On the generalized Apostol-type Frobenius-Genocchi polynomials

Waseem A. Khan ${ }^{\text {a }}$, Divesh Srivastava ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Integral University, Lucknow-226026, India

Abstract

The main object of this work is to introduce a new class of the generalized Apostol-type Frobenius-Genocchi polynomials and is to investigate some properties and relations of them. We derive implicit summation formulae and symmetric identities by applying the generating functions. In addition a relation in between Array-type polynomials, Apostol-Bernoulli polynomials and generalized Apostol-type Frobenius-Genocchi polynomials is also given.

1. Introduction

Let $\alpha \in \mathbb{Z}, \lambda \in \mathbb{C}, a, b, c \in \mathbb{R}^{+}, a \neq b$ and $x \in \mathbb{R}$. The generalized Apostol-Bernoulli, Euler and Genocchi polynomials with the parameters are given by means of the following generating function as follows (see [1-15]):

$$
\begin{align*}
& \left(\frac{t}{\lambda b^{t}-a^{t}}\right)^{\alpha} c^{x t}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x ; \lambda ; a, b, c) \frac{t^{n}}{n!},\left|t \ln \frac{b}{a}\right|<2 \pi \tag{1.1}\\
& \left(\frac{2}{\lambda b^{t}+a^{t}}\right)^{\alpha} c^{x t}=\sum_{n=0}^{\infty} E_{n}^{(\alpha)}(x ; \lambda ; a, b, c) \frac{t^{n}}{n!},\left|t \ln \frac{b}{a}\right|<\pi \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{2 t}{\lambda b^{t}+a^{t}}\right)^{\alpha} c^{x t}=\sum_{n=0}^{\infty} G_{n}^{(\alpha)}(x ; \lambda ; a, b, c) \frac{t^{n}}{n!},\left|t \ln \frac{b}{a}\right|<\pi . \tag{1.3}
\end{equation*}
$$

Obviously, we have
$B_{n}^{(\alpha)}(x ; \lambda ; 1, e, e)=B_{n}(x ; \lambda), E_{n}^{(\alpha)}(x ; \lambda ; 1, e, e)=E_{n}(x ; \lambda)$, and $G_{n}^{(\alpha)}(x ; \lambda ; 1, e, e)=G_{n}(x ; \lambda)$.
Recently, Kurt et al. [1] and Simsek [11, 12] introduced the Apostol type Frobenius-Euler polynomials as follows.

Let $\alpha \in \mathbb{Z}, \lambda \in \mathbb{C}, a, b, c \in \mathbb{R}^{+}, a \neq b, x \in \mathbb{R}$. The generalized Apostol type Frobenius-Euler polynomials are defined by means of the following generating function:

$$
\begin{equation*}
\left(\frac{a^{t}-u}{\lambda b^{t}-u}\right)^{\alpha} c^{\alpha t}=\sum_{n=0}^{\infty} H_{n}^{(\alpha)}(x ; u, a, b, c, \lambda) \frac{t^{n}}{n!} \tag{1.4}
\end{equation*}
$$

[^0]For $x=0$ and $\alpha=1$ in (1.4), we get

$$
\begin{equation*}
\frac{a^{t}-u}{\lambda b^{t}-u}=\sum_{n=0}^{\infty} H_{n}(u, a, b ; \lambda) \frac{t^{n}}{n!} \tag{1.5}
\end{equation*}
$$

where $H_{n}(u, a, b ; \lambda)$ denotes the generalized Apostol type Frobenius-Euler numbers (see [9], [12], [14]).
On setting $a=1, b=e, \lambda=1 \mathrm{in}(1.4)$, the result reduces to

$$
\begin{equation*}
\left(\frac{1-u}{e^{t}-u}\right)^{\alpha} e^{\alpha t}=\sum_{n=0}^{\infty} H_{n}^{(\alpha)}(x ; u) \frac{t^{n}}{n!}, \tag{1.6}
\end{equation*}
$$

