
Filomat 33:7 (2019), 2051–2060
https://doi.org/10.2298/FIL1907051K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Wang (Filomat 29(5), 985-1005, 2015) introduced and investigated quasi-Ehresmann transver-
sals of semi-abundant semigroups satisfy conditions (CR) and (CL) as the generalizations of orthodox
transversals of regular semigroups in the semi-abundant case. In this paper, we give two characterizations
for a generalized quasi-Ehresmann transversal to be a quasi-Ehresmann transversal. These results further
demonstrate that quasi-Ehresmann transversals are the “real” generalizations of orthodox transversals in
the semi-abundant case. Moreover, we obtain the main result that the product of any two quasi-ideal
quasi-Ehresmann transversals of a semi-abundant semigroup S which satisfy the certain conditions is a
quasi-ideal quasi-Ehresmann transversal of S.

1. Introduction

The concept of inverse transversals of regular semigroups was introduced by Blyth-McFadden [1]. Since
then, inverse transversals have attracted much attention and a series of important results have been ob-
tained and generalized (see [1-5,11,13-21,23-26]). If S is a regular semigroup, then an inverse transversal of
S is an inverse subsemigroup So which meets V(a) precisely once for each a ∈ S (that is, |V(a) ∩ So

| = 1),
where V(a) = {x ∈ S| axa = a and xax = x} denotes the set of inverses of a. Since orthodox semigroups can be
considered as generalizations of inverse semigroups, Chen [2] generalized inverse transversals to orthodox
transversals in the class of regular semigroups and gave a construction theorem for regular semigroups
with quasi-ideal orthodox transversals. Chen-Guo [4] obtained some important properties associated with
orthodox transversals in the general case. Most recently, Kong, Meng, Zhao [13,15,16,17,21] investigated
orthodox transversals and obtained some interesting results. Especially, Kong-Meng [17] acquired the
characterization for a generalized orthodox transversal to be an orthodox transversal and present a con-
crete description of the maximum idempotent separating congruence on regular semigroups with orthodox
transversals. If the concept of transversals could be introduced in the E-inversive semigroups, then the
congruences [6, 7] on them will be characterized more neatly.

The concept of adequate transversals was introduced for abundant semigroups by El-Qallali [5] as an
analogue of inverse transversals, and followed by Chen, Guo, Shum, Kong and Wang etc. [3,11,14,18,19].
In [19], the authors shown that the product of any two quasi-ideal adequate transversals of an abundant
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semigroup S which satisfy the regularity condition is a quasi-ideal adequate transversal of S.
Semi-abundant semigroups satisfy conditions (CR) and (CL) were introduced by Fountain-Gomes-

Gould [8] as generalized regular semigroups and studied by many authors[8,9,10,22,26]. Gomes-Gould
[9] studied some classes of semi-abundant semigroups satisfy conditions (CR) and (CL) by fundamental
approaches and Lawson [22] considered some kinds of semi-abundant semigroups satisfy conditions (CR)
and (CL) by category approaches, and Gould [10] gave a survey of investigations of special semi-abundant
semigroups satisfy conditions (CR) and (CL), namely restriction semigroups and Ehresmann semigroups.
Wang [26] introduced the concept of quasi-Ehresmann transversals of semi-abundant semigroups satisfy
conditions (CR) and (CL), as a generalization of the concept of orthodox transversals of regular semigroups,
and gave some properties associated with quasi- Ehresmann transversals.

In this paper, we continue along the line of [8,17,19,26] by studying quasi-Ehresmann transversals of
semi-abundant semigroups which satisfy conditions (CR) and (CL). In this paper, we give two characteri-
zations for a generalized quasi-Ehresmann transversal to be a quasi-Ehresmann transversal which further
demonstrate that quasi-Ehresmann transversals are the “real” generalizations of orthodox transversals in
the semi-abundant case. The main purpose of this paper is to show that the product of any two quasi-ideal
quasi-Ehresmann transversals of a semi-abundant semigroup S satisfies conditions (CR) and (CL) and sat-
isfies the regularity condition is a quasi-ideal quasi-Ehresmann transversal of S. The corresponding results
associate with orthodox transversals and adequate transversals are generalized and enriched.

2. Preliminaries

Let S and So be semigroups. Throughout this paper, if no confusion, the set of idempotents of S and
So are denoted by E and Eo, respectively. For short, the set V(a) ∩ So is denoted by VSo (a). If E generates a
regular semiband, that is, 〈E〉 is a regular subsemigroup of S, then S is said to satisfy the regularity condition.
So is called a quasi-ideal of S, if SoSSo

⊆ So. We list some basic results as follows which are frequently used
in this paper.

