
Filomat 33:7 (2019), 2031–2049
https://doi.org/10.2298/FIL1907031G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Approximation of Metric Spaces by Reeb Graphs:
Cycle Rank of a Reeb Graph, the Co-rank of the Fundamental Group,

and Large Components of Level Sets on Riemannian Manifolds

Irina Gelbukha

aCIC, Instituto Politécnico Nacional, 07738, Mexico City, Mexico

Abstract. For a connected locally path-connected topological space X and a continuous function f on
it such that its Reeb graph R f is a finite topological graph, we show that the cycle rank of R f , i.e., the
first Betti number b1(R f ), in computational geometry called number of loops, is bounded from above by the
co-rank of the fundamental group π1(X), the condition of local path-connectedness being important since
generally b1(R f ) can even exceed b1(X). We give some practical methods for calculating the co-rank of π1(X)
and a closely related value, the isotropy index. We apply our bound to improve upper bounds on the
distortion of the Reeb quotient map, and thus on the Gromov-Hausdorff approximation of the space by
Reeb graphs, for the distance function on a compact geodesic space and for a simple Morse function on a
closed Riemannian manifold. This distortion is bounded from below by what we call the Reeb width b(M)
of a metric space M, which guarantees that any real-valued continuous function on M has large enough
contour (connected component of a level set). We show that for a Riemannian manifold, b(M) is non-zero
and give a lower bound on it in terms of characteristics of the manifold. In particular, we show that any
real-valued continuous function on a closed Euclidean unit ball E of dimension at least two has a contour
C with diam(C ∩ ∂E) ≥

√
3.

1. Introduction

Given a topological space X, the Reeb graph R f of a continuous function f : X → R is a space obtained
by contracting the connected components of the level sets of f to points, endowed with the quotient
topology (see Section 2.1). It shows the evolution of the topology of the level sets, thus providing important
information on the behavior of the function. The Reeb graph was introduced in 1946 for Morse functions
on a compact manifold in the context of Morse theory [39]. Later it was used for study and classification
of more general types of functions, e.g., Morse-Bott functions or functions with isolated singularities on a
compact manifold [22, 27, 40].

The cycle rank, defined as the first Betti number b1(R f ), is an important invariant of the Reeb graph.
It reflects the complexity of the graph and appears in various bounds involving Reeb graphs [8, 30, 31].
Michalak [33] defined the Reeb number R(M) of a closed manifold M (see end of Section 3) as the maximum
cycle rank (which he calls number of cycles) of the Reeb graph of a smooth function with finitely many critical
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points on this manifold. He uses R(M) to characterize the set of graphs that can be realized as the Reeb
graphs of such functions.

In the 1990s, the notion of Reeb graph was generalized, under the name of foliation graph, from Morse
functions to Morse forms (closed 1-forms with Morse singularities) [28] and was extensively used to study
the foliations defined by such forms. Its cycle rank coincides with the number of homologically independent
compact leaves of the foliation [16]. This number gives a lower bound on the number of conic singularities
of the form [17], as well as an upper bound on the number of minimal components, which, in particular,
gives a condition for the foliation to have no minimal components [15]. In the latter case, the cycle rank of
the foliation graph gives an upper bound on the rank of the form [16].

The notion of Reeb graph also has important applications in computational geometry [4], where its cycle
rank b1(R f ) is known under the name of the number of loops of the Reeb graph [9, 20]. In machine learning
and big data analysis, graphs equipped with a metric derived from the data represent hidden structure in
complex data sets [14]; Reeb-type graphs are useful for approximating metric spaces, with the cycle rank
being used to bound such approximation [8, 30, 31] (see Section 5).

As a general quotient space, the Reeb graph can be quite ill-behaved: e.g., it may be non-Hausdorff or
even not one-dimensional topological space. The majority of existing studies are restricted to functions
on compact manifolds with some conditions of finiteness on the critical set, such as Morse or Morse-Bott
functions or functions with isolated critical points, under which the Reeb graph is a finite topological graph.
Polulyakh [36, 37] extends the study of Reeb graphs to non-compact surfaces, studying conditions on a
continuous function on such a surface under which its Reeb graph has a particularly simple structure, being
a locally finite one-dimensional space called graph with stalks. In this paper, we further consider general
topological spaces, not necessarily manifolds. However, we restrict our study to those continuous functions
whose Reeb graphs are finite topological graphs.

The cycle rank of the Reeb graph of a continuous function is widely believed to be bounded from above
by the first Betti number of the domain X of the function:

b1(R f ) ≤ b1(X). (1)

We show, however, that this “obvious” bound does not generally hold; this misconception has led some
authors to generally wrong statements (see Section 3). In fact, for even not too ill-behaved spaces and quite
well-behaved functions, the values b1(R f ) and b1(X) are completely unrelated (Proposition 3.2).

On the other hand, for well-behaved spaces and functions, including those typically used in practical
applications, we show a much stronger estimate. Namely, for a connected locally path-connected topological
space X and continuous function f : X → R whose Reeb graph R f is a finite topological graph, we show
that the the cycle rank b1(R f ) is bounded by the co-rank of the fundamental group of X (Theorem 3.1):

b1(R f ) ≤ b′1(X) def
= corank(π1(X)). (2)

This bound is tight in the class of smooth closed manifolds (Proposition 3.9).
We give some practical methods for calculation of the value b′1(X) for spaces composed from simpler ones

(Theorem 4.1). In turn, this value can be bound in terms of the so-called isotropy index h(X)—the maximum
rank of a subgroup in H1(X;Z) with trivial cup product; we also calculate h(X) for spaces composed from
simpler ones (Theorem 4.3) Some of these results have been previously reported for smooth (orientable)
manifolds; here we extend them to more general topological spaces.

As an application of our bound, we improve three estimates on the approximation of some compact
metric spaces by graphs. A compact connected length space X can be approximated by finite metric graphs
G under the Gromov–Hausdorff distance dGH(X,G) [6, Proposition 7.5.5] (see Section 2.4). While an arbitrary
such graph can be quite complex, the well-studied Reeb graphs of continuous functions are useful for this
purpose due to their simple structure. Mémoli and Okutan [31] studied how well a compact geodesic space
(X, d) can be approximated by graphs G with low enough b1(G) by bounding dGH(X,G) from below and from
above in terms of dGH(X,R f ) and b1(R f ), where R f is the Reeb graph for the distance function f = d(p, ·),
p ∈ X, under the assumption that R f is a finite topological graph. To estimate b1(R f ), the authors used the
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trivial bound (1). We show that using our bound (2) instead improves their result (Section 5.1), in some
cases by a large margin (Example 5.1).

Moreover, various works have been devoted to further bound the distance dGH(X,R f ) from above for
selected types of spaces and functions [8, 30, 43]. It is known [6, Theorem 7.3.25] that 2dGH(X,R f ) ≤ dis(ϕ),
the distortion of the Reeb quotient map ϕ : X → R f (Sections 2.1, 2.4). Chazal et al. [8] bounded dis(ϕ) in
terms of R f for the function f from [31] described above, while Mémoli and Okutan [30] bounded dis(ϕ) in
terms of b1(R f ) for a simple Morse function f on a closed Riemannian manifold M. To further estimate the
distortion dis(ϕ), and thus dGH(X,R f ), in terms of characteristics of the space X, the authors of both papers
used the trivial bound (1). Our bound (2) improves their results (Sections 5.2, 5.3), giving much stronger
estimates (Theorems 5.2,5.4) for some important spaces (Examples 5.3, 5.5, 5.6).