where $H_{n}^{(\alpha)}(x ; u)$ is called classical Frobenius-Euler polynomial of order α (see [1], [12], [15]).
Observe that $H_{n}^{(1)}(x, u)=H_{n}(x, u)$, which denotes the Frobenius-Euler polynomials and $H_{n}^{(\alpha)}(0 ; u)=$ $H_{n}^{(\alpha)}(u)$, which denotes the Frobenius -Euler numbers of order $\alpha . H_{n}^{(1)}(x ;-1)=E_{n}(x)$, which denotes the Euler polynomials (see [5], [7], [12]).

Recently, Yaşar and Özarslan [15] introduced the Frobenius-Genocchi polynomials by means of the following generating function:

$$
\begin{equation*}
\frac{(1-\lambda) t}{e^{t}-\lambda} e^{x t}=\sum_{n=0}^{\infty} G_{n}^{F}(x ; \lambda) \frac{t^{n}}{n!} \tag{1.7}
\end{equation*}
$$

On setting $\lambda=-1$ in (1.7), we get

$$
\begin{equation*}
\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!},|t|<\pi \tag{1.8}
\end{equation*}
$$

where $G_{n}(x)$ are called the Genocchi polynomials (see [5]).
In (2013), Simsek [11] introduced the λ-stirling type number of second kind $S(n, v ; a, b ; \lambda)$ by means of the following generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{S}(n, v ; a, b ; \lambda) \frac{t^{n}}{n!}=\frac{\left(\lambda b^{t}-a^{t}\right)^{v}}{v!} \tag{1.9}
\end{equation*}
$$

and the generalized array type polynomials are defined by Simsek [11, p.6, Eq. (3.1)] as:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{S}_{v}^{n}(x ; a, b ; \lambda) \frac{t^{n}}{n!}=\frac{\left(\lambda b^{t}-a^{t}\right)^{v}}{v!} b^{x t} \tag{1.10}
\end{equation*}
$$

Kurt and Simsek [1] introduced the polynomial $Y_{n}(x ; \lambda ; a)$, which is given by the following generating function:

$$
\begin{equation*}
\frac{t}{\lambda a^{t}-1} a^{x t}=\sum_{n=0}^{\infty} Y_{n}(x ; \lambda ; a) \frac{t^{n}}{n!}, \quad(a \geq 1) \tag{1.11}
\end{equation*}
$$

For $x=0$ in (1.11), we get

$$
\begin{equation*}
Y_{n}(0 ; \lambda ; a)=Y_{n}(\lambda ; a),(\operatorname{see}[15]) . \tag{1.12}
\end{equation*}
$$

Again if we set $x=0$ and $a=1$, in (1.11), we obtain

$$
\begin{equation*}
Y_{n}(\lambda ; 1)=\frac{t}{\lambda-1} \tag{1.13}
\end{equation*}
$$

This paper is organized as follows. We give a brief review of generalized Apostol-type FrobeniusGenocchi polynomials $\mathcal{G}_{n}^{(\alpha)}(x ; u, a, b, c ; \lambda)$ and their properties. Some explicit and implicit summation formulae and general symmetric identities are derived by using different analytical means and applying generating functions. Also, we established relation between λ-type Stirling polynomials, Apostol-Bernoulli polynomials and generalized Apostol Frobenius-Genocchi polynomials.

2. Definition and properties of the generalized Apostol-type Frobenius-Genocchi polynomials $\mathcal{G}_{n}^{(\alpha)}(x ; u ; a, b, c ; \lambda)$

In this section, we introduce the generalized Apostol-type Frobenius-Genocchi polynomials and investigate some basic properties.