Definition 2.1[2] Let S be a regular semigroup with an orthodox subsemigroup of So. Then So is said to
be an orthodox transversal of S, if the following two conditions are satisfied:

(1) (∀ a ∈ S) VSo (a) , ∅;
(2) For any a, b ∈ S, if {a, b} ∩ So , ∅, then VSo (a)VSo (b) ⊆ VSo (ba).

Lemma 2.1[17] Let S be a regular semigroup and So a subsemigroup of S with VSo (a) , ∅ for each a ∈ S. Then
So is an orthodox transversal of S if and only if

(∀a, b ∈ S) [VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)].

The so-called Miller-Clifford theorem will be frequently used in this paper.
Lemma 2.2[12] (1) Let e and f be D-equivalent idempotents of a semigroup S. Then each element a of
Re ∩ L f has a unique inverse a′ in R f ∩ Le, such that aa′ = e and a′a = f ;

(2) Let a, b ∈ S. Then ab ∈ Ra ∩ Lb if and only if La ∩ Rb contains an idempotent.
Let S be a semigroup and a, b ∈ S. By aR∗b we mean that xa = ya if and only if xb = yb for all x, y ∈ S1. The

relation L∗ can be defined dually. R∗ is a left congruence and L∗ is a right congruence on S. A semigroup
S is called abundant if each L∗-class and each R∗-class of S contains at least one idempotent. An abundant
semigroup S is called quasi-adequate if its idempotents form a band. A band B is called a rectangular band if
it satisfies the identity abc = ac for all a, b, c ∈ B. An adequate semigroup is an abundant semigroup in which
the idempotents commute.

Let S be an abundant semigroup and U an abundant subsemigroup of S. U is called a ∗-subsemigroup of
S, if for any a ∈ U, there exist idempotents e ∈ L∗a(S) ∩U and f ∈ R∗a(S) ∩U.
Definition 2.2[5] Let S be an abundant semigroup and So a ∗-adequate subsemigroup of S. So is called an
adequate transversal of S, if for each x ∈ S there exist idempotents e, f ∈ S and a unique element x ∈ So such
that x = ex f , where eLx+ and fRx∗.
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Let S be a semigroup and a, b ∈ S. That aR̃b means that ea = a if and only if eb = b for all e ∈ E. The
relation L̃ can be defined dually. Denote H̃ = L̃ ∩ R̃. In general, L̃ is not a right congruence and R̃ is not a
left congruence. Obviously, L ⊆ L̃ and R ⊆ R̃. If a, b ∈ Re1S, the set of regular elements of S, then aR̃b ( aL̃b
) if and only if aRb ( aLb ). On the relation R̃ on a semigroup S, we have the following useful result.

Lemma 2.3 Let S be a semigroup and a ∈ S, e ∈ E. Then the following statements are equivalent:
(1) eR̃a;
(2) ea = a and for all f ∈ E, f a = a implies f e = e.

Now, we state the following fundamental concept of our paper. Semi-abundant semigroups satisfy
conditions (CR) and (CL) were introduced by Fountain-Gomes-Gould[8].

Definition 2.3 A semigroup S is called semi-abundant if each L̃-class and each R̃ -class of S contains
idempotents. In particular, if L̃ is a right congruence and R̃ is a left congruence on a semi-abundant
semigroup S, then we say that S satisfies conditions (CR) and (CL).

A semi-abundant semigroup S satisfies conditions (CR) and (CL) is quasi-Ehresmann if its idempotents
form a subsemigroup of S. Certainly, regular semigroups are semi-abundant semigroups satisfy conditions
(CR) and (CL), and orthodox semigroups are quasi-Ehresmann semigroups. It is easy to see a semi-
abundant semigroup S satisfies conditions (CR) and (CL) is quasi-Ehresmann if and only if Re1S is an
orthodox subsemigroup of S. Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL). For
K̃ ∈ {L̃, R̃} and a ∈ S, the K̃ -class of S containing a is denoted by K̃a.

A semi-abundant subsemigroup U of a semi-abundant semigroup S satisfies conditions (CR) and (CL)is
called a ∼-subsemigroup of S if

L̃(U) = L̃(S) ∩ (U ×U), R̃(U) = R̃(S) ∩ (U ×U),

and this equivalent to that there exist idempotents e, f ∈ U such that eL̃x and f R̃x in S for all x ∈ U.
Now, let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) and So a quasi-Ehresmann
∼-subsemigroup of S. For any x ∈ S, denote

ΩSo (x) = {(e, x, f ) ∈ E × So
× E : x = ex f , eLx+; fRx∗ for some x+, x∗ ∈ Eo

},

and Γx = {x : (e, x, f ) ∈ ΩSo (x)}, I(x) = {e : (e, x, f ) ∈ ΩSo (x)}, Λ(x) = { f : (e, x, f ) ∈ ΩSo (x)}, I =
⋃

x∈S I(x),
Λ =
⋃

x∈S Λ(x).