While the upper bounds guarantee the possibility of approximating the space by Reeb graphs with
certain quality, a lower bound independent from the function marks the limits on the best possible approx-
imation. We show (Proposition 5.8) that for a space containing a homeomorphic image of R2, the lower
bound on dis(ϕ) is positive; namely, we show that every real-valued continuous function on such a space
will have large enough contours.

We introduce the Reeb width of a metric space X (Definition 6.1), which guarantees that for any real-valued
continuous function on X, some contours will be sufficiently large:

b(X) = inf
continuous

f : X→R

sup
contours C of f

diam(C);

obviously, for the distortion of the Reeb map of any continuous function on X, it holds dis(ϕ) ≥ b(X). The
notion of Reeb width is closely related with that of one-dimensional Urysohn (Alexandrov) width u1(X),
but studying this relationship is left for future work.

For Riemannian manifolds, we give specific lower bounds on their Reeb width (roughly speaking, the
diameter of the largest contour of any real-valued continuous function) in terms of local (Proposition 6.4)
and global (Theorem 6.7, Corollary 6.8 ) characteristics of the manifold. The bound in terms of local
characteristics is important because in some cases the global characteristics provide too coarse information
(Examples 6.9, 6.10). For some spaces this bound is sharp (Example 6.6).

Finally, we refine an important result of Maliszewski and Szyszkowski [26] about diameters of contours
on disks. They have shown that any real-valued continuous function f on a unit disk E = En has a contour
C with diam(C) = 2 for n ≥ 3 and diam(C) ≥

√
3 for n = 2. We show that f will even have a contour C with

diam(C ∩ ∂E) = 2 or diam(C ∩ ∂E) ≥
√

3, respectively. This is trivial for n ≥ 3, so we give a proof for n = 2.
We also give a similar statement for an open disk.

The paper is organized as follows. In Section 2, we introduce some necessary notions and facts. In
Section 3, we give our main results on the cycle rank of the finite Reeb graph. In Section 4, we give some
practical methods for calculation of the co-rank of the fundamental group for topological spaces composed
of simpler ones. In Section 5, we apply our bound on the cycle rank of the Reeb graph to improve three
known bounds on the distortion of the Reeb quotient map. We also show that there is a non-zero lower
bound on the distortion, which in Section 6 we calculate for Riemannian manifolds in terms of their local
and global characteristics. We also show that every real-valued continuous function on a closed Euclidean
ball has a contour whose intersection with the boundary of the ball has large diameter.

2. Definitions and Useful Facts

In this section, we give some definitions and facts useful for the description of our main results.

2.1. Reeb Graph and Simple Morse Functions

Given a topological space X, by a contour of a map f : X→ Y we understand a connected component of
the level set f−1(y) for some y ∈ Y.
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The Reeb graph (called by some authors Kronrod-Reeb graph or Reeb quotient space) R f of a continuous
function f : X → R is the quotient space X/∼, the equivalence relation x ∼ y holding whenever x and y
belong to the same contour of f , endowed with the quotient topology. The quotient map ϕ : X → R f is
called the Reeb quotient map. The Reeb quotient map is continuous.

A smooth function on a smooth manifold is called a Morse function if all its critical points are non-
degenerate. The Reeb graph defined by a Morse function on a compact manifold is a finite topological
graph [39, Theorem 1].

A Morse function is called simple if each its critical level contains only one critical point; such functions
are also called excellent [30] or non-resonant [34]. The Reeb graph defined by a simple Morse function has
especially simple structure: its vertices have degree one or three. The set of simple Morse functions is dense
in the space of continuous functions and open in the space of smooth functions [3, Theorem 5.31], so it is
natural to use them for approximating.

Lemma 2.1. Let M be a connected smooth closed manifold M, and N ⊂ M a two-sided compact codimension-one
submanifold. Then connected components of N are contours of some simple Morse function f : M→ R.

Proof. Consider a metric on M. Consider a product neighborhood U = N × [0, 1] with N × 0 = N. Cutting
M open by ∂U results in two manifolds with boundary, Ũ and M̃, such that M is obtained by appropriately
gluing ∂Ũ with ∂M̃.

On M̃, one can choose a simple Morse function fM̃ close to the distance function from the boundary ∂M̃,
equal to zero on ∂M̃, and having no critical points on ∂M̃. Similarly, consider such a function fŨ on Ũ. Both
functions can be chosen in such a way that the functions fM̃ and − fŨ fit together smoothly into a simple
Morse function f on M, which has the desired properties.

2.2. Co-rank of the Fundamental Group
The co-rank of a finitely generated group G [23], also known as the inner rank [24], is the maximum rank of

a free homomorphic image of G. For a path-connected topological space X, we denote b′1(X) = corank(π1(X)).
This notation was introduced by Arnoux and Levitt [2] under the term “non-commutative Betti number;”
in case of 3-manifolds this value is called the cut-number [41]. If the fundamental group π1(X) is finitely
generated, as in the case of compact manifolds, then b′1(X) is finite. Obviously, b′1(X) ≤ b1(X). Some methods
of calculating b′1(X) can be found in Section 4 below.

Example 2.2. Denote by Tn an n-torus, by M2
1 = #1 T2 the closed orientable surface of genus 1, and by

N2
1 = #1RP2 a closed non-orientable surface. Then

b′1(Tn) = 1 [18], b1(Tn) = n;

b′1(M2
1) = 1 [23], b1(M2

1) = 21;

b′1(N2
1) =

[
1

2

]
[18, Eq. (4.1)], b1(N2

1) = 1 − 1.

Since a punctured surface is homotopy equivalent to a wedge of circles, its fundamental group is free. De-
noting by M2

1,h and N2
1,h the corresponding connected compact surfaces or with h ≥ 1 boundary components,

we have:

b′1(M2
1,h) = b1(M2

1,h) = 21 + h − 1 [9, p. 346];

b′1(N2
1,h) = b1(N2

1,h) = 1 + h − 1 [9, p. 347].

and similarly for the surfaces with h points removed.

Proposition 2.3 ([10, Theorem 1], quoted by [32, Remark 5.3]). Let M be a connected closed smooth manifold.
Then b′1(M) is the maximum number k of disjoint compact connected codimension-one submanifolds N1, . . . ,Nk ⊂M
such that each Ni has a product neighborhood and M \

⋃k
i=1 Ni is connected.
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Remark 2.4. For a connected smooth closed manifold M and a smooth function f : M → R, if f has k
contours N1, . . . ,Nk such that Ni ∩Crit( f ) = ∅ for all i and M \

⋃k
i=1 Ni is connected, then k ≤ b′1(M). Indeed,

the normal bundle defined by the gradient of f is trivial; thus the tubular neighborhood of a regular contour
is a product neighborhood.

The requirement for the submanifolds to have a product neighborhood is essential:

Example 2.5. For the real projective plane P = RP2, it holds H1(P) = Z/2Z and thus b′1(P) = b1(P) = 0.
However, its middle line γ0 is a submanifold that leaves P \ γ0 connected; see Figure 1. Note that γ0 does
not have a product neighborhood, since its normal bundle is non-trivial. It is a contour of the distance
function, d(γ0, ·) = 0, but 0 is a non-regular value of this function. A contour γ1 given by d(γ0, ·) = 1 is
regular, but P \ γ1 is not connected. By Remark 2.4, no regular contour γ of any continuous function on P
can leave P \ γ connected.

a

a

d

d

b

bγ0

γ1

γ1

Figure 1: P = RP2, shown as a square with identified opposite sides a and b with the corresponding orientation. The hatching on the
submanifold γ0 (solid line) shows that there is no continuous normal field on it; the hatching at one side of the submanifold γ1 (dotted
line) shows that it has a product neighborhood.

