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A Note on Warped Product Almost Quasi-Yamabe Solitons
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Abstract. We consider almost quasi-Yamabe solitons in Riemannian manifolds, derive a Bochner-type
formula in the gradient case and prove that under certain assumptions, the manifold is of constant scalar
curvature. We also provide necessary and sufficient conditions for a gradient almost quasi-Yamabe soliton
on the base manifold to induce a gradient almost quasi-Yamabe soliton on the warped product manifold.

1. Introduction

The notion of Yamabe solitons, which generate self-similar solutions to Yamabe flow [8]:

∂
∂t
1(t) = −scal(t) · 1(t), (1)

firstly appeared to L. F. di Cerbo and M. N. Disconzi in [3]. In [4], B.-Y. Chen introduced the notion of
quasi-Yamabe soliton which we shall consider in the present paper for a more general case, when the constants
are let to be functions.

Let (M, 1) be an n-dimensional Riemannian manifold (n > 2), ξ a vector field and η a 1-form on M.

Definition 1.1. An almost quasi-Yamabe soliton on M is a data (1, ξ, λ, µ) which satisfy the equation:

1
2
Lξ1 + (λ − scal)1 + µη ⊗ η = 0, (2)

where Lξ is the Lie derivative operator along the vector field ξ and λ and µ are smooth functions on M.

When the potential vector field of (2) is of gradient type, i.e. ξ = 1rad( f ), then (1, ξ, λ, µ) is said to be
a gradient almost quasi-Yamabe soliton (or a generalized quasi-Yamabe gradient soliton) [9] and the equation
satisfied by it becomes:

Hess( f ) + (λ − scal)1 + µd f ⊗ d f = 0. (3)

In the next section, we shall derive a Bochner-type formula for the gradient almost quasi-Yamabe soliton
case and prove that under certain assumptions, the manifold is of constant scalar curvature. In the last
section we construct an almost quasi-Yamabe soliton on a warped product manifold. Remark that results
on warped product gradient Yamabe solitons for certain types of warping functions f have been obtained
by W. I. Tokura, L. R. Adriano and R. S. Pina in [10].
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2. Gradient almost quasi-Yamabe solitons

Remark that in the gradient case, from (3) we get:

∇ξ = −(λ − scal)I − µd f ⊗ ξ. (4)

Therefore, ∇ξξ = [∆( f ) + (n − 1)(λ − scal)]ξ, i.e. ξ is a generalized geodesic vector field with the potential
function ∆( f ) + (n − 1)(λ − scal) [6].

Also, if (λ, µ) = (scal − 1, 1), then ξ is torse-forming and if µ = 0, then ξ is concircular.

Now we shall get a condition that µ should satisfy in a gradient almost quasi-Yamabe soliton (1, ξ, λ, µ).
Taking the scalar product with Hess( f ), from (3) we get:

|Hess( f )|2 + (λ − scal)∆( f ) +
µ

2
ξ(|ξ|2) = 0

and tracing (3) we obtain:
∆( f ) + n(λ − scal) + µ|ξ|2 = 0.

From the above relations we deduce the equation:

nλ2 + (2n · scal + µ|ξ|2)λ + n · scal2 + µ|ξ|2 · scal −
µ

2
ξ(|ξ|2) − |Hess( f )|2 = 0

which has solution (in λ) if and only if

µ2
|ξ|4 + 2nµξ(|ξ|2) + 4n|Hess( f )|2 ≥ 0

(that is always true for ξ of constant length).

The next step is to deduce a Bochner-type formula for the gradient almost quasi-Yamabe soliton case.

Theorem 2.1. If (3) defines a gradient almost quasi-Yamabe soliton on the n-dimensional Riemannian manifold
(M, 1) and η = d f is the 1-dual of the gradient vector field ξ := 1rad( f ), then:

1
2

∆(|ξ|2) = |∇ξ|2 −
1

n − 1
S(ξ, ξ) −

n − 2
2(n − 1)

µ∇ξ(|ξ|2)− (5)

−|ξ|2[ξ(µ) −
n

n − 1
µ2
|ξ|2 −

n2

n − 1
λµ +

n2

n − 1
µ · scal].

Proof. First remark that:
trace(µη ⊗ η) = µ|ξ|2

and
div(µη ⊗ η) =

µ

2
d(|ξ|2) + µ∆( f )d f + dµ(ξ)d f .