Lemma 2.4[26] Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) and So a quasi-
Ehresmann ∼-subsemigroup of S. Then I = {e ∈ E : (∃e∗ ∈ Eo) eLe∗} and Λ = { f ∈ E : (∃ f +

∈ Eo) fR f +
}.

Definition 2.4[26] Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) and So a quasi-
Ehresmann ∼-subsemigroup of S. Then So is called a quasi-Ehresmann transversal of S if the following three
conditions hold:

(1) Γx , ∅ for all x ∈ S ;
(2) is ∈ I and si ∈ Re1S implies si ∈ E for all i ∈ I and s ∈ Eo;
(3) sλ ∈ Λ and λs ∈ Re1S implies λs ∈ E for all λ ∈ Λ and s ∈ Eo.

3. Two characterizations of quasi-Ehresmann transversals

Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) with the set of idempotents E
and So a quasi-Ehresmann ∼-subsemigroup of S with the set of idempotents Eo. So is called a generalized
quasi-Ehresmann transversal of S if Γx , ∅ for all x ∈ S.

In the following, we shall give two characterizations for a generalized quasi-Ehresmann transversal to
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be a quasi-Ehresmann transversal which further demonstrate that quasi-Ehresmann transversals are the
“real” generalizations of orthodox transversals in the semi-abundant case.

Theorem 3.1 Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) with a generalized quasi-
Ehresmann transversal So. Then So is a quasi-Ehresmann transversal of S if and only if

(∀a, b ∈ Re1S), [VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)].

Proof. (Sufficiency) Let f ∈ Eo, e ∈ I with eLe∗ ∈ Eo. By means of So is quasi-Ehresmann and e f L̃e∗ f ∈ Eo we
have

f e∗ · e f · f e∗ = f · e∗e · f f · e∗ = f e∗ · f e∗ = f e∗

e f · f e∗ · e f = e · f f · e∗e · f = e f · e∗ f = e f .

Thus f e∗ ∈ VSo ( f e∗) ∩ VSo (e f ), by the condition, we obtain VSo ( f e∗) = VSo (e f ). From So is quasi-Ehresmann,
we deduce that Eo is a band and so is the semilattice Y of rectangular bands Eα(α ∈ Y). Since e∗ f and f e∗ are
in the same rectangular band, and so are inverses of each other. Hence e∗ f ∈ VSo (e f ) and so

e f = (e f )(e∗ f )(e f ) = (e f )2

That is e f is idempotent and we have in fact proved IEo
⊆ E.

If f e is regular, take x ∈ VSo ( f e) and xo
∈ VSo (x). Then ex f is idempotent and ex f ∈ V( f e) with

ex f L̃e∗x f ∈ So. Let (e∗x f )∗ ∈ Eo with (e∗x f )∗L̃e∗x f since L̃ is a left congruence. Then ex fL(e∗x f )∗ ∈ Eo and
so (e∗x f )∗ ∈ VSo (ex f ) ∩ VSo ((e∗x f )∗). From the assumption and So is quasi-Ehresmann, we have VSo (ex f ) =
VSo ((e∗x f )∗) and hence VSo (ex f ) ⊆ Eo.Meanwhile we deduce that the regular elements of So form an orthodox
subsemigroup of So, and so f xoe∗ ∈ VSo (e∗x f ) since e∗, f ∈ Eo. Hence

f xoe∗ · ex f · f xoe∗ = f xoe∗ · e∗x f · f xoe∗ = f xoe∗

and
ex f · f xoe∗ · ex f = e · e∗x f · f xoe∗ · e∗x f = e · e∗x f = ex f

since e∗Le with e, e∗ are idempotent. So, f xoe∗ ∈ VSo (ex f ). Similarly, one can prove that e∗x f ∈ VSo ( f e) ∩
VSo ( f xoe∗). Thus f xoe∗ ∈ Eo and VSo ( f e) = VSo ( f xoe∗) ⊆ Eo and consequently x ∈ Eo. Therefore e∗x f ∈ Eo and

f e = f e · e∗x f · f e = f e · ex f · e∗x f · f e = f ex · f e∗ · x f e.

Premultiplying and postmultiplying by x, we obtain

x = x f ex = x f ex · f e∗ · x f ex = x f e∗x.