2.3. Isotropy Index
The isotropy index h(X) of a topological space X is the maximum rank of a subgroup in H1(X;Z) with

trivial cup-product.

Proposition 2.6. Let X be a path-connected topological space with a finitely generated fundamental groupπ1(X). Then

b′1(X) ≤ h(X) ≤ b1(X), (3)

where b′1(X) = corank(π1(X)) and b1(X) is the first Betti number.

While the proof can be obtained by generalizing [19, Proposition 39] to topological spaces, we give here
a shorter self-contained proof.

Proof. Consider an epimorphism π1(X) � Fb of the fundamental group onto a free group of b = b′1(X)
generators and the corresponding map ϕ : X� V, where V =

∨b
i=1 S1. The induced map Hom(π1(V),Z) ↪→

Hom(π1(X),Z) is injective. Since for any group G, homomorphisms G→ Z factor through its abelianization
G/[G,G], the latter rewrites as Hom(H1(V),Z) ↪→ Hom(H1(X),Z). For connected X and V, the universal
coefficient theorem gives ϕ∗ : H1(V;Z) ↪→ H1(X;Z). Since H2(V;Z) = 0, the cup product on ϕ∗H1(V;Z) ⊆
H1(X;Z) is zero. We obtain b = rank(ϕ∗H1(V;Z)) ≤ h(X).

The isotropy index can also be easily calculated or bounded using vector space-based techniques. For
a module R, denote by h(X; R) the maximum rank of a submodule in H1(X; R) with trivial cup-product
^ : H1(X; R) × H1(X; R) → H2(X; R); note that h(X) = h(X;Z). By [19, Lemma 7], for a space X we can
consider cohomology with coefficients in a field:

h(X) = h(X;Q). (4)
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Proposition 2.7. Under the conditions of Proposition 2.6, denote b1 = b1(X) and b2 = b2(X) the Betti numbers and
k = dim ker^, where ^: H1(X) ×H1(X)→ H2(X) is the cup product. Then

b1 + kb2

b2 + 1
≤ h(X) ≤

b1b2 + k
b2 + 1

;

in particular, if b2(X) = 1, then h(X) = 1
2 (b1 + k). If ^ is surjective, then h(X) ≤ k + 1

2 +
((

b1 − k − 1
2

)2
− 2b2

) 1
2

.

Indeed, by (4), it is enough to apply [29, Propositions 1–3] to the vector spaces Hi(X;Q). A similar fact
for manifolds has been given as [19, Proposition 16]. That paper gives more details on calculation of the
isotropy index for manifolds and on its geometric meaning.

2.4. Distortion of a Map and the Gromov–Hausdorff Distance

The distortion of a map ϕ : X→ Y between metric spaces (X, dX) and (Y, dY) is defined as

dis(ϕ) = sup
x,x′∈X

|dX(x, x′) − dY(ϕ(x), ϕ(x′))|.

The Hausdorff distance between two subsets A and B of a metric space is

dH(A,B) = inf{ r > 0 | A ⊆ Ur(B) and B ⊆ Ur(A) },

where Ur is the r-neighborhood of a set in the metric space [6, Definition 7.3.1].
The Gromov–Hausdorff distance dGH(X,Y) between metric spaces X and Y is the infimum of r > 0 for

which there exist a metric space Z and its subspaces X′ and Y′ isometric to X and Y, respectively, such that
dH(X′,Y′) < r [6, Definition 7.3.10]. The Gromov–Hausdorff distance measures how far two compact metric
spaces are from being isometric.

If ϕ is surjective, then for the Gromov-Hausdorff distance between X and Y it holds dGH(X,Y) ≤
1
2 dis(ϕ) [6, Theorem 7.3.25]. In particular, for the Reeb quotient map ϕ, we have

dGH(X,R f ) ≤
1
2

dis(ϕ).

2.5. Thickness of a Function

The thickness of a function, introduced by Mémoli and Okutan [30, Section 5], indicates how the volume
of the level sets is distributed with respect to their diameters. Namely, given a smooth function f : M→ R
on an n-dimensional manifold M, the thickness T f of f is the infimum of the (n− 1)-thickness of its contours.
Here, the k-thickness of a path-connected metric space N is

Tk
N =

µk(N)
(diam(N))k

,

where µk(N) denotes the k-dimensional Hausdorff measure on N. For any smooth function f on a surface,
it holds T f ≥ 1 [30, Remark 5.4], whereas this does not hold for n ≥ 3.

2.6. Level Sets and Riemannian Manifolds

Proposition 2.8 ([26, Theorems 3.6, 3.8]). Let En
⊂ Rn, n ≥ 2, be a closed unit ball and f : En

→ R a continuous
function. Then there exists a contour C of f with

(i) n = 2: diam(C) ≥
√

3,
(ii) n ≥ 3: diam(C) = 2.
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The k-dimensional Urysohn width (called also Alexandrov width or Urysohn diameter diamk(X), and
sometimes referred to as Uryson width [21]) of a metric space X, which, among equivalent definitions, is
defined [26] as

uk(X) = inf
Yk

ϕ : X→Yk

sup
level sets L of ϕ

diam(L), (5)

where Yk runs over all k-dimensional simplicial complexes and ϕ over all continuous functions. We are
interested in lower bounds on u1(X). While the Urysohn width of a Riemannian manifold M has been
mostly studied in the context of codimension one and of bounding it from above [21], some lower bounds
are known. Obviously,

uk(M) ≥ uk+1(M), (6)

so lower bounds on higher-dimensional widths are useful for our case. G. Perelman has shown that for
closed Riemannian manifolds with non-negative sectional curvature, the Urysohn width is related with the
volume:

c(n) vol(M) ≤
n−1∏
k=0

uk(M) ≤ C(n) vol(M)

for some positive constants c(n) and C(n) (quoted by [5, Section 8.4]), which together with (6) implies

u1(M) ≥ n−1

√
c(n)

vol(M)
diam(M)

. (7)

In the remainder of this subsection, M denotes a Riemannian manifold.
By sec(p) we denote the sectional curvature (Gaussian curvature for dim M = 2) at a point p ∈ M. For a

subset U ∈M we define sec(U) = supp∈U sec(p).
By SK we denote the model surface of constant Gaussian curvature K: for K = 0 this is the Euclidean

plane R2, for K > 0 a sphere S2, for K < 0 a hyperbolic plane H2.
The following fact is adapted from a part of the Cartan–Alexandrov–Toponogov comparison theorem

for small triangles:

Theorem 2.9 ([6, Theorem 6.5.6]). Let M be a 2-dimensional Riemannian manifold. Let U ⊂ M be such that for
any x,u ∈ U there exists a shortest path [xy] in M that lies entirely in U.1) Let the Gaussian curvature sec(U) ≤ K.
Let a, b, c ∈ U and a′, b′, c′ ∈ Sk, with the distances d(a, c) = d(a′, c′), d(b, c) = d(b′, c′) and the angles between the
geodesic segments ∠acb = ∠a′c′b′ at c′. Then d(a, b) ≥ d(a′, b′).

