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Abstract.In this article, we introduce the notion of polynomial demicompactness and we use it to
give some results on Fredholm operators and to establish a fine description of some essential spectra
of a closed densely defined linear operator. Our work is a generalization of many known ones in the
literature.

1. Introduction

Throughout this paper, X and Y denote two infinite dimensional complex Banach spaces. We denote
by C(X,Y) (resp. L(X,Y)) the set of all closed densely defined (resp. bounded) linear operators acting
from X into Y. The subspace of all compact (resp. weakly compact) operators of L(X,Y) is denoted
by K (X,Y) ( resp. W(X,Y)). For T ∈ C(X,Y), we denote by α(T) the dimension of the kernel N(T)
and by β(T) the codimension of the range R(T) in Y. The next sets of upper semi-Fredholm, lower
semi-Fredholm, Fredholm and semi-Fredholm operators from X into Y are, respectively, defined by

Φ+(X,Y) = {T ∈ C(X,Y) such that α(T) < ∞ and R(T) closed in Y},
Φ−(X,Y) = {T ∈ C(X,Y) such that β(T) < ∞ and R(T) closed in Y},

Φ(X,Y):= Φ−(X,Y) ∩Φ+(X,Y),

and

Φ±(X,Y):= Φ−(X,Y) ∪Φ+(X,Y).

For T ∈ Φ±(X,Y), we define the index by the following difference i(T) := α(T)− β(T). A complex number
λ is in Φ+T,Φ−T,Φ±T or ΦT if λ−T is in Φ+(X,Y), Φ−(X,Y), Φ±(X,Y) or Φ(X,Y), respectively. If X = Y, then
L(X,Y), C(X,Y), K (X,Y),W(X,Y), Φ(X,Y), Φ+(X,Y), Φ−(X,Y) and Φ±(X,Y) are replaced by L(X), C(X),
K (X),W(X), Φ(X), Φ+(X), Φ−(X) and Φ±(X), respectively. If T ∈ C(X), we denote by ρ(T) the resolvent
set of T and by σ(T) the spectrum of T. Let T ∈ C(X). For x ∈ D(T), the graph norm ‖.‖T of x is defined by
‖x‖T = ‖x‖ + ‖Tx‖. It follows from the closedness of T that XT := (D(T), ‖.‖T) is a Banach space. Clearly,
for every x ∈ D(T) we have ‖Tx‖ ≤ ‖x‖T, so that T ∈ L(XT,X). A linear operator B is said to be T-defined
ifD(T) ⊆ D(B). If B̂, the restriction of B toD(T) is bounded from XT into X, we say that B is T-bounded.

Remark 1.1. Notice that if T ∈ C(X) and B is T-bounded, then we get the obvious relations
α(T̂) = α(T), β(T̂) = β(T),R(T̂) = R(T)

α(T̂ + B̂) = α(T + B), β(T̂ + B̂) = β(T + B),R(T̂ + B̂) = R(T + B).

Hence, T ∈ Φ(X), (resp. Φ+(X),Φ−(X)) if, and only if, T̂ ∈ Φ(XT,X), (resp. Φ+(XT,X), Φ−(XT,X)). ♦
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Definition 1.2. Let T ∈ L(X,Y), where X and Y are two Banach spaces.
(i) T is said to have a left Fredholm inverse (resp. left weak-Fredholm inverse) if there exists Tl ∈ L(Y,X) and
K ∈ K (X) (resp. Tw

l ∈ L(Y,X) and W ∈ W(X)) such that TlT = IX − K (resp. Tw
l T = IX −W). The operator Tl

(resp. Tw
l ) is called left Fredholm inverse of T (resp. left weak-Fredholm inverse of T).

(ii) T is said to have a right Fredholm inverse (resp. right weak-Fredholm inverse) if there exists Tr ∈ L(Y,X)
(resp. Tw

r ∈ L(Y,X)) such that IY − TTr ∈ K (Y) (resp. IY − TTw
r ∈ W(Y)). The operator Tr (resp. Tw

r ) is called
right Fredholm inverse of T (resp. right weak-Fredholm inverse of T).
(iii) T is said to have a Fredholm inverse (resp. weak-Fredholm inverse) if there exists a map which is both a left
and a right Fredholm inverse of T (resp. a left and a right weak-Fredholm inverse of T). ♦

Definition 1.3. Let T ∈ C(X), where X be a Banach space. T is said to have a left Fredholm inverse (resp. right
Fredholm inverse, Fredholm inverse, left weak-Fredholm inverse, right weak-Fredholm inverse, weak-Fredholm
inverse) if T̂ has a left Fredholm inverse (resp. right Fredholm inverse, Fredholm inverse, left weak-Fredholm
inverse, right weak-Fredholm inverse, weak-Fredholm inverse). ♦

The sets of left, right, left weak and right weak-Fredholm inverses are respectively, defined by

Φl(X) := {T ∈ C(X) such that T has a left Fredholm inverse},
Φr(X) := {T ∈ C(X) such that T has a right Fredholm inverse},
Φw

l (X) := {T ∈ C(X) such that T has a left weak-Fredholm inverse},
Φw

r (X) := {T ∈ C(X) such that T has a right weak-Fredholm inverse}.