Thus f e∗xLx with f e∗x ∈ Eo, from which we deduce that f e∗x f = f e∗x · x fLx f . By means of f e∗x f , x f ∈ Eo,
we have f e∗x f ∈ VSo (x f ). It is obvious that x f ∈ V( f e) and x f ∈ Eo implies that VSo ( f e) = VSo (x f ) and so
f e∗x f ∈ VSo ( f e). Therefore f e = f e · f e∗x f · f e = f (e f )(e f )e∗x f f e = f e · f e f e∗x f f e = f e f e since e f is idempotent,
and so f e is idempotent. Up to now, we have in fact proved if f e is regular, then it is idempotent. Dually,
we can proved that EoΛ ⊆ E and if for all λ ∈ Λ, f ∈ Eo, if λ f is regular, then it is idempotent.

(Necessity) By [26, Theorem 3.6 (4)], the condition is necessary.

Theorem 3.2 Let S be a semi-abundant semigroup satisfies conditions (CR) and (CL) with a generalized quasi-
Ehresmann transversal So. Then So is a quasi-Ehresmann transversal if and only if for any regular elements a ∈ S,
b ∈ So, if ba is regular, then VSo (a)VSo (b) ⊆ VSo (ba); and if ab is regular, then VSo (b)VSo (a) ⊆ VSo (ab).
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Proof. (Necessity) For any regular elements a ∈ S, b ∈ So, take ao
∈ VSo (a), bo

∈ VSo (b), if So is a quasi-
Ehresmann transversal, then by the definition, aaobob ∈ IEo

⊆ E. If ba is regular, take (ba)o
∈ VSo (ba),

then
(bobaao)(a(ba)ob)(bobaao) = bo(baaoa)(ba)o(bboba)ao = bo(ba)(ba)o(ba)ao = bo(ba)ao = bobaao.

Thus bobaao is regular and so bobaao
∈ EoI ⊆ E. Therefore

aobo
· ba · aobo = ao(aaobob)(aaobob)bo = ao

· aaobob · bo = aobo

ba · aobo
· ba = b(bobaao)(bobaao)a = b · bobaao

· a = ba

and so VSo (a)VSo (b) ⊆ VSo (ba). Similarly, if ab is regular, then VSo (b)VSo (a) ⊆ VSo (ab).
(Sufficiency) For any regular elements t1, t2 ∈ So, if V(t1)∩V(t2) , ∅, take t ∈ V(t1)∩V(t2) and to

1 ∈ VSo (t1).
From t2tLt1tRt1to

1, by Lemma 2.2, t2Rt2tt1to
1Lto

1 and (t2tt1to
1)2 = t2(tt1to

1t2tt1)to
1 = t2tt1to

1 since by the assumption
to
1t2 ∈ VSo (tt1). Similarly, t2Lto

1t1tt2Rto
1 with to

1t1tt2 ∈ E. Thus

to
1t2to

1 = to
1t2tt1tt2to

1 = to
1(t2tt1to

1)t1tt2to
1 = (to

1t1tt2)to
1 = to

1

and
t2to

1t2 = t2(tt2to
1t1)to

1(t1to
1t2t)t2 = t2tt1to

1t1tt2 = t2tt1tt2 = t2tt2 = t2.

Hence to
1 ∈ VSo (t2), that is, VSo (t1) ∩ VSo (t2) , ∅. Therefore VSo (t1) = VSo (t2) since the regular elements of So

form an orthodox subsemigroup of S.
For any e ∈ S, if VSo (e) ∩ Eo , ∅, take f ∈ VSo (e) ∩ Eo. Then for any eo

∈ VSo (e), we have e ∈ V( f ) ∩ V(eo)
and so by the above result, VSo ( f ) = VSo (eo). Consequently, eo is an inverse of f in So and eo

∈ Eo since So is
quasi-Ehresmann. That is, if VSo (e) ∩ Eo , ∅, then VSo (e) ⊆ Eo.

Let e, f ∈ I with eL f . Take h ∈ Eo such that hLeL f , then h ∈ VSo (e) ∩ VSo ( f ). For any 1 ∈ VSo (e), by the
above result we have 1 ∈ Eo. It is easy to see that 1h1 ∈ VSo (1 f1) and 1h1 ∈ VSo (1e1) = VSo (1). Then 1 f1
and 1 have a common inverse 1h1. Consequently 1h1 · 1 f1 · 1h1 = 1h1 and thus 1 f1 = 1. Since 1eLeL f , by
Lemma 2.2, f1R f and so f1 f = f . Thus 1 ∈ VSo ( f ) and so VSo (e) ⊆ VSo ( f ). Similarly, we have the reverse
inclusion and hence VSo (e) = VSo ( f ). Dually, if e, f ∈ Λ with eR f , then VSo (e) = VSo ( f ).