The exponential map expp : E→M, E ⊆ TxM, where M is a Riemannian manifold, is defined as expp(x) =

1(1), where 1 : R→M is a geodesic with 1(0) = p, 1′(0) = x.
The injectivity radius inj(p) at p ∈M is the radius of the largest geodesic ball around p on which expp is a

diffeomorphism. We denote inj(M) = infp∈M{ inj(p) }.
A ball B ⊆ M around p ∈ M is convex if the distance d(·, p) is convex on B, i.e., has non-negative definite

Hessian.
The convexity radius conv. rad(p) at p ∈M is the largest radius of a ball B around p that is convex and any

two points in B are joined by a shortest geodesic segment lying in B [35]. Note that B satisfies the conditions
on U in Theorem 2.9. We denote conv. rad(M) = infp∈M conv. rad(p).

Proposition 2.10 ([35, p. 259]). Let M be a compact Riemannian manifold and K = sec(M). Then

(i) K > 0: conv. rad(M) ≥ min
{

1
2 inj(M), π

2
√

K

}
,

(ii) K ≤ 0: conv. rad(M) = 1
2 inj(M).

1)In [6], the set U is called convex, but their use of this term differs from our definition below, so we used [6, Definitions 1.1.1 ff.,
2.1.10 ff., 3.6.5] for its interpretation.
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3. Cycle Rank of a Finite Reeb Graph

The cycle rank, called also number of cycles or number of loops, of the Reeb graph R f is its first Betti number
b1(R f ). We will be interested in those functions whose Reeb graph R f is a finite topological graph, as is
the case for important classes of functions, such as smooth functions with isolated connected components
of the critical set (including Morse functions, as well as Morse-Bott functions and functions with isolated
critical points) on compact manifolds with possible boundary.

The following bound first appeared in [20, Theorem 13] for any smooth function but only on orientable
manifolds:

Theorem 3.1. Let X be a connected locally path-connected topological space and f : X → R a continuous function
whose Reeb graph R f is a finite topological graph. Then for the cycle rank b1(R f ) it holds

b1(R f ) ≤ b′1(X), (8)

where b′1(X) = corank(π1(X)).

Proof. For a quotient map ϕ : (X, x0) → (Y, y0) of topological spaces, where X is locally path-connected
and Y is semilocally simply-connected, Calcut et al. [7, Theorem 1.1] showed that if each fiber ϕ−1(y) is
connected, then the induced homomorphism ϕ∗ : π1(X, x0) → π1(Y, y0) is surjective. A connected locally
path-connected space is path-connected, so π1(X) is defined unambiguously. For Y = R f , we obtain
corank(π1(X)) ≥ rank(π1(R f )) = b1(R f ) since π1(R f ) is a free group.

Note that in Section 2.2 we defined b′1(X) only for path-connected spaces. If we relax this requirement
in the definition of b′1(X) by, say, summation by the path-connected components, then the requirement for
the space to be connected can be relaxed in Theorem 3.1.

On the other hand, the bound (8) implies a bound

b1(R f ) ≤ b1(X), (9)

which is widely believed to be obvious for any continuous function on any topological space, as implied,
e.g., in [13, §VI.4, p. 141] or [9, Eq. (1)]. However, as Examples 3.3 and 3.5 below show, the requirement for
the space to be locally path-connected is essential for the bounds (8) and even (9) to hold:

p

W

R2

Figure 2: Embedding of the Warsaw circle W intoR2, with the source point p. The Reeb graph of the distance function d(p, ·) is a circle,
whereas W has no simple closed curves.

Proposition 3.2. Let r, b be any non-negative integers. There exist a topological space X and a continuous function
f : X→ R such that for the cycle rank of the Reeb graph R f and the first Betti number of X it holds

b1(R f ) = r, b1(X) = b.

The space can be chosen to be a path-connected metric space (X, d) and the function can be chosen as
the distance function f = d(p, ·) for some p ∈ X defining the Reeb graph R f that is a finite topological graph.
We will need these properties in Section 5.2. Note that in our examples it holds b′1(X) = b1(X).
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Example 3.3. Consider a Warsaw circle W as a metric subspace ofR2 shown in Figure 2, with p at the origin
and f = d(p, ·). It is easy to see that b1(W) = 0 whereas R f is a circle: b1(R f ) = 1, which contradicts (9). Note
that W is not locally connected.

Example 3.4. Consider a metric subspace Θ = { x2
1 + x2

2 = 1 } ∪ [p, (1, 0)] ⊂ R2 with p at the origin; then
b1(Θ) = 1. For the distance function f = d(p, ·), R f is a segment: b1(R f ) = 0, with inequality in both (8)
and (9).

Example 3.5. Given arbitrary r, b ∈ N, consider the wedge sum X of r copies of W and b copies of Θ from
the examples above, joined by the source point p. Then b1(R f ) = r and b1(X) = b, where f = d(p, ·) is the
distance function. Note that X is a compact path-connected metric space and the Reeb graph R f is a finite
topological graph.

The effect might disappear and the requirement for the space to be locally path-connected might be
redundant for the bound (9) to hold in a different homology theory, such as Čech homology, related to the
shape theory, but we did not check this.

On the other hand, the requirement for the space to be locally path-connected is sufficient but not
necessary for (8) to hold for the distance function:

Example 3.6. Consider a path-connected subset S ⊆ { x ∈ Rn
|
∑

x2
i = 1 }, a point s ∈ S, and X = S ∪ [0, s] as

a metric subspace of Rn. As in Example 3.4, for f = d(0, ·) the Reeb graph R f is a segment, even though X
can be a very ill-behaved space, such as the Warsaw circle from Example 3.3.

While inequality in (9) holds for many manifolds—see, e.g., Example 2.2,—for a typical continuous
function on an orientable surface, such as simple Morse function [9, Lemma A], or even for a wider class
of Morse functions [20, Theorem 9], the bound (8) turns into equality. Still inequality in (8) can hold for the
distance function on a quite nice space:

Example 3.7. Consider a torus T2 = R2/Z2 with the metric induced from R2. For the distance function
f = d(0, ·), we have 0 = b1(R f ) < b′1(T2) = 1.

Theorem 3.1 can also be used as a bound on b′1(X):

Example 3.8. The Hawaiian earring H is a union of countably many decreasing circles. Its fundamental
group π1(H) is uncountable and not free [11]. A torsion-free group, such as Q, can have zero co-rank.
However, corank(π1(H)) is at least countably infinite. Indeed, consider a continuous function f : H → R
that is constant in a neighborhood U of the “bad” point and is a height function outside U; see Figure 3.
Then R f is a finite topological graph; thus (8) gives b′1(H) ≥ b1(R f ). The latter can be made arbitrarily large
by choosing small enough U.

For connected smooth closed manifolds, the bound (8) is tight even in the class of simple Morse functions:

Proposition 3.9. Let M be a connected smooth closed manifold. There exists a simple Morse function f : M → R
defining the Reeb graph R f with the cycle rank

b1(R f ) = b′1(M).

Proof. Since M is compact, the fundamental group π1(M) is finitely generated, so b′1(M) is finite. By Propo-
sition 2.3, there exist k = b′1(M) disjoint compact connected codimension-one submanifolds N1, . . . ,Nk ⊂ M
such that each Ni has a product neighborhood and M \

⋃k
i=1 Ni is connected.

By Lemma 2.1, there exists a simple Morse function f : M → R such that all Ni are its contours. Since
M \

⋃k
i=1 Ni is connected, the number of cuts of the Reeb graph R f is at least k, so b1(R f ) ≥ k. On the other

hand, Theorem 3.1 gives b1(R f ) ≤ k. Thus b1(R f ) = b′1(M).
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R f

H
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ϕ

ϕ

Figure 3: Left: the Hawaiian earringH with a continuous function f : H→ R that is constant in the grayed area U and is the height
function outside U; ϕ is its Reeb quotient map. Right: the Reeb graph R f is a finite topological graph.

