is compact in (Z, τ(d)). By Lemma 2.22, A is not closed in (Z, τ(d)). This shows that (Z, τ(d))
is not a k-space. Hence, (iii) implies (i).

Corollary 3.4. It is consistent with ZF that not every metrizable space is a k-space.

Theorem 3.5. IfM is a model of ZF in which every metrizable space is sequential, then CMC holds inM.

Proof. Suppose (Z, τ(d)) is the space from Lemma 2.22 and the proof to Theorem 3.3 whereA = {An : n ∈ ω}
is a collection of pairwise disjoint non-empty sets without a partial multiple choice set. Then the set A is
sequentially closed but not closed in (Z, τ(d)).

Remark 3.6. Let us notice that since CMC implies CC(R), it follows directly from Exercise E.3 to Section
4.6 of [5] that in every model of ZF in which CMC holds, every second-countable T0-space (in particular,
every second-countable metrizable space) is Fréchet-Urysohn, so sequential.

Theorem 3.7. R is a k-space in every model of ZF.

Proof. Let A be a subset of R such that A ∩ K is closed in R for each compact set K in R. Suppose that
x ∈ (clRA) \A. Let Kn = A ∩ [x − 1

2n , x + 1
2n ] for each n ∈ ω. The sets Kn are all non-empty and compact in R.

We put xn = inf(Kn) for each n ∈ ω. It follows from the compactness of Kn that xn ∈ Kn for each n ∈ ω. In this
way, we define a sequence (xn)n∈ω of points of A which converges in R to x. The set K = {x} ∪ {xn : n ∈ ω}
is compact in R but A ∩ K is not closed in R which is a contradiction. Hence, A must be closed in R. This
implies that R is a k-space in ZF.
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Proposition 3.8. (i) It is consistent with ZF that a subspace of R can fail to be a k-space.
(ii) It is consistent with ZF that all subspaces of R are k-spaces.

Proof. (i) Suppose that X is an infinite Dedekind finite subset ofR. Since X as a subspace ofR is not discrete,
there exists a set A ⊆ X such that A is not closed in X. Let K be a compact subset of X. Then K is compact
in R, so, if K were infinite, then K would be Dedekind infinite. Since K is Dedekind finite, we deduce that
K is finite. This implies A ∩ K is closed in X because A ∩ K is finite. To complete the proof to (i), it suffices
to notice that in the modelM1 of [6] there is an infinite Dedekind finite subset of R.

(ii) LetM be a model of ZF in which CC(R) holds. For instance, the modelM2 of [6] can be taken as
M. Since, by Theorem 4.54 of [5], it is true inM that every subspace of R is sequential, we infer that, inM,
every subspace of R is a k-space.

Corollary 3.9. It is independent of ZF that all subspaces of R are k-spaces.

In what follows, as a metric space, R is considered with the metric ρ defined by ρ(x, y) = |x − y| for all
x, y ∈ R.

Using the notation from Theorem 4.55 of [5], we denote by CC(cR) the following sentence: Every
non-empty countable collection of non-empty complete subspaces of R has a choice function.

Theorem 3.10. (i) If the Sorgenfrey line is a k-space, then CC(cR) holds.
(ii) If CC(R) holds, then the Sorgenfrey line is a k-space.

Proof. (i) Suppose that CC(cR) does not hold. Then, by Theorem 4.55 of [5], R is not sequential. Let A be a
sequentially closed subset ofRwhich is not closed inR. Let a ∈ (clRA) \A. The set B = [(A− a)∪ (−A + a)]∩
(0,+∞) is sequentially closed in R and not closed in R. Since 0 ∈ (clSB) \ B, the set B is not closed in S. Let
K be a compact set in S. Then K is countable and compact in R. The set K ∩ B is countable and sequentially
closed in R. Since, for every first-countable space X, it holds true in ZF that if C is a countable sequentially
closed subset of X, then C is closed in X, we deduce that K ∩ B is closed in R. This implies K ∩ B is closed
in S. Therefore, S is not a k-space.

(ii) Now, suppose that CC(R) holds. Let F ⊆ R be not closed in S and let x ∈ clSF\F. Then G = F∩ (x,+∞)
is not closed inR and x ∈ (clRG) \G. In the light of Theorem 4.54 of [5],R is Fréchet. This implies that there
exists a sequence (xn)n∈ω of points of G which converges in R to x. The set K = {x} ∪ {xn : n ∈ ω} is compact
in S but K ∩ F is not closed in S. This proves that S is a k-space.

Corollary 3.11. It is consistent with ZF that the Sorgenfrey line is not a k-space.

From Theorems 2.28 and 3.10, we immediately obtain the following:

Corollary 3.12. Let τ be the topology of the Sorgenfrey line. If every compact in (R, τ?) set is closed in (R, τ), then
CC(cR) holds.

4. Compact Complement Partial Topology

Let us slightly reformulate Definition 2.1 of [13]:

Definition 4.1. A partial topology on a set X is a collection CovX ⊆ P(P(X)) which satisfies the following
conditions:

(i) τX =
⋃

CovX is a topology on X;
(ii) ifU ⊆ τX andU is finite, thenU ∈ CovX;

(iii) ifU ∈ CovX and V ∈ τX, then {U ∩ V : U ∈ U} ∈ CovX;
(iv) if U ∈ CovX and, for each U ∈ U, a collection V(U) ∈ CovX is given for which U =

⋃
V(U), then⋃

U∈UV(U) ∈ CovX;
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(v) ifU ⊆ τX andV ∈ CovX are such that
⋃
U =

⋃
V and, for each V ∈ V, there exists U ∈ U such that

V ⊆ U, thenU ∈ CovX.