It is easy to see that if a ∈ Re1S, then for any ao
∈ VSo (a), we have VSo (a) = VSo (aoa)aoVSo (aao).

For a, b ∈ Re1S, if VSo (a)∩VSo (b) , ∅, take co
∈ VSo (a)∩VSo (b). Then VSo (a) = VSo (coa)coVSo (aco) and VSo (b) =

VSo (cob)coVSo (bco). It follows from aco, bco
∈ I and aco

Lbco that VSo (aco) = VSo (bco). Similarly, VSo (coa) = VSo (cob).
Therefore VSo (a) = VSo (b) and so by Theorem 3.1 So is a quasi-Ehresmann transversal.

Obviously, a regular semigroup with an orthodox transversal is a semi-abundant semigroup satisfies
conditions (CR) and (CL) with a generalized quasi-Ehresmann transversal. Comparing Lemma 2.1 with
Theorem 3.1, and Definition 2.1 with Theorem 3.2, it is illustrated by these two points of view that the
transversal is a quasi-Ehresmann transversal. Thus, quasi-Ehresmann transversals are the generalization
of orthodox transversals in the semi-abundant case.

By means of the properties of adequate transversal[3,Theorem3.3], one can easily observe that an abundant
semigroup with an adequate transversal is a semi-abundant semigroup satisfies conditions (CR) and (CL)
with a quasi-Ehresmann transversal.

In the following, we will investigate when a quasi-Ehresmann transversal is an orthodox transversal
and when a quasi-Ehresmann transversal is an adequate transversal, respectively. We have the following
results.

Theorem 3.3 Let So be a quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies conditions (CR)
and (CL). Then

(i) So is an orthodox transversal of S if and only if S is a regular semigroup.
(ii) if S and So are abundant, then So is an adequate transversal of S if and only if So is an adequate semigroup.



X. Kong, P. Wang / Filomat 33:7 (2019), 2051–2060 2056

Proof. (i) (Sufficiency) If S is regular, every element in S is regular, and so VSo (a) , ∅ for each a ∈ S. It
follows from Theorem 3.1 that for any a, b ∈ S, VSo (a)∩VSo (b) , ∅ implies that VSo (a) = VSo (b). Thus, So is an
orthodox transversal of S by Lemma 2.1.

(Necessity) If So is an orthodox transversal, every element xo in So is regular. For any a ∈ S, a = ea f with
e, f ∈ E, eLa+

∈ Eo, fRa∗ ∈ Eo. Since a is regular, a∗LaRa+ implies that, a has a unique inverse x ∈ Ra∗ ∩ La+ ,
such that ax = a+, xa = a∗. Consequently, axa = ea f · xax · ea f = ea · xax · a f = e(axaxa) f = ea f = a since
fRa∗ = xaeLa+

= ax. That is, a is regular and therefore S is a regular semigroup.

(ii) The necessary condition is obvious.
(Sufficiency) Let a ∈ S, a = ea f with e, f ∈ E, eLa+

∈ Eo, fRa∗ ∈ Eo, a = ib j with i, j ∈ E, iLb
+
∈ Eo, jRb

∗

∈ Eo.
It follows from eR̃aR̃iLb

+
that b

+
e · i · b

+
e = b

+
ib

+
e = b

+
e, so b

+
e is regular and by Theorem 3.1, b

+
e ∈ E. Since

b
+
Rb

+
eLeLa+, if So is adequate by Lemma 2.2, a+

Ra+b
+
Lb

+
with a+b

+
∈ E, and so a+

Lb
+

a+
Rb

+
. By So is

adequate, the idempotents in So commute and so a+b
+

= b
+

a+. Hence a+, b
+

are in the same H−class and
so a+

= b
+

. Similarly, a∗ = b
∗

. Therefore a = a+aa∗ = b
+

ab
∗

= b and consequently, So is in fact the adequate
transversal of S.

Therefore, by Theorem 3.3 we can say that quasi-Ehresmann transversals are the “real” common gener-
alization of orthodox transversals and adequate transversals in the semi-abundant case.

4. The main theorem

In 1986, Saito[25] had proved that the product of any two quasi-ideal inverse transversals of a regular
semigroup S is a quasi-ideal inverse transversal of S. In 2011, we[19] had obtained that the product of any
two quasi-ideal adequate transversals of an abundant semigroup S which satisfy the regularity condition
is a quasi-ideal adequate transversal of S. In this section, we acquire that the product of any two quasi-
ideal quasi-Ehresmann transversals of a semi-abundant semigroup S satisfies conditions (CR) and (CL) and
satisfies the regularity condition is a quasi-ideal quasi-Ehresmann transversal of S. Furthermore, all of the
quasi-ideal quasi-Ehresmann transversals of S form a rectangular band.