The class of weak-Fredholm operators is Φw(X) := Φw
l (X) ∩ Φw

r (X). It is easy to see that Φl(X) ⊂
Φw

l (X), Φr(X) ⊂ Φw
r (X) and Φl(X) ∩ ΦrX) = Φ(X) ⊂ Φw(X). A complex number λ is in ΦlT(X),

ΦrT(X),ΦT(X),Φw
lT(X),Φw

rT(X) or Φw
T (X) if λ − T is in Φl(X), Φr(X),Φ(X),Φw

l (X),Φw
r (X) or Φw(X), respec-

tively. The concept of demicompactness was introduced by W. V. Petryshyn [13], in order to discuss
fixed points, as follows

Definition 1.4. An operator T : D(T) ⊆ X −→ X is said to be demicompact if for every bounded sequence (xn)n
inD(T) such that xn − Txn → x ∈ X, there exists a convergent subsequence of (xn)n. The family of demicompact
operators on X is denoted byDC(X). ♦

Clearly, if A and B are demicompact and λ is a complex number, then A+B, AB and λA are not necessarily
demicompact. The first purpose of this work is to pursue the analysis started in [10] and to extend it
to more general classes, using the concept of demicompactness. This class, defined in Section 3, is the
class of polynomially demicompact operators. When dealing with essential spectra of closed, densely
defined linear operators on Banach spaces, one of the main problems consists in studying the invariance
of the essential spectra of these operators subjected to various kinds of perturbation. Among the works
in this direction we quote, for example [1, 4, 7]. More precisely, it was shown in [1] the invariance of the
Schechter essential spectrum on Banach spaces by means of polynomially compact perturbations. The
same result has been proved by W. Chaker et al. in [4] for the class ΛX, where

ΛX := {J ∈ L(X) such that µJ ∈ DC(X) ∀µ ∈ [0, 1]}.

In the same work, the Schechter essential spectrum was characterized by

σe5 (T) =
⋂

K∈ΥT(X)

σ(T + K),

where,

ΥT(X) = {S ∈ L(X) such that −S(λ − T − S)−1
∈ ΛX, ∀λ ∈ ρ(T + S)}.

W. V. Petryshyn has proved, in [13], that I−T is a Fredholm operator and i(I−T) = 0 for every condensing
operator T. The same result has been proved by W. Chaker et all in [4], for T ∈ ΛX. For more results in
this direction the reader can refers to [8, 9]. Our main purpose is to refine the characterization of essential
spectra. More precisely, we shall introduce the class ΘX, which is defined by

ΘX =
⋃

n∈N\{0,1},B∈L(X)

Ωn,B



F. B. Brahim et al. / Filomat 33:7 (2019), 2017–2030 2019

where

Ωn,B :=

J ∈ L(X) such that J = Bn and −
n−1∑
k=1

Bk
∈ ΛX

 .
We note that ΘX contains the set ΛX. In order to state our results, we need to fix some notations
and assumptions that we are using. Throughout this note, let X be a Banach space and T ∈ C(X),
various notions of essential spectrum appear in application of spectral theory. In this work, we are
concerned, respectively, with the Weidmann, the Kato, the Wolf, the Schechter, the approximate point
or the Schmoëger, the defect or the Rakocević, the left and the right Weyl essential spectra which are,
respectively, defined as follows

σe2 (T) := {λ ∈ C such that λ − T < Φ−(X)} := C\Φ−T,

σe3 (T) := {λ ∈ C such that λ − T < Φ±(X)} := C\Φ±T,

σe4 (T) := {λ ∈ C such that λ − T < Φ(X)} := C\ΦT,

σe5 (T) :=
⋂

K∈K (X)

σ(T + K),

σe7 (T) :=
⋂

K∈K (X)

σap(T + K),

σe8 (T) :=
⋂

K∈K (X)

σδ(T + K),

σewl (T) :=
⋂

K∈K (X)

σl(T + K),

σewr (T) :=
⋂

K∈K (X)

σr(T + K),

where

σap(T) := {λ ∈ C such that inf
x∈D(T);‖x‖=1

‖(λ − T)x‖ = 0},

σδ(T) := {λ ∈ C such that λ − T is not surjective},
σl(T) := {λ ∈ C such that λ − T < Φl(X)} := C\ΦlT,

σr(T) := {λ ∈ C such that λ − T < Φr(X)} := C\ΦrT,

.

(See for instance [7, 14–16, 18]). Note that for T ∈ C(X), we have

σe2 (T) ⊂ σe4 (T) ⊂ σe5 (T) = σe7 (T) ∪ σe8 (T),

σe3 (T) ⊂ σe4 (T) and σe2 (T) ⊂ σe8 (T).

This paper is organized in the following way. In Section 2, we recall some definitions and results needed
in the rest of the paper. In Section 3, we study the relationship between polynomially demicompact
and demicompact operators and we give an example for Theorem 3.1. In Section 4, we give a fine
description of some essential spectra by means of polynomial demicompactness. In Section 5, we give
some perturbation results and some relations between essential spectra of the sum of two bounded linear
operators and essential spectra of each these operators. In Section 6, we investigate the left and the right
Weyl essential spectra of matrix operators defined on a Banach space which posses the Dunford Pettis
property (see definition in Section 2).
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2. Preliminary results

We start this section by recalling some Fredholm results related with demicompact operators.

Theorem 2.1. [4] Let T ∈ C(X). If T is demicompact, then I − T is an upper semi-Fredholm operator. ♦

Theorem 2.2. [4] Let T ∈ C(X). If µT is demicompact for each µ ∈ [0, 1], then I − T is a Fredholm operator of
index zero. ♦

Theorem 2.3. [4] Let T : D(T) ⊆ X −→ X be a closed linear operator. If T is a 1-set-contraction, then µT is
demicompact for each µ ∈ [0, 1). ♦

In the following Theorem, we recall some known results that we will need in the sequel.