Taking the trace of the equation (3), we obtain:

∆( f ) + n(λ − scal) + µ|ξ|2 = 0 (6)

and differentiating it:

d(∆( f )) + ndλ − nd(scal) + µd(|ξ|2) + |ξ|2dµ = 0. (7)

Now taking the divergence of the same equation, we get:

div(Hess( f )) + dλ − d(scal) +
µ

2
d(|ξ|2) + µ∆( f )d f + dµ(ξ)d f = 0. (8)
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Substracting the relations (8) and (7) computed in ξ and using [2]:

div(Hess( f )) = d(∆( f )) + iQξ1,

(div(Hess( f )))(ξ) =
1
2

∆(|ξ|2) − |∇ξ|2,

we obtain (5).

Remark 2.2. For the case µ = 0, under the assumptions S(ξ, ξ) ≤ (n − 1)|∇ξ|2 we get ∆(|ξ|2) ≥ 0 and from the
maximum principle follows that |ξ|2 is constant in a neighborhood of any local maximum. If |ξ| achieve its maximum,
then S(ξ, ξ) = (n − 1)|∇ξ|2.

Let us make some remarks on the scalar curvature of M.
From (4) we get:

R(·, ·)ξ = −[d(λ − scal) ⊗ I − I ⊗ d(λ − scal)] − µ(λ − scal)(d f ⊗ I − I ⊗ d f ) − (dµ ⊗ d f − d f ⊗ dµ)

and

R(·, ξ)· = d(λ − scal) ⊗ I − 1 ⊗ [1rad(λ − scal) − µ(λ − scal)ξ] + µ(λ − scal)d f ⊗ I+ (9)

+dµ ⊗ d f ⊗ ξ − d f ⊗ d f ⊗ 1rad(µ)

which for λ and µ constant become:

R(·, ·)ξ = [d(scal) ⊗ I − I ⊗ d(scal)] − µ(λ − scal)(d f ⊗ I − I ⊗ d f )

and

R(·, ξ)· = −d(scal) ⊗ I + 1 ⊗ [1rad(scal) + µ(λ − scal)ξ] + µ(λ − scal)d f ⊗ I. (10)

Using (9), R(ξ, ξ)X = 0 implies:

[d(λ − scal) + |ξ|2dµ] ⊗ ξ = d f ⊗ [1rad(λ − scal) + |ξ|21rad(µ)]

which for λ and µ constant becomes:

d(scal) ⊗ ξ = d f ⊗ 1rad(scal).

Assume further that λ and µ are constant. Computing the previous relation in ξ and choosing an open
subset where ξ , 0, we deduce:

1rad(scal) =
ξ(scal)
|ξ|2

ξ. (11)

Denoting by h =: ξ(scal)
|ξ|2

, from the symmetry of Hess(scal) we obtain:

dh ⊗ d f = d f ⊗ dh

which implies:
|ξ|2dh = ξ(h)d f and |ξ|21rad(h) = ξ(h)ξ.

A similar result like the one obtained by B.-Y. Chen, S. Deshmukh in [6] for Yamabe solitons can be
obtained for quasi-Yamabe solitons, following the same ideas in proving it.

Theorem 2.3. Let (3) define a gradient quasi-Yamabe soliton on the connected n-dimensional Riemannian manifold
(M, 1) (n > 1) for η = d f the 1-dual of the unitary vector field ξ := 1rad( f ). If ξ(scal) is constant along the integral
curves of ξ and Hess(scal) is degenerate in the direction of ξ, then M is of constant scalar curvature.
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Proof. Under these hypotheses, applying divergence to (11) we obtain:

∆(scal) = ξ(scal)∆( f ) = −[n(λ − scal) + µ]ξ(scal). (12)

Computing the Ricci operator in ξ, Qξ = −
∑n

i=1 R(Ei, ξ)Ei, for {Ei}1≤i≤n a local orthonormal frame field
on M, and using (10) we get:

Qξ = −(n − 1)1rad(scal) + (n − 1)µ(λ − scal)ξ (13)

and

S(ξ, ξ) = 1(Qξ, ξ) = −(n − 1)ξ(scal) + (n − 1)µ(λ − scal). (14)

Applying the divergence to (13) we have:

div(Qξ) = −(n − 1)∆(scal) + (n − 1)µ[(λ − scal)∆( f ) − ξ(scal)]. (15)

Computing the same divergence like:

div(Qξ) = div(S)(ξ) + 〈S,Hess( f )〉, (16)

taking into account the gradient quasi-Yamabe soliton equation, the fact that

div(S)(ξ) =
ξ(scal)

2
,

the expression of S(ξ, ξ) from (14) and replacing ∆(scal) from (12), we obtain:[1
2
− n(n − 1)(λ − scal) + (n − 1)µ

]
ξ(scal) =

= (λ − scal)[(1 + n(n − 1)µ)scal − n(n − 1)λµ].