Let H and J be subsets of a semigroup S and write HJ for {hj : h ∈ H, j ∈ J}. Clearly (∀H, J,K ⊆ S) (HJ)K =
H(JK) and we denote it by HJK.

Lemma 4.1 Let So be a quasi-ideal quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies
conditions (CR) and (CL) and H a subset of S. Then

(1) HSSo = HSo and SoSH = SoH;
(2) HSo and SoH are both subsemigroups and quasi-ideals of S;
(3) for any x ∈ Re1S, if |V(x) ∩H| ≥ 1, then |V(x) ∩HSo

| ≥ 1 and |V(x) ∩ SoH| ≥ 1.

Proof. (1) Let h ∈ H, x ∈ S and s ∈ So. Then h = ehh fh with fhRh
∗

∈ Eo and so hxs = hh
∗

fhxs ∈ HSoSSo
⊆ HSo.

It is obvious that hs = h fhs ∈ HSSo and thus HSSo = HSo. Similarly, SoSH = SoH.
(2) It is easy to see HSo

· HSo
⊆ H · SoSSo

⊆ HSo, thus HSo is a subsemigroup of S. Similarly,
HSo
· S ·HSo

⊆ H · SoSSo
⊆ HSo and so HSo is a quasi-ideal of S. There is a dual result for SoH.

(3) For any regular element x ∈ S, take x′ ∈ V(x) ∩ H, then for any xo
∈ VSo (x), x′xxo

∈ V(x) ∩ HSSo =
V(x) ∩HSo, that is |V(x) ∩HSo

| ≥ 1. Similarly, |V(x) ∩ SoH| ≥ 1.

Lemma 4.2 Let So, S� be quasi-ideal quasi-Ehresmann transversals of the semi-abundant semigroup S
satisfies conditions (CR) and (CL). For every a ∈ Re1S, we have VS�So (a) = VS� (a) · a · VSo (a).

Proof. Let a� ∈ VS� (a), ao
∈ VSo (a). Then a�aao

∈ S�SSo = S�So and a�aao
∈ V(a), and so VS� (a) · a · VSo (a) ⊆
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VS�So (a). For every x�yo
∈ VS�So (a), we have

a = ax�yoa, x�yo = x�yo
· a · x�yo.

Hence
x�yo = x�yo

· aa�aaoa · x�yo = x�yoaa� · a · aoax�yo.

and
x�yoaa� ∈ S�SS� ⊆ S�, aoax�yo

∈ SoSSo
⊆ So,

On the other hand,
a · x�yoaa� · a = a · x�yo

· a = a,

x�yoaa� · a · x�yoaa� = x�yoax�yoaa� = x�yoaa�.

Thus x�yoaa� ∈ VS� (a) and dually, aoax�yo
∈ VSo (a). Therefore VS�So (a) ⊆ VS� (a) · a · VSo (a).

Lemma 4.3 Let So be a quasi-ideal quasi-Ehresmann transversal of the semi-abundant semigroup S satisfies
conditions (CR) and (CL). For any x, y ∈ S, there exist x ∈ Γx, y ∈ Γy such that x = exx fx, exLx+, fxRx∗ for
some x+, x∗ ∈ Eo and y = eyy fy, eyLy+, fyRy∗ for y+, y∗ ∈ Eo. Then

(1) x fxeyy ∈ Γxy;
(2) ex(x fxey)+

∈ Ixy;
(3) ( fxeyy)∗ fy ∈ Λxy.

Proof. Certainly
xy = exx fxeyy fy = ex(x fxey)+(x fxeyy)( fxeyy)∗ fy,

where ex(x fxey)+
∈ IEo

⊆ E, ( fxeyy)∗ fy ∈ EoΛ ⊆ E and x fxeyy ∈ So since So is a quasi-ideal. Since R̃,R are left
congruences and L̃,L are right congruences, we have

ex(x fxey)+
L x+(x fxey)+

R̃ x+(x fxey) = x fxeyy+
R̃ x fxeyy,

( fxeyy)∗ fy R ( fxeyy)∗y∗ L̃ ( fxeyy)y∗ = x∗ fxeyy L̃ x fxeyy.

Therefore the above properties valid.