For the case of dim M ≥ 3, Michalak [32, Theorem 4.7, Corollary 5.4] has recently shown a stronger fact:
in the conditions of Proposition 3.9, for every b = 0, . . . , b′1(M) there exists a said function with b1(R f ) = b.

Michalak [33] introduced the notion of the Reeb number R(M) of a smooth closed manifold M as the
maximum cycle rank (he uses the term number of cycles) among all Reeb graphs of smooth functions on
M with finitely many critical points. As we have just seen (see also [32, Corollary 5.4]), it always holds
R(M) = b′1(M). However, one can extend the notion of the Reeb number to an arbitrary topological space as
the maximum cycle rankR(X) among all Reeb graphs of continuous functions f on X with the Reeb graph R f
being a finite topological graph. Example 3.3 shows a connected but not locally path-connected space with
R(X) > b′1(X). Example 3.8 shows a compact connected locally path-connected spaceHwith R(H) = ∞.

4. Calculation of the Co-rank of the Fundamental Group

Our results involve the value b′1(X) = corank(π1(X)). Unlike rank, the co-rank is known to be algorith-
mically computable for finitely presented groups [25, 38]. While we are not aware of any simple method of
finding b′1(X) for an arbitrary space, it can be easily calculated for spaces constructed from simpler ones:2)

Theorem 4.1. Let X1,X2 be path-connected topological spaces with finitely generated fundamental groups π1(Xi).
Then for the direct product, the union, the wedge sum, and the connected sum it holds:

(i) b′1(X1 × X2) = max{ b′1(X1), b′1(X2) };
(ii) b′1(X1 ∪ X2) = b′1(X1) + b′1(X2) if both Xi are open in X1 ∪ X2 and ∅ , X1 ∩ X2 is simply connected;

(iii) b′1(X1 ∨ X2) = b′1(X1) + b′1(X2) if the based topological spaces (Xi, pi) are locally contractible at pi ∈ Xi;
(iv) b′1(M1 # M2) = b′1(M1) + b′1(M2) for M1,M2 being closed orientable surfaces3) or connected n-manifolds with

(possibly empty) boundary, n ≥ 3, with finitely generated fundamental group (e.g., compact manifolds).

Proof. (i) follows from π1(X1×X2) � π1(X1)×π1(X2) along the lines of [18, Theorem 3.1]. (ii) The Seifert–van
Kampen theorem givesπ1(X1∪X2) � π1(X1)∗π1(X2), while for finitely generated groups, [24, Proposition 6.4]
states corank(G1 ∗G2) = corank(G1) + corank(G2). (iii) can be reduced to (ii) by extending each Xi ⊂ X1 ∨X2
by a small neighborhood of p, where p denotes the identified points p1 and p2. (iv) is similar to (ii) for n ≥ 3;
for closed orientable surfaces M2

1 of genus 1, it is verified directly since b′1(M2
1)=g [23].

For example, the values of b′1 given in Example 2.2 for Tn = ×n S1 and M2
1 = # 1 T2 can be calculated using

this theorem. More details on the calculation of b′1(M) for different manifolds can be found in [18].

2)Some of the facts given in this section have been stated for smooth manifolds, and some only for the orientable case, in [18,
Theorem 3.1], [19, Theorems 21, 27], and [24, Proposition 6.4]. Here we extend them to more general topological spaces, and also
consider a union and wedge sum of spaces. The facts about manifolds are given here for completeness.

3)For the case of non-orientable surfaces and surfaces with boundary, see Example 2.2.



I. Gelbukh / Filomat 33:7 (2019), 2031–2049 2041

In Theorem 4.1 (i) (and Theorem 4.3 (i) below), the direct product cannot be replaced with arbitrary
fiber bundle: for instance, S3 is a fiber bundle of S1 over S2. Example 2.2 shows that the conditions in
Theorem 4.1 (iv) (and Theorem 4.3 (iv) below) for the surface to be closed and orientable are essential.
While there exist path-connected topological spaces with finitely-generated fundamental group that are not
locally contractible at a point (e.g., a cone over the Hawaiian earring), we currently do not know whether
the condition for the spaces to be locally contractible at the points pi in Theorem 4.1 (iii) is essential.

In the real world (and in computational geometry), shapes often have variable dimension: a table with
legs or a cup with a handle. Also, there are joining operations more general than wedge or connected sum:
a cup is joined to the table by its bottom. Theorem 4.1 can be generalized to a wider range of operations:

Remark 4.2. One can generalize the wedge sum to gluing by a larger subset with corresponding conditions
on (local) contractibility. One also can generalize the connected sum to arbitrary topological spaces with a
neighborhood homeomorphic to Rn. Then Theorem 4.1 will hold for such operations.

For some spaces X, the value b′1(X) is bounded from above by the isotropy index h(X), which is easier to
calculate; see Section 2.3. In turn, we can derive for h(X) equations similar to those from Theorem 4.1:

Theorem 4.3. Under the same conditions as in Theorem 4.1 on each equation, it holds

(i) h(X1 × X2) = max{ h(X1), h(X2) },
(ii) h(X1 ∪ X2) = h(X1) + h(X2),

(iii) h(X1 ∨ X2) = h(X1) + h(X2),
(iv) h(M1 # M2) = h(M1) + h(M2).

For (ii), instead of X1 ∩ X2 being simply connected, it is enough to require H1(X1 ∩ X2;Q) = 0.

Proof. By (4), (i) can be obtained along the lines of [19, Theorem 27]. For (ii), since X1∩X2 is simply connected,
we have H1(X1 ∩ X2;Q) = 0. The Mayer–Vietoris sequence gives H1(X1 ∪ X2;Q) = H1(X1;Q) ⊕ H1(X2;Q);
the cup product translates into component-wise product. Applying [19, Lemma 20] to these vector spaces
gives (ii). Now (iii) and (iv), as in Theorem 4.1, can be reduced to (ii). For the orientable surfaces M2

1, (iv) is
verified directly since h(M2

1) = 1; see, e.g., Proposition 2.7.

Given the similarity between Theorems 4.1 and 4.3, for many classical manifolds, as well as their
connected sums and the directed products, it holds b′1(M) = h(M), though strict inequality in (3) is also
possible [19, Example 41]. Theorem 4.3 can also be generalized along the lines of Remark 4.2.

5. Approximation of Spaces by Graphs and Bounds on the Distortion of the Reeb Quotient Map

Theorem 3.1 can be used to improve bounds on the approximation of some spaces by simple enough
graphs, and in particular by Reeb graphs, as well as on the distortion of the Reeb quotient map. We will
apply it to the distance function on a geodesic space and to a simple Morse function on a Riemannian
manifold (we assume all Riemannian manifolds to be smooth), where our bound (8) provides considerably
better estimates than the trivial bound (9) used by previous authors.