Theorem 2.4. [16] Let A ∈ L(Y,Z) and B ∈ L(X,Y) where X,Y and Z are Banach spaces.
(i) If AB ∈ Φ+(X,Z), then B ∈ Φ+(X,Y).
(ii) If X = Y = Z, AB ∈ Φ(X) and BA ∈ Φ(X), then A ∈ Φ(X) and B ∈ Φ(X).
(iii) If AB ∈ Φl(X,Z), then B ∈ Φl(X,Y).
(iv) If AB ∈ Φr(X,Z), then A ∈ Φr(X,Y). ♦

The following theorems give a characterization of the Schechter, the Schmoëger, the Rakocević, the
left and the right essential spectra by means of Fredholm, upper, lower semi-Freholm, left and right
Fredholm operators, respectively. The proof can be found in [7].

Theorem 2.5. [16] Let T ∈ C(X), then

λ < σe5 (T) if, and only if, λ − T ∈ Φ(X) and i(λ − T) = 0. ♦

Theorem 2.6. [7] Let T ∈ C(X), then
(i) λ < σe7 (T) if, and only if, λ − T ∈ Φ+(X) and i(λ − T) ≤ 0.
(ii) λ < σe8 (T) if, and only if, λ − T ∈ Φ−(X) and i(λ − T) ≥ 0. ♦

Theorem 2.7. [2] Let T ∈ C(X), then,
(i) λ < σewl (T) if, and only if, λ − T ∈ Φl(X) and i(λ − T) ≤ 0.
(ii) λ < σewr (T) if, and only if, λ − T ∈ Φr(X) and i(λ − T) ≥ 0. ♦

Now, we recall that a bounded linear operator T is said to be power compact if Tm
∈ K (X) for some

m ∈N\{0}. Clearly, every power compact operator is demicompact. In fact, we have the following more
general result.

Proposition 2.8. Let T ∈ L(X). Then, Tm is demicompact for some m ∈N\{0} if, and only if, T is a demicompact
operator. ♦

Proof. We assume that the assumption holds and we take (xn)n a bounded sequence inD(T) such that
x′n := (I − T)(xn) converges. Obviously,

xn = Tmxn +

m−1∑
k=0

Tkx′n,

which allows us to write

(I − Tm)xn =

m−1∑
k=0

Tkx′n. (1)

Since (x′n)n is convergent and Tk
∈ L(X) for each 0 ≤ k ≤ m − 1, it follows from Eq. (1) that (I − Tm) is a

convergent sequence. Using the demicompactness of Tm, we infer that there exists (xϕ(n))n a convergent
subsequence of (xn)n. Conversely, it suffices to take m = 1. Q.E.D.

Proposition 2.9. (i) F+(X) ⊂ DC(X).
(ii) F−(X) ⊂ DC(X). ♦
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Proof. (i) Let T be an upper semi-Fredholm perturbation. Since I is an upper semi-Fredholm operator,
I − T is such too. Using Theorem 2.1, we deduce that T is demicompact.
(ii) Let T be a lower semi-Fredholm perturbation operator. Using the fact that I is lower semi-Fredholm,
we deduce that the operator I − T has also this property. Therefore, β(I − T) = α(I − T∗) < ∞, where T∗

denotes the adjoint of T. Since R(I − T) is closed, I − T∗ is an upper semi-Fredholm operator. Applying
Theorem 2.1, this implies that T∗ is demicompact. Q.E.D.

Remark 2.10. As an immediate consequence of Proposition 2.9, for every T ∈ F (X), T and T∗ are demicompact.
♦

Definition 2.11. A Banach space X is said to have the Dunford-Pettis property (in short DP property) if every
bounded weakly compact operator T from X into another Banach space Y transforms weakly compact sets on X
into norm-compact sets on Y. ♦

Remark 2.12. It was proved in [11] that if X is Banach space with DP property, then

W(X) ⊂ F (X). ♦

3. Polynomially demicompact operators

In this section, we will generalize the following result proved in [10] for the class of polynomially
demicompact operators on X. In fact, the authors showed that a polynomially compact operator T,
element of P(X) := {T ∈ L(X) such that there exists a nonzero complex polynomial P(z) =

∑p
r=0 arzr

satisfying P(1) , 0, P(1) − a0 , 0, and P(T) ∈ K (X)}, is demicompact. In order to state our results, we
need to introduce the set PDC(X) which defined by

PDC(X) =
⋃

P∈C[z]\{0},P(1),0

HP,

where

HP :=
{

T ∈ L(X) such that
1

P(1)
P(T) ∈ DC(X)

}
.

We note that PDC(X) contains the set P(X).

Theorem 3.1. T ∈ PDC(X) if, and only if, T is demicompact. ♦

Proof. We first establish the following relation that we are using in the proof. Since I − T commutes
with I, Newton’s binomial formula allows us to write the following relation

T j = I +

j∑
i=1

(−1)iCi
j(I − T)i.