Differentiating the previous expression alongξ and taking into account the degeneracy of Hess(scal)(ξ, ξ) =
ξ(ξ(scal)) − (∇ξξ)(scal) in the direction of ξ, after a long computation, we get:

ξ(scal)
[
ξ(scal) + scal2 + k1scal + k2

]
= 0,

where the constants k1 and k2 are respectively given by:

k1 =:
n + 1

n
µ +

5
2n(n − 1)

, k2 =: λ2
−

1
n
µ2
−

n + 1
n

λµ −
3λ + µ

2n(n − 1)
.

Differentiating again the term in the parantheses along ξ we get:

ξ(scal)
[
3scal − λ +

1
n
µ +

5
2n(n − 1)

]
= 0

which completes the proof.

3. Warped product almost quasi-Yamabe solitons

3.1. Warped product manifolds
Consider (B, 1B) and (F, 1F) two Riemannian manifolds of dimensions n and m, respectively. Denote by

π and σ the projection maps from the product manifold B× F to B and F and by ϕ̃ := ϕ ◦π the lift to B× F of
a smooth function ϕ on B. In this context, we shall call B the base and F the fiber of B× F, the unique element
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X̃ of χ(B × F) that is π-related to X ∈ χ(B) and to the zero vector field on F, the horizontal lift of X and the
unique element Ṽ of χ(B × F) that is σ-related to V ∈ χ(F) and to the zero vector field on B, the vertical lift of
V. Also denote by L(B) the set of all horizontal lifts of vector fields on B, by L(F) the set of all vertical lifts
of vector fields on F, byH the orthogonal projection of T(p,q)(B×F) onto its horizontal subspace T(p,q)(B×{q})
and byV the orthogonal projection of T(p,q)(B × F) onto its vertical subspace T(p,q)({p} × F).

Let ϕ > 0 be a smooth function on B and

1 := π∗1B + (ϕ ◦ π)2σ∗1F (17)

be a Riemannian metric on B × F.

Definition 3.1. [1] The product manifold of B and F together with the Riemannian metric 1 defined by (17) is called
the warped product of B and F by the warping function ϕ (and is denoted by (M := B ×ϕ F, 1)).

In particular, ifϕ = 1, then the warped product becomes the usual product of the Riemannian manifolds.

For simplification, in the rest of the paper we shall simply denote by X the horizontal lift of X ∈ χ(B)
and by V the vertical lift of V ∈ χ(F).

Notice that the lift on M of the gradient and the Hessian satisfy:

1rad( f̃ ) = ˜1rad( f ), (18)

(Hess( f̃ ))(X,Y) = ˜(Hess( f ))(X,Y), for any X,Y ∈ L(B), (19)

for any smooth function f on B.
Also, the scalar curvatures are connected by the relation [7]:

scal = s̃calB +
s̃calF
ϕ2 − π

∗

(
2m

∆(ϕ)
ϕ

+ m(m − 1)
|1rad(ϕ)|2

ϕ2

)
. (20)

3.2. Warped product almost quasi-Yamabe solitons
We shall construct a gradient almost quasi-Yamabe soliton on a warped product manifold.
Let (B, 1B) be an n-dimensional Riemannian manifold, ϕ > 0 a smooth function on B and f , µ smooth

functions on B such that:

∆( f ) + µ|1rad( f )|2 = n
(1rad( f ))(ϕ)

ϕ
. (21)

In this case, any gradient almost quasi-Yamabe soliton (1B, 1rad( f ), λB, µB) on (B, 1B) is given by λB =

scalB −
(1rad( f ))(ϕ)

ϕ and µB = µ.
Take (F, 1F) an m-dimensional manifold with

scalF = π∗((λ − λB)ϕ2 + 2mϕ∆(ϕ) + m(m − 1)|1rad(ϕ)|2)|F, (22)

where π and σ are the projection maps from the product manifold B × F to B and F, respectively, 1 :=

π∗1B + (ϕ ◦π)2σ∗1F is a Riemannian metric on B× F, λB = scalB −
(1rad( f ))(ϕ)

ϕ and λ is a smooth function on
B.