5.1. Approximation of a Compact Geodesic Space by Metric Graphs

Let (X, d) be a compact geodesic space such that b1(X) is finite, and the source point p ∈ X be such that
the Reeb graph R defined by the distance function d(p, ·) is finite. It is known that

δX
i = inf{ dGH(X,G) | G is a finite metric graph with b1(G) ≤ i } → 0 (10)

when i → ∞ [6, Proposition 7.5.5]. However, for practical applications, such as those in computational
geometry [4], it is very important to know how fast this sequence starts to converge: whether X can be
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approximated well by graphs simple enough for real-life computation. Studying the rate of convergence
of this sequence with small i, Mémoli and Okutan [31, Theorem 1.2] found the bounds

1
16i + 12

ρ ≤ δX
i ≤ ρ, if i ≥ b, (11)

1
16b + 12

ρ ≤ δX
i ≤ ρ + 6(b + 1)aX

i+1 if i < b, (12)

where ρ = dGH(X,R), the aX
1 ≥ aX

2 ≥ . . . are the lengths of the intervals in the first persistent barcode of
the open Vietoris-Rips filtration of X [31, Section A.2], and effectively b = b1(R). However, in terms of the
characteristics of the space they report their results with b = b1(X) using the trivial bound (9). Changing
their b = b1(X) to b = b′1(X) implied by our bound (8) improves this estimate:

Example 5.1. For n-torus Tn, with b = b1(Tn) = n and b′1(Tn) = 1, for any i > 0 our bound gives (11),
while [31] uses for i < n the much weaker estimate (12): for instance, for i = 1, we obtain much tighter
estimate 1

28ρ ≤ δ
X
i ≤ ρ than their 1

16n+12ρ ≤ δ
X
i ≤ ρ + 6(n + 1)aX

2 . This reflects the intuition, missed by the
expression as reported in [31, Theorem 1.2], that even a very high-dimensional torus can be approximated
by a circle-like graph.

5.2. Bound on the Distortion: The Case of the Distance Function

Chazal et al. [8, Propositions 1 and 2] considered a compact geodesic space (X, d) and a function f : X→ R
that is the distance f = d(p, ·) from a source point p ∈ X. For the distortion of the Reeb quotient map ϕ, they
showed that if the Reeb graph R f is a finite topological graph, then

dis(ϕ) ≤ 2(b1(R f ) + 1)D, (13)

where D is the supremum of the diameters of contours of f .
As to estimating dis(ϕ) in terms of topological characteristics of the space X itself, they only mentioned

the bound (9), which does hold for geodesic spaces since they are locally path-connected [1, Corollary 2.1].
However, our Theorem 3.1 applied to (13) gives a much stronger bound:

Theorem 5.2. Let (X, d) be a compact geodesic space, p ∈ X, and f : M → R the distance function f = d(p, ·). Let
the Reeb graph R f be a finite topological graph. Then for the distortion of the Reeb quotient map ϕ it holds

dis(ϕ) ≤ 2(b′1(X) + 1)D,

where b′1(X) = corank(π1(X)) and D is the supremum of the diameters of contours of f . In particular, for the
Gromov-Hausdorff distance, it holds

dGH(X,R f ) ≤ (b′1(X) + 1)D.

Example 5.3. For n-torus Tn, our bound gives dis(ϕ) ≤ 4D, see Example 2.2, whereas the bound (9) referred
to by Chazal et al. [8] only gives dis(ϕ) ≤ 2(n + 1)D. For the closed surface M2

1 of genus 1, we obtain
dis(ϕ) ≤ 2(1 + 1)D, whereas (9) gives dis(ϕ) ≤ 2(21 + 1)D.

It is essential both for the bound (9) and for our stronger bound (8) that the considered space is locally
path-connected. As Example 3.5 shows, otherwise the homology of the space X does not provide any useful
information on the cycle rank of R f even for the distance function.
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5.3. Bound on the Distortion: The Case of a Simple Morse Function
Let M be a closed connected n-dimensional Riemannian manifold, n ≥ 2, with the distance function

d(·, ·), and f : M→ R an L-Lipschitz simple Morse function. Consider p ∈M and denote

B(b) = 4(b + 1)2

( 2L
b + 1

·
µn(M)

T f

) 1
n

+ 8
(
(diam(M))

1
n ε

n−1
n

p + εp

) + |L − 1|diam(M),

where T f is the thickness of f described in Section 2.5, µn is the n-dimensional Hausdorff measure on M,
and εp =

∥∥∥ f − d(p, ·)
∥∥∥
∞

.

Theorem 5.4. Let R f be the Reeb graph of f and ϕ : M→ R f the Reeb quotient map. Then for the metric distortion
of ϕ it holds:

dis(ϕ) ≤ B(b′1(M)), (14)

where b′1(M) = corank(π1(M)). In particular, for the Gromov-Hausdorff distance, it holds

dGH(X,R f ) ≤
1
2

B(b′1(M)).

Note that under the conditions of the theorem the Reeb graph R f is a finite topological graph [39,
Theorem 1].

Proof. The proof of [30, Proposition 4.4] implies that, similarly to (13),

dis(ϕ) ≤ (2b1(R f ) + 1)(D + 4εp) + |L − 1|diam(M), (15)

where D is the supremum of the diameters of contours of the function f . In turn, the proof of [30, Proposition
6.2] implies a bound

D ≤
(
2n+1kn−1L ·

µn(M)
T f

) 1
n

+ 8k
(
(diam(M))

1
n ε

n−1
n

p + εp

)
, (16)

where k is the minimum number such that for any k regular contours N1, . . . ,Nk of f , the set M \
⋃k

i=1 Ni is
disconnected. Applying Theorem 3.1 to b1(R f ) in (15) and Remark 2.4 to k in (16), we obtain (14).

Mémoli and Okutan [30, Theorem 1.1] used coarser bounds b1(R f ) ≤ b1(M) and k ≤ b1(M)+1 [30, Lemma
2.7] and obtained a bound

dis(ϕ) ≤ B(b1(M)). (17)

Since b′1(M) ≤ b1(M) and B(b) grows with b, our bound (14) implies (17), in many cases being much tighter.
Indeed, simple Morse functions are dense in the space of continuous functions on a closed manifold.
Consider distance-like simple Morse functions, i.e., assume small εp and thus L close to 1. Denoting
Mémoli and Okutan’s bound by B = B(b1(M)) and our bound by B′ = B(b′1(M)), both with εp = 0 and L = 1,
for such functions we have

B
B′

=

(
b1(M) + 1
b′1(M) + 1

)2− 1
n

.

Example 2.2 and Section 4 show that this ratio is often quite significant:

Example 5.5. For an n-torus, b1(Tn) = n, while b′1(Tn) = 1, which gives B
B′ =

(
n+1

2

)2− 1
n . For n ≥ 3, our bound

is more than twice tighter; for n� 1, the improvement is by almost 1
4 n2.
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Example 5.6. For the closed surface M2
1 of genus 1, we have b1(M2

1) = 21, while b′1(M2
1) = 1, so B

B′ = (2− 1
1+1 )

3
2 .

For 1 ≥ 2, our bound is more than twice tighter; for 1� 1, the improvement is by almost 2
3
2 ≈ 2.8.

For M2
1, substituting 6 for 4

√
2 to compensate for εp and L, our bound

dis(ϕ) ≤ 6(1 + 1)
3
2

√
µ2(M2

1)

coincides with the one previously obtained by Zinov’iev [43, Proposition 3.1].

5.4. Bounds from Below

Upon discussing the upper bounds on the distortion dis(ϕ) for the Reeb quotient map, one can wonder
how well a metric space can be approximated by the Reeb graphs of continuous functions.

Some spaces can be approximated arbitrarily well even by Reeb graphs that are finite graphs:

Example 5.7. In the following examples, we assume that the spaces are equipped with the intrinsic metric
obtained from the metric induced by a suitable embedding of the space into Rn.

For a finite topological graph G, p ∈ G, and f (·) = d(p, ·), it holds R f � G, i.e., dis(ϕ) = 0. For the Hawaiian
earringH and the function f being the distance function from a ball Br (grayed area in Figure 3) of radius
r around the “bad” point p, we have dis(ϕ) , 0 since R f , H, but dis(ϕ) → 0 when r → 0. Note that for
f (·) = d(p, ·), we have dis(ϕ) = 0, but R f is not a finite graph.