By making some simple calculations, we may write

P(T) = P(1)I +

p∑
j=1

a j

 j∑
i=1

(−1)iCi
j(I − T)i

 .
Since P(1) , 0, we have

I −
1

P(1)
P(T) =

1
P(1)

p∑
j=1

a j

 j∑
i=1

(−1)iCi
j(I − T)i

 . (2)

Now, let (xn)n be a bounded sequence in X satisfying (I − T)xn → x0. Using the continuity of T together
with the relation (2), we infer that there exists x such that(

I −
1

P(1)
P(T)

)
xn → x.

By demicompactness of 1
P(1) P(T), we conclude that (xn)n admits a convergent subsequence. The converse

can be checked by taking P(z) = z. Q.E.D. Before giving the example we recall the following definition

and Theorems
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Definition 3.2. The Caputo derivative of fractional order α of function x ∈ Cm, m ∈N is defined as

CD(α)
0,t x(t) = D(m−α)

0,t
dm

dtm x(t) =
1

Γ(m − α)

∫ t

0
(t − τ)m−α−1x(m)(τ)dτ

in which m − 1 < α < m and Γ is the well-known Euler Gamma function. ♦

Theorem 3.3. [12] If x(t) ∈ C1[0,T], for T > 0 then

CD(α2)
0,t CD(α1)

0,t x(t) = CD(α1)
0,t CD(α2)

0,t x(t) = CD(α1+α2)
0,t x(t), t ∈ [0,T],

where α1 and α2 ∈ R+ and α1 + α2 ≤ 1. ♦

Theorem 3.4. [12] If x(t) ∈ Cm[0,T], m ∈N for T > 0 then

CD(α)
0,t x(t) = CD(αn)

0,t · · · CD(α2)
0,t CD(α1)

0,t x(t); t ∈ [0,T],

whereα =
∑n

i=1 αi;αi ∈ (0, 1],m−1 ≤ α < m and there exists ik < n, such that
∑ik

j=1 α j = k, and k = 1, 2, · · · ,m−1.
♦

Example 3.5. Let Cω be the space of continuous ω-periodic functions x : R −→ R and C′ω the space of continu-
ously differentiableω-periodic functions x : R −→ R. Cω equipped with the maximum norm ‖.‖∞ and C′ω with the
norm given by ‖u‖1∞ = max{‖u‖∞, ‖u′‖∞} for u ∈ C′ω are Banach spaces. Let us consider the following differential
equation:

x′(t) = a(t)x′(t − h1) + b(t)x(t − h2) + f (t).

Here, a and b are continuous ω-periodic functions such that |a(t)| < k, (k < ∞), where k < 1
ω if ω > 2 or k < 1

2
if ω ≤ 2; f ∈ Cω is a given function and x ∈ C′ω is an unknown function. This equation can be rewritten in the
operator from

Gx − Ax = f ,

where G : C′ω → Cω is given by the formula

(Gx)(t) = x′(t),

and the operator A : C′ω → Cω by the formula

(Ax)(t) = a(t)x′(t − h1) + b(t)x(t − h2).

Let us consider the polynomial P(z) = zn and the operator T = CD( 1
n )
ω ; n ∈ N\{0}, where CD( 1

n )
ω is the Caputo

derivative of fractional order 1
n . Applying Theorem 3.4, we get

P(T) = Tn(x) = [CD( 1
n )
ω ]nx(t) = x′(t).

Clearly, P(T) is a bounded linear operator with ‖P(T)‖ = 1 and therefore, P(T) is 1-set-contractive. Hence, using
Theorem 2.3, we get

µCD( 1
n )
ω ∈ DC(X) ∀µ ∈ [0, 1[. ♦

The following result is an extention of Theorem 3.1, under other assumptions.

Theorem 3.6. Let T ∈ L(X). Suppose that there exists a complex polynomial P such that P(0) = 0. Then, I−P(T)
is demicompact if, and only if, I − T is demicompact. ♦

Proof. Assume that I − P(T) is demicompact operator, it follows from Theorem 2.1 that P(T) ∈ Φ+(X).
Now, take x ∈ N(T), then Tx = 0 which implies that for all j ≥ 1, T j = 0. Hence,

P(T)x =

m∑
j=0

a jT jx = P(0)x +

m∑
j=1

a jT jx = 0,

where P(z) =
∑m

j=0 a jz j. Then, N(T) ⊂ N(P(T)) is obvious and this shows that α(T) < ∞. Next, since
R(P(T)) is closed, we deduce from Theorem 3.12 in [16] that there exists k > 0 such that ∀y ∈ X,
‖y‖ ≤ k‖P(T)y‖. In particular,
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‖x‖ ≤ k‖P(T)x‖

≤ k
m∑

j=1

|a j|‖T‖ j−1
‖Tx‖.

The use of Theorem 3.12 in [16] shows that R(T) is closed. Therefore, T ∈ Φ+(X) and we conclude by
Theorem 2.1 in [5] that I − T is demicompact. Conversely, the result can be obtained by taking P(z) = z.
Q.E.D.

Remark 3.7. Using Theorem 3.1 in [4] and Theorem 2.1 in [5], we deduce that if P is a complex polynomial such
that P(0) = 0 and T ∈ L(X), then P(T) ∈ Φ+(X) if, and only if, T ∈ Φ+(X). ♦

Theorem 3.8. If T ∈ ΘX, then I − T ∈ Φ(X) and i(I − T) = 0. ♦

Proof. Since T ∈ ΘX, then there exist n ∈ N\{0, 1} and B ∈ L(X) such that −t
∑n−1

k=1 Bk
∈ DC(X), for all

t ∈ [0, 1]. Hence, from Theorem 2.2,

I +

n−1∑
k=1

Bk
∈ Φ(X) and i(I +

n−1∑
k=1

Bk) = 0.

which is equivalent to

n−1∑
k=0

Bk
∈ Φ(X) and i(

n−1∑
k=0

Bk) = 0.