With the above notations, we prove:

Theorem 3.2. Let (B, 1B) be an n-dimensional Riemannian manifold, ϕ > 0, f , µ smooth functions on B sat-
isfying (21) and (F, 1F) an m-dimensional Riemannian manifold with the scalar curvature given by (22). Then
(1, ξ, π∗(λ), π∗(µ)), where ξ = 1rad( f̃ ), is a gradient almost quasi-Yamabe soliton on the warped product manifold

(B ×ϕ F, 1) if and only if (1B, 1rad( f ), λB = scalB −
(1rad( f ))(ϕ)

ϕ , µ) is a gradient almost quasi-Yamabe soliton on
(B, 1B).
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Proof. The gradient almost quasi-Yamabe soliton (1, ξ, π∗(λ), π∗(µ)) on (B ×ϕ F, 1) is given by:

Hess( f̃ ) + (π∗(λ) − scal)1 + π∗(µ)d f̃ ⊗ d f̃ = 0. (23)

Notice that from (20), (21) and (22) we deduce that

π∗(λ) − scal = π∗(λB) − s̃calB,

hence for any X, Y ∈ L(B) we get:

H f (X,Y) + (λB − scalB)1B(X,Y) + µd f (X)d f (Y) = 0 (24)

i.e. (1B, 1rad( f ), λB, µ) is a gradient almost quasi-Yamabe soliton on (B, 1B), where H f denotes the lift of
Hess( f ).

Conversely, notice that the left-hand side term in (23) computed in (X,V), for X ∈ L(B) and V ∈ L(F)
vanishes identically and for each situation (X,Y) and (V,W), we can recover the equation (23) from (21) and
the fact that (1B, 1rad( f ), λB, µ) is a gradient almost quasi-Yamabe soliton on (B, 1B). Indeed, taking the trace
of (24) we get

∆( f ) + n(λB − scalB) + µ|1rad( f )|2 = 0

and using (21) we obtain

π∗(λB) − s̃calB = −
(1rad( f ))(ϕ)

ϕ
.

We know that for any V, W ∈ L(F):

H f (V,W) = (Hess( f̃ ))(V,W) = 1(∇V(1rad( f̃ )),W) =

= π∗
[

(1rad( f ))(ϕ)
ϕ

]
|Fϕ̃

2
|F1F(V,W)

and we deduce that
H f (V,W) + (π∗(λB) − s̃calB)|F1(V,W) = 0.

Example 3.3. Consider M = {(x, y, z) ∈ R3, z > 0}, where (x, y, z) are the standard coordinates in R3,

1M :=
1
z2 (dx ⊗ dx + dy ⊗ dy + dz ⊗ dz) and ξM := −z

∂
∂z
.

Let (1M, ξM,−8, 2) be the gradient quasi-Yamabe soliton on the Riemannian manifold (M, 1M) and let S3 be the
3-sphere with the round metric 1S (which is Einstein with the Ricci tensor equals to 21S). Thus we obtain the gradient
quasi-Yamabe soliton (1, ξ,−2, 2) on the ”generalized cylinder” M×S3, where 1 = 1M +1S and ξ is the lift on M×S3

of the gradient vector field ξM = 1rad( f ), where f (x, y, z) := − ln z.

3.3. Some consequences of condition (21)

Let us make some remarks on the class of manifolds that satisfy the condition:

∆( f ) + µ|ξ|2 = n
dϕ(ξ)
ϕ

, (25)

for ϕ > 0, f and µ smooth functions on the oriented and compact Riemannian manifold (B, 1B) and
ξ := 1rad( f ).
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Remark that if

Hess( f ) −
n

2ϕ
(d f ⊗ dϕ + dϕ ⊗ d f ) + µd f ⊗ d f = 0, (26)

then (25) is satisfied. Computing Hess( f )(X,Y) := 1B(∇Xξ,Y) we get

∇ξ =
n

2ϕ
(d f ⊗ 1rad(ϕ) + dϕ ⊗ ξ) − µd f ⊗ ξ.

Also notice that in this case, if (1B, ξ, λB, µ) is a gradient almost quasi-Yamabe soliton on (B, 1B), then the
metric 1B is precisely

1B = −
n

2ϕ(λB − scalB)
(d f ⊗ dϕ + dϕ ⊗ d f )

and scalB = λB +
dϕ(ξ)
ϕ .