By (10), all good enough spaces can be arbitrarily well approximated by finite graphs; however, not in
all cases by Reeb graphs. Considering only continuous functions whose Reeb graphs are finite topological
graphs (which are one-dimensional simplicial complexes), the distortion of the Reeb quotient map ϕ : X→
R f is bounded by

dis(ϕ) ≥ u1(X),

the one-dimensional Urysohn width (5), which in turn in some cases can be bounded by characteristics of
the space, e.g., the volume in the case of a Riemannian manifold; see (7). In the general case of a continuous
function f , it holds

dis(ϕ) ≥ diam(C)

for any contour C of f , so it is enough to bound the diameter of the largest contour of f .

Proposition 5.8. Let X be a metric space containing a homeomorphic (not necessarily isometric) image of R2 (e.g., an
n-dimensional Riemannian manifold, n ≥ 2). Then there exists a value b(X) > 0 such that any continuous function
f : X→ R has a contour C with

diam(C) ≥ b(X).

Proof. Consider U ⊆ X with ψ : R2
→ U being a homeomorphism, and a closed Euclidean ball E ⊆ R2,

which we can assume to be a unit ball. Denote S = { (x, y) ∈ En
×En

| |x− y| ≥
√

3 }. Since S is compact, there
exists b = minS d(ψ(x), ψ(y)), where d(·, ·) is the distance in X, with b > 0 since x , y for all (x, y) ∈ S.

Let f : X → R be continuous. By Proposition 2.8, F = f ◦ ψ has a contour L containing two points
(x, y) ∈ S. Then ψ(L), a subset of a contour C of f , contains points p = ψ(x), q = ψ(y) with d(p, q) ≥ b.

In Section 6, we give more specific bounds for Riemannian manifolds and discuss related concepts.
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6. Diameters of Contours on Disks and on Riemannian Manifolds

In Section 5.4, we have shown that some metric spaces X cannot be arbitrarily well approximated by
Reeb graphs: for the distortion of the Reeb quotient map, it holds

inf
f : X→R

dis(ϕ) ≥ b(X),

with b(X) > 0, for example, for spaces containing a homeomorphic image of R2. For the latter value, we
can introduce the following notation:

Definition 6.1. The Reeb width of a metric space X is the infimum, over all real-valued continuous functions
on X, of the suprema of the diameters of their contours:

b(X) = inf
continuous

f : X→R

sup
contours C of f

diam(C).

For example, Proposition 2.8 implies b(Rn) = ∞, n ≥ 2.
Our definition of the Reeb width b(X) closely resembles that of Urysohn width (5). Indeed, when

appropriate, one can consider the Reeb graph R f as Y1 and the Reeb quotient map as ϕ in (5). According
to [26, Corollary 3.9], for a unit disk D ⊂ R2, it holds b(D) = u1(D) =

√
3. For the Hawaiian earring, we

also have b(H) = u1(H) = 0: while for each Y, the diameter of some level sets is positive, they can be made
arbitrarily small; see Figure 3. We leave it for the future work to determine whether and when the two
notions are different.

For a Riemannian manifold, the Reeb width can be bounded from below in terms of its characteristics;
see Section 2.6 for notation and details.

First, we will need a refined version of Proposition 2.8, which due to its generality has value in itself:

Theorem 6.2. Let En
⊂ Rn, n ≥ 2, be a closed unit ball and f : En

→ R a continuous function. Then f has a contour
C such that

(i) n = 2: diam(C ∩ ∂E) ≥
√

3,
(ii) n ≥ 3: diam(C ∩ ∂E) = 2.

Proof. The fact about diam(C) is stated in Proposition 2.8, so we only need to show that two points x, y ∈ C
with the corresponding distance ||x − y|| exist at the boundary of the ball. The case n ≥ 3 is trivial, so we
assume E = E2 to be a unit disk around the origin 0.

Denote by R(t1, t2) the ring-shaped area { t1 ≤ ||p|| ≤ t2 } ⊂ E for given 0 < t1 < t2 ≤ 1. For each
k = 1, 2, . . . , consider a unit ball E′ around 0′ and a homeomorphism ψk : E′ → E that stretches E′ near 0′

and shrinks it near ∂E′ along radii (preserving angles at the origin), mapping the respective ring-shaped
area R′(

√
3 − 1, 1) ⊂ E′ to R(1 − 1

k , 1) ⊂ E. Consider the function f ′k = f ◦ ψk : E′ → R. By Proposition 2.8, f ′k
has a contour C′k with two points x′k , y

′

k ∈ C′ such that ||x′k − y′k|| ≥
√

3; thus x′k , y
′

k ∈ R′
2−
√

3
and ∠x′k0′y′k ≥

2π
3 .

Then Ck = ψk(C′k) is a contour of f and for xk = ψk(x′k), yk = ψk(y′k) we have xk , yk ∈ C ∩ R(1 − 1
k , 1) ⊂ E, with

∠xk0yk ≥
2π
3 and thus ||xk − yk|| ≥

√
3.

We have built a sequence of pairs (xk, yk), each lying on a contour Ck of f , with ||xk − yk|| ≥
√

3, located
at the distance of 1

k from the boundary ∂E. Since E is compact, there are points x, y ∈ E such that xk → x,
yk → y (up to selection of a subsequence). Obviously, x, y ∈ ∂E, ||x − y|| ≥

√
3, and f (x) = f (y); without loss

of generality, assume f (x) = f (y) = 0.
Now we only need to show that x, y lie in the same contour of f . For each i = 1, 2, . . . , consider

Si = f−1[− 1
i ,

1
i ], with x, y ∈ Int Si. Consider small balls Xi,Yi ⊆ Si around x and y, respectively. Up to a finite

number, we have xk ∈ Xi and yk ∈ Yi; in particular, x and y belong to the same connected component of Si,
which we denote by Ki; it is closed since Si is closed. Note that Ki+1 ⊆ Ki.

We obtained a nested sequence of closed non-empty connected subsets of a compact metric space E; it
is known that K =

⋂
∞

i=1 Ki is connected. Since f (K) = 0 and x, y ∈ K, they have the desired properties.
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While for n ≥ 3 there actually exists a countour C and points x, y ∈ C ∩ ∂E with ||x − y|| = 2, in the case
of n = 2 there may be no contour C with C ∩ ∂E containing points with ||x − y|| =

√
3, as the example of the

function f (x1, x2) = |x1
| + |x2

| shows.
As a side note, using R(1 − 1

k , 1 −
1
2k ) ⊂ E instead of R(1 − 1

k , 1) ⊂ E in the proof above gives a variant of
the statement for an open ball:

Proposition 6.3. For an open (or closed) n-dimensional unit ball E ⊂ Rn, n ≥ 2, it holds:

(i) n = 2: b(E) ≥
√

3,
(ii) n ≥ 3: b(E) = 2,

and for any continuous function f : E → R there exist x, y ∈ ∂E with ||x − y|| ≥
√

3 (n = 2) or ||x − y|| = 2 (n ≥ 3)
such that for any neighborhoods U = U(x), V = V(y) there exists a contour C of f with C ∩U , ∅ and C ∩ V , ∅.

Note that the function f (x) = ||x|| on an open ball, n ≥ 3, does not have any contour of diameter 2. We
can conjecture that for an open two-dimensional Euclidean unit ball E̊, any continuous function f : E̊→ R
has a contour C with diam(C) ≥

√
3, but we do not have a proof of it.