In the other hand, since ∀t ∈ [0, 1], 1
n−1 t ∈ [0, 1], then 1

n−1

∑n−1
k=1 (t

1
k B)k
∈ DC(X). Hence, applying Theorem

3.1 for the polynomial P(z) = −
∑n−1

k=1 zk, which verifies P(1) = 1 − n , 0, we get t
1
k B ∈ DC(X) ∀t ∈ [0, 1]. It

follows that tB ∈ DC(X) ∀t ∈ [0, 1]. Thus, thanks to Theorem 2.2, we deduce that

I − B ∈ Φ(X) and i(I − B) = 0.

Now, using the equality

I − T = I − Bn = (I − B)
n−1∑
k=0

Bk,

we infer from the Atkinson’s theorem that

I − T ∈ Φ(X) and i(I − T) = 0. Q.E.D.

4. Characterization of essential spectra

In this section we will give a fine description of some essential spectra of a closed densely defined
linear operator by means of ΘX. To do this, the following notation will be convenient

χT(X) =
{
S ∈ L(X) such that − (λ − T − S)−1S ∈ ΘX, ∀λ ∈ ρ(T + S)

}
.

Notice that
K (X) ⊂ ΥT(X) ⊂ χT(X).

Theorem 4.1. Let T ∈ C(X), then

σe5 (T) =
⋂

S∈χT(X)

σ(T + S). ♦

Proof. We first claim that σe5 (T) ⊂
⋂

S∈χT(X)

σ(T+S). Indeed, if λ <
⋂

S∈χT(X)

σ(T+S), then there exists S ∈ χT(X)

such that λ < σ(T + S). Therefore, we have
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λ − T − S ∈ Φ(X) with i(λ − T − S) = 0.

Moreover, from the fact that −(λ − T − S)−1S ∈ ΘX together with Theorem 3.8, we infer that

I + (λ − T − S)−1S ∈ Φ(X) and i[I + (λ − T − S)−1S] = 0.

Now, using the equality

λ − T = (λ − T − S)[I + (λ − T − S)−1S],

together with the Atkinson’s theorem one gets

λ − T ∈ Φ(X) and i(λ − T) = 0,

which shows that λ < σe5 (T). Then,

σe5 (T) ⊂
⋂

S∈χT(X)

σ(T + S).

For the inverse inclusion, sinceK (X) ⊂ χT(X), then⋂
S∈χT(X)

σ(T + S) ⊂ σe5 (T). Q.E.D.

Corollary 4.2. Let T ∈ C(X) and let Σ(X) be a subset of χT(X) containingK (X). Then,

σe5 (T) =
⋂

S∈Σ(X)

σ(T + S). ♦

Proof. From the following inclusionsK (X) ⊂ Σ(X) ⊂ χT(X), we infer that⋂
S∈χT(X)

σ(T + S) ⊂
⋂

S∈Σ(X)

σ(T + S) ⊂
⋂

S∈K (X)

σ(T + S).

Applying Theorem 4.1, we get

σe5 (T) =
⋂

S∈Σ(X)

σ(T + S). Q.E.D.

Corollary 4.3. Let T ∈ C(X) and G(X) be a subset of χT(X) containing K (X). If for all K,K′ ∈ G(X), we have
K ± K′ ∈ G(X), then for every K ∈ G(X)

σe5 (T) = σe5 (T + K). ♦

Proof. From Corollary 4.2, we have

σe5 (T) =
⋂

K∈G(X)

σ(T + K).

Moreover, we have G(X) + K = G(X) for every K ∈ G(X). Then, σ′(T + K) = σ′(T), where σ′(T) =⋂
K∈G(X)

σ(T + K). Hence, we get the desired result. Q.E.D.

In the next, we will give a characterization of the Schmoëger and the Rakocević essential spectra by
means of polynomial demicompactness. To this end, we start by defining the following sets

σri(T) =
⋂

S∈χT(X)

σap(T + S) and σle(T) =
⋂

S∈χT(X)

σδ(T + S).

Theorem 4.4. For each T ∈ C(X),

σe7 (T) = σri(T) and σe8 (T) = σle(T). ♦

Proof. We start by showing that σe7 (T) ⊂ σri(T) (resp. σe8 (T) ⊂ σle(T)). For λ < σri(T), (resp. λ < σle(T)),
there exists S ∈ χT(X) such that λ − T − S is injective (resp. surjective), it follows from Theorem 2.6 that
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λ − T − S ∈ Φ+(X) and i(λ − T − S) ≤ 0,

(resp. λ − T − S ∈ Φ−(X) and i(λ − T − S) ≥ 0).

Similarly to the proof of Theorem 4.1 we show that

[I + (λ − T − S)−1S] ∈ Φ(X) and i[I + (λ − T − S)−1S] = 0.

which implies that
[I + (λ − T − S)−1S] ∈ Φ+(X) and i[I + (λ − T − S)−1S] ≤ 0,

(resp, [I + (λ − T − S)−1S] ∈ Φ−(X) and i[I + (λ − T − S)−1S] ≥ 0.)

Thus, we get from the Atkinson’s theorem

λ − T ∈ Φ+(X) and i(λ − T) ≤ 0

(resp. λ − T ∈ Φ−(X) and i(λ − T) ≥ 0).