Definition 4.2. If CovX is a partial topology on a set X, then the ordered pair (X,CovX) is called a partially
topological space, while τX =

⋃
CovX is called the topology corresponding to CovX.

Remark 4.3. Let us notice that if (X,CovX) is a partially topological space, then the triple (X,
⋃

CovX,CovX)
is a Delfs-Knebusch generalized topological space (in abbreviation a D-K gts) in the sense of Definition
2.2.1 of [14] and, moreover, this D-K gts is partially topological in the sense of Definition 2.2.67 of [14].
Delfs-Knebusch gtses were studied, for instance, in [2, 10, 13–18]. We recall that, according to Remark 2.2.3
of [14], a D-K gts is an ordered pair (X,CovX) such that, for OpX =

⋃
CovX, the triple (X,OpX,CovX) satisfies

the conditions of Definition 2.2.2 of [14]. In general, OpX need not be a topology on X. If (X,CovX) is a D-K
gts, then CovX is called a D-K (Delfs-Knebusch) generalized topology on X.

If ψ is a topological property, then we say that a partially topological space (X,CovX) has ψ if the
topological space (X,

⋃
CovX) has ψ. In particular:

Definition 4.4. We say that a partially topological space (X,CovX) is:

(i) Hausdorff if (X,
⋃

CovX) is Hausdorff;
(ii) compact if (X,

⋃
CovX) is compact.

Definition 4.5. Let (X,CovX) be a Hausdorff partially topological space, τX the topology corresponding to
CovX and τ?X the compact complement topology of (X, τX). Then the collection

Cov?X = CovX ∩ P(τ?X)

will be called the compact complement partial topology of (X,CovX).

Remark 4.6. Let (X,CovX) be a Hausdorff partially topological space. That Cov?X is a D-K generalized
topology follows from Fact 2.2.31 in [14] which says that the intersection of any non-empty family of D-K
generalized topologies on X is a D-K generalized topology on X. Since

⋃
(CovX ∩ P(τ?X)) = τ?X, the D-K

generalized topology Cov?X is a partial topology on X.

In what follows, we use the symbols ∩1, \1 introduced on page 219 of [14]. We recall that, for collections
U,V of subsets of X, we have U ∩1 V = {U ∩ V : U ∈ U,V ∈ V} and, analogously, U \1 V = {U \ V :
U ∈ U,V ∈ V}. Moreover, for a collection A ⊆ P(P(X)), we denote by 〈A〉X the intersection of all D-K
generalized topologies on X that containA (see page 242 of [17]).

Definition 4.7. For a subset Y of X and a partial topology Cov on X, let

Cov|Y = 〈{V ∩1 {Y} :V ∈ Cov}〉Y.

Then Cov|Y is called the partial topology on Y induced by Cov and (Y,Cov|Y) is called a partially topological
subspace of (X,Cov).

The following theorem is an adaptation of Theorem 2.2 to partial topologies:

Theorem 4.8. Let (X,CovX) be a Hausdorff partially topological space, τX =
⋃

CovX and Y ⊆ X. The following
conditions are fulfilled:

(i) Cov?X|Y ⊆ CovX|Y;
(ii) if Y is compact in (X, τX), then Cov?X|Y = CovX|Y;

(iii) Cov?X|Y = CovX|Y if and only if there exists a τX-compact set K such that Y ⊆ K.
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Proof. Since Cov?X ⊆ CovX, it is obvious that (i) is satisfied.
(ii) Suppose that Y is τX-compact and V ∈ CovX. Since (X, τX) is Hausdorff, the set Y is τX-closed, so

A = {Y} ∩1 ({X} \1 V) is a collection of τX-compact subsets of Y. Notice that V ∩1 {Y} = {Y} ∩1 ({X} \1 A).
This implies thatV∩1 {Y} ∈ Cov?X|Y and, in consequence, CovX|Y ⊆ Cov?X|Y.

(iii) Now, assume that K is a τX-compact set such that Y ⊆ K. It follows from (ii) that CovX|K = Cov?X|K.
Hence, in view of Fact 10.3 of [17], we have CovX|Y = (CovX|K)|Y = (Cov?X|K)|Y = Cov?X|Y.

Finally, suppose that Y is a subset of X such that Cov?X|Y = CovX|Y. Let V ∈ τX be such that ∅ , V∩Y , Y.
Then {V} ∈ CovX. Since {V∩Y} ∈ Cov?X|Y, there exists a τX-compact set K0 such that V∩Y = Y\K0. Reasoning
as in the proof to Theorem 2.2 (iii), we get that there exists a τX-compact set K such that Y ⊆ K.

Corollary 4.9. A Hausdorff partially topological space (X,CovX) is compact if and only if CovX = Cov?X.

In view of Proposition 2.8 and Corollary 2.29, the following proposition holds:

Proposition 4.10. If (X,CovX) is a Hausdorff partially topological space, then the partially topological space (X,Cov?X)
is compact and T1.

Remark 4.11. Similarly to the situation in Remark 2.4, we have that, in general, Cov?X|Y need not be equal
to (CovX|Y)?.

Although it can be said more about compact complement partial topologies, let us finish with the
following example:

Example 4.12. Consider the partially topological real lines considered in Definition 1.2 of [17]: Rst =
(R,Covst),Rlst = (R,Covlst),Rl+st = (R,Covl+st). Let I be a bounded interval of R. Then we get the following
equalities of the induced partial topologies: Covst|I = Covlst|I = Covl+st|I = Cov?st|I = Cov?lst|I = Cov?l+st|I.
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