In what follows, we shall focus on condition (26). We’ve checked that [2]:

|Hess( f ) −
∆( f )

n
1B|

2 = |Hess( f )|2 −
(∆( f ))2

n
,

(div(Hess( f )))(ξ) = div(Hess( f )(ξ)) − |Hess( f )|2,

therefore:

(div(Hess( f )))(ξ) = div(Hess( f )(ξ)) − |Hess( f ) −
∆( f )

n
1B|

2
−

(∆( f ))2

n
. (27)

Applying the divergence to (26), computing it in ξ and taking into account that

div
(

1
ϕ

d f ⊗ dϕ
)

=

(
∆( f )
ϕ
−

dϕ(ξ)
ϕ2

)
dϕ +

1
ϕ

i∇ξ1rad(ϕ)1B

and
div(µd f ⊗ d f ) =

µ

2
d(|ξ|2) + µ∆( f )d f + dµ(ξ)d f ,

we get:

(div(Hess( f )))(ξ) = n
(
∆( f )
ϕ
−

dϕ(ξ)
ϕ2

)
dϕ(ξ) +

n
ϕ
1B(∇ξ1rad(ϕ), ξ)− (28)

−
µ

2
d(|ξ|2)(ξ) − µ∆( f )|ξ|2 − dµ(ξ)|ξ|2

and we obtain:

div(Hess( f )(ξ)) = |Hess( f ) −
∆( f )

n
1B|

2 +
(∆( f ))2

n
+ n

(
∆( f )
ϕ
−

dϕ(ξ)
ϕ2

)
dϕ(ξ)+ (29)

+
n
ϕ
1B(∇ξ1rad(ϕ), ξ) −

µ

2
d(|ξ|2)(ξ) − µ∆( f )|ξ|2 − dµ(ξ)|ξ|2.

Integrating with respect to the canonical measure on B, we have:∫
B

d(|ξ|2)(ξ) =

∫
B
〈1rad(|ξ|2), ξ〉 = −

∫
B
〈|ξ|2, div(ξ)〉 = −

∫
B
|ξ|2 · ∆( f ).

Using:
|ξ|2 · ∆( f ) = |ξ|2 · div(ξ) = div(|ξ|2ξ) − |ξ|2
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taking µ constant and integrating (29) on B, from the above relations and the divergence theorem, we obtain:∫
B
|Hess( f ) −

∆( f )
n
1B|

2 + (n + 1)
∫

B
∆( f ) ·

dϕ(ξ)
ϕ

+
(2 − µ)n + 2

2n

∫
B
|ξ|2− (30)

−n
∫

B

(dϕ(ξ))2

ϕ2 + n
∫

B
1B(

1
ϕ
∇ξ1rad(ϕ), ξ) = 0.

Assume now that µ is constant and consider the product manifold B×F, in which case (26) and (25) (for
ϕ = 1) become:

Hess( f ) + µd f ⊗ d f = 0 and ∆( f ) + µ|ξ|2 = 0. (31)

Remark 3.4. i) In the case of product manifold (for ϕ = 1), the chosen manifold (F, 1F) is of scalar curvature
scalF = π∗(λ − scalB)|F. In particular, for λ = scalB, (F, 1F) is locally isometric to an Euclidean space. Moreover,
∇ξξ = −µ|ξ|2ξ, therefore, ξ is a generalized geodesic vector field with the potential function ∆( f ).

ii) For ϕ = 1 and µ constant, we obtain:

µ2
∫

B
|ξ|4 = 0

and we can state:

Corollary 3.5. Let (B, 1B) be an oriented and compact n-dimensional Riemannian manifold, f a smooth function on
B and µ a real constant satisfying (31). Then µ = 0 hence, f is harmonic and ∇ξ = 0.

Proposition 3.6. Let (B, 1B) be an oriented, compact and complete n-dimensional (n > 1) Riemannian manifold, f a
smooth function on B and µ a real constant satisfying (31). Then B is conformal to a sphere in the (n + 1)-dimensional
Euclidean space.

Proof. From the above observations, we have:∫
B
|Hess( f ) −

∆( f )
n
1B|

2 =

∫
B
|Hess( f )|2 −

∫
B

(∆( f ))2

n
=

n − 1
n

µ2
∫

B
|ξ|4 = 0,

so Hess( f ) =
∆( f )

n 1B which implies by [11] that B is conformal to a sphere in the (n + 1)-dimensional
Euclidean space.
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