Thanks to Theorem 2.6, we conclude that λ < σe7 (T) (resp. λ < σe8 (T)). Conversely, observe that
K (X) ⊂ χT(X), we deduce that σri(T) ⊂ σe7 (T) (resp. σle(T) ⊂ σe8 (T)). Hence, we get the desired result.
Q.E.D.

Corollary 4.5. Let T ∈ C(X) and let Γ(X) be a set such thatK (X) ⊂ Γ(X) ⊂ χT(X). Then,

σe7 (T) =
⋂

K∈Γ(X)

σap(T + K) and σe8 (T) =
⋂

K∈Γ(X)

σδ(T + K). ♦

Proof. SinceK (X) ⊂ Γ(X) ⊂ χT(X), we obtain⋂
K∈χT(X)

σap(T + K) ⊂
⋂

K∈Γ(X)

σap(T + K) ⊂
⋂

K∈K (X)

σap(T + K) := σe7 (T).

(resp.
⋂

K∈χT(X)

σδ(T + K) ⊂
⋂

K∈Γ(X)

σδ(T + K) ⊂
⋂

K∈K (X)

σδ(T + K) := σe8 (T)).

The use of Theorem 4.4 allows us to conclude that

σe7 (T) =
⋂

K∈Γ(X)

σap(T + K),

and

σe8 (T) =
⋂

K∈Γ(X)

σδ(T + K).

Hence, we get the desired result. Q.E.D.

In the rest of the section, we give a fine description of the left and the right Weyl essential spectra. To do
this, we need to define, for T ∈ C(X), the following sets

σl
e(T) =

⋂
S∈χT(X)

σl(T + S) and σr
e(T) =

⋂
S∈χT(X)

σr(T + S).

Theorem 4.6. Let T ∈ C(X), then

σewl (T) = σl
e(T) and σewr (T) = σr

e(T). ♦

Proof. We first prove that σewl (T) ⊂ σl
e(T) (resp. σewr (T) ⊂ σr

e(T)). Indeed, for λ < σl
e(T) (resp. σr

e(T)), there
exists S ∈ χT(X) such that λ < σl(T + S) (resp. σr(T + S)). Hence,

λ − T − S ∈ Φl(X) and i(λ − T − S) ≤ 0,

(resp. λ − T − S ∈ Φr(X) and i(λ − T − S) ≥ 0).
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Next, since −(λ − T − S)−1S ∈ ΘX. Thus, applying Theorem 3.8, one has

I + (λ − T − S)−1S ∈ Φ(X) and i[I + (λ − T − S)−1S] = 0,

which implies that

I + (λ − T − S)−1S ∈ Φl(X) and i[I + (λ − T − S)−1S] ≤ 0,

(resp. I + (λ − T − S)−1S ∈ Φr(X) and i[I + (λ − T − S)−1S] ≥ 0).

Using the equality
λ − T = (λ − T − S)[I + (λ − T − S)−1S],

we deduce from Theorem 2.5 in [6] that

λ − T ∈ Φl(X) and i(λ − T) ≤ 0.

(resp. λ − T ∈ Φr(X) and i(λ − T) ≥ 0).

We conclude from Theorem 2.7 that λ < σewl (T) (resp. σewr (T)). The inverse inclusion follows from the
fact thatK (X) ⊂ χT(X). Q.E.D.

5. Some perturbation results

In this section, basing on the last results, we give some perturbation results.

Theorem 5.1. If for every λ < σei (T),where i ∈ {2, 3, 4, 5, 7, 8}, the operator λ−T has a left (resp. right) Fredholm
inverse Tλl (resp. Tλr) such that STλl (resp. TλrS)∈ ΘX, then

σei (T + S) ⊂ σei (T).

♦

Proof. We give the proof for i = 5. Note that the other cases can be checked in the same manner.
Let λ < σe5 (T), then by Theorem 2.5, λ − T ∈ Φ(X) and i(λ − T) = 0. Let Tλl (resp. Tλr) be a left (resp.
right) Fredholm inverse of λ − T, then Tλl(λ − T) = I − K, (resp. (λ − T)Tλr = I − K′), where K ∈ K (X)
(resp.K′ ∈ K (X)). By making some simple calculations, we get

λ − T − S = (I − STλl)(λ − T) − SK. (3)(
resp. λ − T − S = (λ − T)(I − TλrS) − K′S

)
. (4)

Since STλl (resp. TλrS) ∈ ΘX, then, using Theorem 3.8, we get I − STλl (resp. I − TλrS)) ∈ Φ(X) and
i(I − STλl) = 0, (resp. i(I − TλrS) = 0). Thus applying the Atkinson’s theorem and Eq. (3) (resp. (4)), we
infer that λ − T − S ∈ Φ(X) and i(λ − T − S) = 0. Consequently, we get from Theorem 2.5 λ < σe5 (T + S).
This allows us to conclude that σe5 (T + S) ⊂ σe5 (T). Q.E.D.

Theorem 5.2. Let X be a Banach space with the DP property.
(i) If T ∈ C(X) and S be T-bounded on X such that T has a right weak Fredholm inverse Tw

r such that −ŜTw
r ∈ ΘX.

Then,

T + S ∈ Φr(X) and i(T + S) = i(T).

Moreover, if T ∈ Φ−(X), then T + S ∈ Φ(X).
(ii) If T ∈ C(X) and S be T-bounded on X such that T has a left weak Fredholm inverse Tw

l such that −Tw
l Ŝ ∈ ΘX.