In what follows So and S� will denote a pair of quasi-Ehresmann transversal of the semi-abundant
semigroup S satisfies conditions (CR) and (CL) and ESo and ES� will denote the idempotents of them
respectively to avoid confusion. For the sake of simplicity, in S�, we still denote the typical idempotent that
L̃-related and R̃-related to a ∈ S� by a∗ and a+ respectively. For any x ∈ S, we write x = exx fx and x = ixx̃λx
as the decompositions of x in So and S� respectively. Then x̃ ∈ S� has the same meaning as in Definition 2.4.
More precisely, ix, λx ∈ E and x̃∗, x̃+

∈ ES� with x̃∗L̃x̃R̃x̃+ and ixLx̃+, λxRx̃∗, and so ixR̃xL̃λx.
Let S� and So be quasi-Ehresmann transversals of the semi-abundant semigroup S satisfies conditions

(CR) and (CL). Denote
I(S�,So) = {aao : a ∈ Re1S ∩ S�, ao

∈ VSo (a)},

Λ(So,S�) = {a�a : a ∈ Re1S ∩ So, a� ∈ VS� (a)}.

Theorem 4.4 Let S� and So be a pair of quasi-ideal quasi-Ehresmann transversals of the semi-abundant semigroup S
satisfies conditions (CR) and (CL) and satisfies the regularity condition. Then

I(S�,So) = Λ(So,S�) = Io ∩Λ�.
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Proof. For any aao
∈ I(S�,So), where a ∈ Re1S ∩ S�, ao

∈ VSo (a), certainly, a ∈ VS� (ao) and so aao = ao�ao
∈

Λ(So,S�). Thus I(S�,So) ⊆ Λ(So,S�) and dually Λ(So,S�) ⊆ I(S�,So). Consequently, I(S�,So) = Λ(So,S�) and
we denote it by W. From the above definitions, it is clear that W ⊆ Io ∩Λ�.

Conversely, suppose that x ∈ Io ∩ Λ�. Since x ∈ Λ�, we have x = x�x for some x� ∈ VS� (x) with x� ∈ ES�

and so x� = xx�. Similarly, x ∈ Io implied that x = xxo for some co
∈ VSo (x) with co

∈ ESo and so xo = xox.
Let x�o ∈ VSo (x�). From co

L x R x� R x�x�o, by Lemma 2.2, we deduce that xo
R xox�x�o L x�x�o L x�o with

xox�x�o ∈ EoIo ⊆ Eo since So is a quasi-ideal and S satisfies the regularity condition. Thus xo
L x�oxo

R x�o.
Certainly, xo

R xox�L x� and so by Lemma 2.2, x�oR x�oxox�L xox� and x�oxox� H̃x�ox� ∈ Io∩Λ�. Consequently,
x�x�oxo

Hx and so x�x�oxo = x since x ∈ E and x�x�o · xo
∈ IoEo

⊆ E. Also (x�oxox�)2 = x�oxo(x�x�oxo)x� =
x�oxoxx� = x�oxox� and x�oxox� ∈ E. Therefore

x� · x�oxo
· x� = xx� = x� and x�oxo

· x� · x�oxo = x�oxox = x�oxo

and so x�oxo
∈ VSo (x�). Hence x = x� · x�oxo

∈ I(S�,So) = W.

Theorem 4.5 Let S� and So be quasi-ideal quasi-Ehresmann transversals of the semi-abundant semigroup S satisfies
conditions (CR) and (CL) and satisfies the regularity condition. Then S�So is a quasi-ideal quasi-Ehresmann
transversal of S.

Proof. It is evident that S�So is a subsemigroup and a quasi-ideal of S. For any x ∈ S�So, there
exist s� ∈ S�, to

∈ So such that x = s�to. It follows from So is a quasi-ideal of S and Lemma 4.3 that
es� (s� fs�eto )+

∈ Is�to = Ix and we denote it by ex. It is obvious that is� ∈ ES� since s� ∈ S� and so from
es�R̃is� ∈ ES� we deduce that es� ∈ Io ∩ Λ�. Thus by Theorem 4.4 there exists a ∈ Re1(S�) such that es� = aao

and so
ex = es� (s� fs�eto )+ = aao(s� fs�eto )+

∈ S�So.

Similarly, λx ∈ S�So. Thus ex, λx ∈ ES�So , and so from exR̃xL̃λx we deduce that S�So is semi-abundant. It is a
routine matter to show that exR̃(S)xL̃(S)λx, thus S�So is a ∼-semi-abundant subsemigroup of S.

Let e be an idempotent of S�So. Then e = as for some a ∈ S�, s ∈ So. Since (asa)(sas)(asa) =
asa, (sas)(asa)(sas) = sas and sas ∈ So, we have sas ∈ VSo (asa), so that e = asasas = asa(asa)o. Since asa ∈ S�,
each idempotent of S�So is of the form bbo for some regular element b ∈ S�. Let e and f be idempotents of
S�So. Then e = bbo and f = cco for some regular elements b, c ∈ S� with bo

∈ VSo (b) and co
∈ VSo (c). For any

l ∈ Eo, by the regularity condition, lcco is regular and so lcco
∈ E since So is a quasi-Ehresmann transversal of

the semi-abundant semigroup S satisfies conditions (CR) and (CL). Thus lcco
∈ E∩ So = Eo since So is also a

quasi-ideal of S. Therefore e f = bbocco = bbo(bo∗cco) ∈ IoEo
⊆ E and S�So is a quasi-Ehresmann semigroup.