Proposition 6.4. Let M be an n-dimensional Riemannian manifold, n ≥ 2. Let p ∈ M, r ∈ R be such that
0 < r ≤ min{ conv. rad(p), inj(p) },4) B ⊂ M be a closed ball of radius r around p, and K = supx∈B sec(x), where
sec(x) is the sectional curvature. Then for the Reeb width of M, it holds:

b(M) ≥



2r, n ≥ 3, (18)
√

3r, n = 2, K ≤ 0, (19)
2
√

K
arcsin

( √
3

2 sin
(
r
√

K
))
, n = 2, K > 0, r < π

2
√

K
, (20)

2π
3
√

K
, n = 2, K > 0, r ≥ π

2
√

K
. (21)

The cases 20 and 21 represent 2
√

K
arcsin

( √
3

2 sin min
{
r
√

K, π2
})

.

Proof. Let f : M → R be a continuous function. As in the proof of Proposition 5.8, consider a closed
Euclidean ball E ⊂ TpM of radius r around the origin. Since r is finite, ∂E , ∅; since r ≤ inj(p), the
exponential map expp : E → B is a diffeomorphism, and since r ≤ conv. rad(p), distances d(·, ·) in B are
measured along geodesic segments lying in it. Consider the function F = f ◦ expp : E→ R.

(18) : By Proposition 2.8, some contour L ⊆ E of F contains points x, y ∈ E with ||x − y|| = 2r, thus they
are antipodal points, i.e., the straight segment [x, y] passes through the origin. Then expp(L), a part of a
contour C of f , contains the points expp(x), expp(y) connected by the geodesic segment expp([x, y]) of length
2r, which is the shortest path between them by the choice of B. We obtain diam C ≥ 2r.

(19) : Similarly, by Proposition 2.8, a contour L of F contains points x, y with ||x− y|| ≥
√

3r. Taking TpM as
the model space S0 in Theorem 2.9, we conclude as above that diam(C) ≥ d(expp(x), expp(y)) ≥ ||x− y|| ≥

√
3.

(20) : Applying again Theorem 2.9, we reduce the task to calculating the distances in the sphere SK of
curvature K as a model space, which we represent as a sphere in R3 of radius 1

√
K

. Consider x, y ∈ ∂E given
by Theorem 6.2 (i). For two points q = expp(x), s = expp(y) separated by the azimuth angle α at the line of
latitude with the polar angle determined by r, direct calculation in spherical coordinates gives

d(q, s) =
2
√

K
arcsin

(
sin

α
2

sin
(
r
√

K
))
.

The condition ||x − y|| ≥
√

3r gives α ≥ 2π
3 , thus sin α

2 ≥
√

3
2 .

(21) : Since this expression reaches a maximum by r at rmax = π
2
√

K
, in the case of r > rmax we consider a

smaller ball of radius rmax inside B.

4)Generally, both inj(p)� conv. rad(p) (Example 6.10) and conv. rad(p)� inj(p) [12, Theorem 3.4] are possible.
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As an approximation, the expression (20) can be simplified by replacing sin(x) with 2
πx and arcsin(x)

with x, which results in b(M) ≥ 2
√

3
π r ≈ 1.10 r, while (21) reduces to b(M) ≥ 2π

3
√

K
≈ 2.09 1

√
K

:

Corollary 6.5. Under the conditions of Proposition 6.4, it holds

b(M) ≥ min
{

r,
2
√

K

}
. (22)

While the simplified bound (22) is not tight, the bounds (20) and (21) are tight:

Example 6.6. Consider the upper hemisphere of the unit sphere inR3 as a Riemannian manifold M. Taking
its pole as p and r = π

2 in Proposition 6.4, the bound in (21) gives b(M) ≥ 2π
3 , since K = 1.

Denote by Y the tripod-shaped union of three meridians at equal angles from each other. Let f : M→ R
be the distance from a point to Y. Then Y is its contour, with diam(Y) = 2π

3 . Any other contour will lie
in one of the connected components of M \ Y, which are triangles with the same diameter 2π

3 . We obtain
b(M) = 2π

3 .

Note that in Example 6.6, the bounds (18) and (19) do not apply: with r = π
2 , the bound (19) gives

b(M) ≥
√

3π
2 ≈ 2.72, while in fact b(M) = 2π

3 ≈ 2.09. Also note that Example 6.6 cannot be extended to the
whole unit sphere, since its Reeb width is π [26, Theorem 2.2].

For a compact Riemannian manifold M, Proposition 2.10 allows expressing Proposition 6.4 in terms

of global characteristics of the manifold by assuming r = min
{

1
2 inj(M), π

2
√

K

}
and K = sec(M); recall that

sec(M) = supp∈M sec(p):

Theorem 6.7. Let M be a compact Riemannian manifold, K = sec(M), and

b(M) = inf
continuous

f : M→R

sup
contours C of f

diam(C)

denote the Reeb width of M. Then

b(M) ≥



inj(M), dim M ≥ 3, K ≤ 0,

min
{
inj(M), π

√
K

}
, dim M ≥ 3, K > 0,

√
3

2 inj(M), dim M = 2, K ≤ 0,

2
√

K
arcsin

( √
3

2 sin
( √

K
2 inj(M)

))
, dim M = 2, K > 0, inj(M) < π

√
K

. (23)

2π
3
√

K
, dim M = 2, K > 0, inj(M) ≥ π

√
K

. (24)

The cases (23) and (24) represent 2
√

K
arcsin

( √
3

2 sin min
{ √

K
2 inj(M), π2

})
.

Similarly, Corollary 6.5 can be rewritten as the following highly simplified bound; the term π
2
√

K
present

in Proposition 2.10 (i) is omitted here by (24):

Corollary 6.8. Let M be a compact Riemannian manifold and K = sec(M). Then

b(M) ≥ min
{

1
2

inj(M),
2
√

K

}
.

Such bounds, while convenient since they use known characteristics of the manifold, may be misleading
as to whether the Reeb width, and thus the distortion dis(ϕ) of the Reeb quotient map, is determined by
the regions with the highest curvature, while in fact it is determined by large regions of small curvature:
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Example 6.9. Consider a flattened sphere, or a thick disk, in R3 (the outer surface of a saucer). Since
its curvature at the edge is high, Theorem 6.7 gives a small value for b(M) and thus for dis(ϕ), while
Proposition 6.4 gives high value due to the large flat region in the center of the saucer.

Example 6.10. For a non-complete manifold, such as an open unit disk in Rn, or for a manifold with (non-
empty) boundary, such as a closed unit disk, we have inj(M) = 0, so the bounds in the global terms from
Theorem 6.7 are not useful (even though the curvature is bounded, with K=0), while the bounds in the local
terms from Proposition 6.4 are exact for the unit disk (or for the manifold from Example 6.6) considering
the center as the point p.

There are other interesting bounds and on conv. rad(M) and inj(M); see, e.g., [12, 42], with may result in
other versions of Theorem 6.7.

Local versions of Proposition 2.10 have been discussed by the community (though we did not find
them in trusted citable sources), with which the requirement of compactness in Theorem 6.7 might be
relaxed to, for example, boundedness of the curvature and completeness of the manifold. We leave such
generalizations for future work.

In the case of negative curvature, the bounds (18) and (19) can be improved using a triangle comparison
theorem and direct calculations on the hyperbolic plane along the lines of (20). However, further refining
the bounds on b(M) is outside the scope of this paper and is left for the future work. We also leave as
an open question whether there is a non-trivial bound on dGH(R f ,M) in terms of the characteristics of the
manifold. We can conjecture that it exists and is closely related to the Reeb width b(M).
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