Then,

T + S ∈ Φl(X) and i(T + S) = i(T).

Moreover, if T ∈ Φ+(X), then T + S ∈ Φ(X). ♦
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Proof. (i) Since Tw
r is a right weak Fredholm inverse of T, then there exists W ∈ W(X) such that

T̂Tw
r = I −W, then

(T̂ + Ŝ)Tw
r = (I + ŜTw

r ) −W.

Now, since −ŜTw
r ∈ ΘX, we get from Theorem 3.8

I + ŜTw
r ∈ Φ(X) and i(I + ŜTw

r ) = 0.

Hence, we infer from Remark 2.12 that

(T̂ + Ŝ)Tw
r ∈ Φ(X) and i((T̂ + Ŝ)Tw

r ) = 0.

Then, we deduce that (T̂ + Ŝ)Tw
r ∈ Φr(X) and this implies that T̂ + Ŝ ∈ Φr(XT). It follows from Remark 1.1

that T + S ∈ Φr(X). Moreover, since i((T̂ + Ŝ)Tw
r ) = i(T̂Tw

r ) = 0, then i(T̂ + Ŝ) = −i(Tw
r ) = i(T̂). Hence, from

Remark 1.1 we infer that i(T + S) = i(T). Next, if T ∈ Φ+(X), then Remark 1.1 implies that T̂ ∈ Φ+(X).
Recalling that T̂Tw

r ∈ Φ(X), we deduce from Theorem 7.14 in [16] that Tw
r ∈ Φ(X,XT). Now, using the fact

that (T̂ + Ŝ)Tw
r ∈ Φ(X), we infer from Theorem 7.12 in [16] together with Remark 1.1 that T + S ∈ Φ(X).

(ii) A similar reasoning allows us to reach the result (ii). Q.E.D.

This brings us to introduce the following subsets of χT(X).

M(X) = {S ∈ L(X) such that −ST ∈ ΘX for all T ∈ L(X)}

and

E(X) = {S ∈ L(X) such that −TS ∈ ΘX for all T ∈ L(X)}.

Proposition 5.3. Let T ∈ C(X), then
(i) If T ∈ Φl(X) and S ∈ E(X), then T + S ∈ Φl(X) and i(T + S) = i(T).
(ii) If T ∈ Φr(X) and S ∈ M(X), then T + S ∈ Φr(X) and i(T + S) = i(T). ♦

Proof. Let T ∈ Φl(X) (resp. Φr(X)), then there exist Tl (resp. Tr) ∈ L(X) and K ∈ K (X) such that

Tl(T + S) = I − K + TlS,(
resp. (T + S)Tr = I − K + STr

)
.

Now, since S ∈ E(X) (resp. M(X)), then −TlS ( resp. −STr) ∈ ΘX. The rest of the proof is given in the
same way of Theorem 5.2 for the case of the strong topology on the Banach space X. Q.E.D.

Theorem 5.4. Let T ∈ C(X), then
(i) If S ∈ M(X), then σewl (T) = σewl (T + S).
(ii) If S ∈ M(X), then σewr (T) = σewr (T + S). ♦

Proof. (i) Let λ ∈ C be such that λ < σewl (T), then we get from Theorem 2.7

λ − T ∈ Φl(X) and i(λ − T) ≤ 0.

Using Proposition 5.3, we have

λ − T − S ∈ Φl(X) and i(λ − T − S) ≤ 0.

Reusing Theorem 2.7, we deduce that λ < σewl (T + S). The opposite inclusion follows from symmetry.
(ii) Similarly to (i), the proof of (ii) may be checked. Q.E.D.
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6. Essential spectra of matrix operators

In this section, we will describe the left and the right Weyl essential spectra of the matrix operator
L, the closure of L0, acting on the space X × X, where X is a Banach space with the DP property. In the
product space X × X, we consider the following operator which is formally defined by a matrix

L0 :=
(

A B
C D

)
, (5)

where the operator A acts on X and has domainD(A), D is defined onD(D) and acts on the Banach space
X, and the intertwining operator B (resp. C) is defined on the domain D(B) (resp. D(D)) and acts on
X. In the following, it is always assumed that the entries of this matrix satisfy the following conditions,
introduced in [17].

(H1) A is closed, densely defined linear operator on X with nonempty resolvent set ρ(A).

(H2) The operator B is a densely defined linear operator on X and for (hence all) µ ∈ ρ(A), the operator
(A − µ)−1B is closable. (In particular, if B is closable, then (A − µ)−1B is closable).

(H3) The operator C satisfiesD(A) ⊂ D(C), and for some (hence all) µ ∈ ρ(A), the operator C(A − µ)−1 is
bounded. (In particular, if C is closable, then C(A − µ)−1 is bounded).

(H4) The linealD(B)∩D(D) is dense in X and for some (hence all) µ ∈ ρ(A), the operator D−C(A−µ)−1B
is closable. We will denote by S(µ) its closure.

Remark 6.1. (i) Under the assumptions (H1) and (H2), we infer that for each µ ∈ ρ(A) the operator G(µ) :=
(A − µ)−1B is bounded on X.
(ii) From the assumption (H3), it follows that the operator: F(µ) := C(A − µ)−1 is bounded on X. ♦

The following result give a sufficient condition for which the operator L0 is closable and describes its
closure L.