For any x ∈ S, there exist a, b ∈ Re1S such that ex = aao, λx = b�b, where ao
∈ VSo (a), b� ∈ VS� (b). Thus

x = exxλx = aaoxb�b = aao(ao�aoxb�b�o)b�b,

where ao�
∈ VS� (ao), b�o ∈ VSo (b�), and consequently,

ex = aao
Lao�ao

∈ ES�So , λx = b�bRb�b�o ∈ ES�So .

Since ao�aoxb�b�oλx = ao�aoxλx = ao�aox, we have ao�aoxb�b�oR̃ao�aox. From xR̃ex and R̃ is a left congruence
we deduce that

ao�aox R̃ ao�aoex = ao�ao
∈ ES�So .

Similarly,
ao�aoxb�b�o L̃ xb�b�o L̃ b�b�o ∈ ES�So .

Consequently, x = ex(ao�aoxb�b�o)λx with ex, λx ∈ E, exL(ao�aoxb�b�o)+ = ao�ao
∈ ES�So and λxR(ao�aoxb�b�o)∗ =

b�b�o ∈ ES�So . Therefore, S�So is a generalized quasi-Ehresmann transversal of S.
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For regular elements c ∈ S, d ∈ S�So, take c′ ∈ VS�So (c), d′ ∈ VS�So (d), then by Lemma 4.2, there exist
c� ∈ VS� (c), co

∈ VSo (c), d� ∈ VS� (d), do
∈ VSo (d), such that c′ = c�cco, d′ = d�ddo. Since d ∈ S�So, do

∈ VSo (d),
we have d ∈ VS�So (do). By Lemma 4.2, there exist (do)� ∈ VS� (do), (do)o

∈ VSo (do), such that d = (do)�do(do)o.
So

c′cdd′ = c�ccocdd�ddo = c�cddo = c�c(do)�do(do)odo = c�c(do)�do
∈ Λ�Λ� ⊆ Λ�,

and c′cdd′ is idempotent. On the other hand,

dd′c′c = dd�ddoc�ccoc = ddoc�c = (do)�do(do)odoc�c = (do)�doc�c ∈ Λ�Λ� ⊆ Λ�,

and dd′c′c ∈ E. Thus
cdd′c′cd = c · c′cdd′ · c′cdd′ · d = cc′cdd′d = cd,

d′c′cdd′c′ = d′ · dd′c′c · dd′c′c · c′ = d′dd′cc′c = d′c′,

and so VS�So (d)VS�So (c) ⊆ VS�So (cd). Similarly, VS�So (c)VS�So (d) ⊆ VS�So (dc).
It follows from Theorem 3.2 that S�So is a quasi-Ehresmann transversal. Since S�So is a quasi-ideal,

therefore S�So is a quasi-ideal quasi-Ehresmann transversal of S.

Theorem 4.6 Let S be a semi-abundant semigroup satisfying conditions (CR) and (CL) and the the regularity
condition. If S has a quasi-ideal quasi-Ehresmann transversal, then all quasi-ideal quasi-Ehresmann transversals of
S form a rectangular band.

Proof. If So is a quasi-ideal quasi-Ehresmann transversal of S, then SoSo = So. To see this, for so
∈

So, so = so(so)∗ ∈ SoSo, hence So
⊆ SoSo and the reverse inclusion is obvious. By Theorem 4.5, all quasi-ideal

quasi-Ehresmann transversals of S form a semigroup and so form a band.
Let So,S�,S� be arbitrary three quasi-ideal quasi-Ehresmann transversals of S. For any ao

∈ So, x ∈ S, b� ∈
S�, we have

aoxb� = aoxeb� (b�)+b� ∈ SoSSSoS� ⊆ SoS�, aob� = ao(ao)∗b� ∈ SoSoS� ⊆ SoSS�,

where b�R̃eb� ∈ E and eb�L(b�)+
∈ Eo. Thus SoSS� = SoS� and so SoS�S� ⊆ SoSS� = SoS�. For every

ao
∈ So, b� ∈ S�, then

aob� = ao fao ( fao )� fao b� ∈ SoSS�SS� = SoS�S�,

with ( fao )� is an inverse in S� of fao . Thus SoS�S� = SoS� and therefore all quasi-ideal quasi-Ehresmann
transversals of S form a rectangular band.
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