Theorem 6.2. [3] Let conditions (H1)-(H3) be satisfied and the lineal D(B) ∩ D(D) be dense in X. Then, the
operator L0 is closable and the closure L of L0 is given by

L = µ −

(
I 0

F(µ) I

) (
µ − A 0

0 µ − S(µ)

) (
I G(µ)
0 I

)
, (6)

where µ ∈ ρ(A). Or, spelled out,

L : D(L) ⊂ (X × X) −→ X × X(
x
y

)
−→ L

(
x
y

)
=

(
A(x + G(µ)y) − µG(µ)
C(x + G(µ)y) − S(µ)y

)
,

with

D(L) =

{(
x
y

)
∈ X × X such that x + G(µ)y ∈ D(A) and y ∈ D(S(µ))

}
.

Note that the description of the operator L does not depend on the choice of the point µ ∈ ρ(A). ♦

Remark 6.3. Let λ ∈ C. It follows from (6) that

λ − L =

(
I 0

F(µ) I

) (
λ − A 0

0 λ − S(µ)

) (
I G(µ)
0 I

)
− (λ − µ)M(µ)

:= UV(λ)W − (λ − µ)M(µ), (7)

where

M(µ) =

(
0 G(µ)

F(µ) F(µ)G(µ)

)
. ♦
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Theorem 6.4. Let λ ∈ C.
(i) Suppose that Aλ ∈ Φw

l (X) and Sλ(µ) ∈ Φw
l (X). If F(µ) ∈ W(X), then

λ − L ∈ Φl(X) and i(λ − L) = i(V(λ)).

(ii) Suppose that Aλ ∈ Φw
r (X) and Sλ(µ) ∈ Φw

r (X). If F(µ) ∈ W(X), then

λ − L ∈ Φr(X) and i(λ − L) = i(V(λ)). ♦

Proof. (i) Denote by Tλ = UV(λ)W and Vw
λl =

(
Aw
λl W1

W2 Sw
λl(µ)

)
, where W1 and W2 are weakly compact

operators. It is easy to see that Vw
λl is a left weak-Fredholm inverse of V(λ). Thus, Tw

l = W−1Vw
λlU

−1 is a
left weak-Fredholm inverse of Tλ. On the other hand, we have

Tw
λlM(µ) =

(
W1F(µ) − G(µ)Sw

λlF(µ) Aw
λlG(µ) − G(µ)W2G(µ)

Sw
λlF(µ) W2G(µ)

)
.

Now, take the following bounded sequence
(

xn
yn

)
n
∈ X × X such that

(
x′n
y′n

)
:= (I + αTw

λlM(µ))
(

xn
yn

)
→

(
x0
y0

)
,

where α ∈ [0, 1]. Hence, we get the following system
x′n =

(
I − αG(µ)Sλl(µ)F(µ)

)
xn + αW1F(µ)xn + α(G(µ)W2 − Aλl)G(µ)yn.

y′n = αSλl(µ)F(µ)xn + (I + αW2G(µ))yn.
(8)

We first notice that since −αW2G(µ) is weakly compact, then (−αW2G(µ))2 is compact and so, demi-
compact. This implies from Theorem 3.1 that −αW2G(µ) is also demicompact. In the same manner,
we prove the demicompactness of the operator αG(µ)Sλl(µ)F(µ). In the other hand, remark that the
operators αSλl(µ)F(µ) and αW1F(µ) are both weakly compact. It results from the fact that X has the DP
property, that αSλl(µ)F(µ)xn and αW1F(µ)xn have convergent subsequences. Hence, from the second
equation of system (8), we infer that (I + αW2G(µ))yn has a convergent subsequence. By demicom-
pactness of −αW2G(µ), we deduce that (yn)n admits a convergent subsequence. In the same way, we
infer from the first equation of system (8) that (I − αG(µ)Sλl(µ)F(µ))xn has a convergent subsequence.
This together with the fact that αG(µ)Sλl(µ)F(µ) is demicompact allows us to conclude that (xn)n has a

convergent subsequence. Therefore, there exists a subsequence of
(

xn
yn

)
n

which converges on X. Thus,

−αTw
λlM(µ) ∈ DC(X), ∀α ∈ [0, 1]. Finally, the result follows from Theorem 5.2.

(ii) The result can be checked similarly to (i). Q.E.D.

Corollary 6.5. (i) Suppose that, for each λ ∈ Φw
lA(X) ∩Φw

lS(µ)(X), we have F(µ) ∈ W(X). Then,

σewl (L) ⊂ σewl (A) ∪ σewl (S(µ)).

(ii) Suppose that, for each λ ∈ Φw
rA(X) ∩Φw

rS(µ)(X), we have F(µ) ∈ W(X). Then,

σewr (L) ⊂ σewr (A) ∪ σewr (S(µ)). ♦

Proof. (i) Let λ < σewl (A) ∩ σewl (S(µ)), then

λ − A ∈ Φl(X) and i(λ − A) ≤ 0,

and
λ − S(µ) ∈ Φl(X) and i(λ − S(µ)) ≤ 0.

This implies that λ ∈ Φw
lA(X) ∩Φw

lS(µ)(X). The result follows from Theorem 6.4 (i).
(ii) Similarly to (i), the result follows from Theorem 6.4 (ii). Q.E.D.

Remark 6.6. Notice that in Theorem 6.4 and Corollary 6.5, the hypothesis F(µ) ∈ W(X) can be replaced by
G(µ) ∈ W(X). ♦
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