Definition 2.1. The generalized Apostol-type Frobenius-Genocchi polynomials $\mathcal{G}_{n}^{(\alpha)}(x ; u ; a . b . c ; \lambda)$ of order α are defined by means of the following generating function:

$$
\begin{equation*}
\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{\alpha} c^{x t}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!} \tag{2.1}
\end{equation*}
$$

where ($\alpha \in \mathbb{Z}, \lambda \in \mathbb{C}, a, b, c \in \mathbb{R}^{+}, a \neq b, x \in \mathbb{R}$).
Remark 2.1. For $x=0$ and $\alpha=1$, (2.1) reduces to

$$
\begin{equation*}
\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)=\sum_{n=0}^{\infty} \mathcal{G}_{n}(u ; a, b ; \lambda) \frac{t^{n}}{n!} \tag{2.2}
\end{equation*}
$$

where $\mathcal{G}_{n}(u ; a . b . c ; \lambda)$ denotes the Apostol-type Frobenius-Genocchi numbers.
Remark 2.2. If we set $a=1, b=c=e, u=-1$, (2.1) immediately reduces to the Apostol-type Genocchi polynomials (see [4], [12], [15]).

$$
\begin{equation*}
\left(\frac{2 t}{\lambda e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} G_{n}^{(\alpha)}(x ; \lambda),|t|<\pi \tag{2.3}
\end{equation*}
$$

We have the following properties of (2.1), which are stated in terms of theorems as:
Theorem 2.1 The following recurrence relation holds true:

$$
\begin{align*}
& \quad(2 u-1) \sum_{r=0}^{n}\binom{n}{r} \mathcal{G}_{r}(x ; u ; a, b, c ; \lambda) \mathcal{G}_{n-r}(y ; 1-u ; a, b, c ; \lambda) \\
& =n(u-1) \mathcal{G}_{n-1}(x+y ; u ; a, b, c ; \lambda)+n u \mathcal{G}_{n-1}(x+y ; 1-u, a, b, c ; \lambda) \\
& \quad+\sum_{r=0}^{n}\binom{n}{r}(\ln a)^{n-r} \mathcal{G}_{r}(x+y ; u ; a, b, c ; \lambda) \\
& \tag{2.4}\\
& \quad-\sum_{r=0}^{n}\binom{n}{r}(\ln a)^{n-r} \mathcal{G}_{r}(x+y ; 1-u, a, b, c ; \lambda) .
\end{align*}
$$

Proof. In order to prove (2.4), we set

$$
(2 u-1)\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right) c^{x t}\left(\frac{\left(a^{t}-(1-u)\right) t}{\lambda b^{t}-(1-u)}\right) c^{y t}
$$

$$
\begin{equation*}
=t^{2}\left(a^{t}-u\right)\left(a^{t}-(1-u)\right) c^{(x+y) t}\left[\frac{1}{\lambda b^{t}-u}-\frac{1}{\lambda b^{t}-(1-u)}\right] \tag{2.5}
\end{equation*}
$$

Employing the result (2.2), equation (2.5) reduces as

$$
\begin{align*}
&(2 u-1) \sum_{r=0}^{\infty} \mathcal{G}_{r}(x ; u ; a, b, c ; \lambda) \frac{t^{r}}{r!} \sum_{n=0}^{\infty} \mathcal{G}_{n}(y ; 1-u ; a, b, c ; \lambda) \frac{t^{n}}{n!}=\left(a^{t}-(1-u) t\right) \\
& \quad \times \sum_{r=0}^{\infty} \mathcal{G}_{r}(x+y ; u, a, b, c ; \lambda) \frac{t^{r}}{r!}-\left(a^{t}-u\right) t \sum_{r=0}^{\infty} \mathcal{G}_{r}(x+y ; 1-u ; a, b, c ; \lambda) \frac{t^{r}}{r!} \tag{2.6}
\end{align*}
$$

Using [13, p. 100, Eq. 2], we get

$$
\begin{align*}
& \begin{aligned}
&(2 u-1) \sum_{n=0}^{\infty} \sum_{r=0}^{n}\binom{n}{r} \mathcal{G}_{r}(x ; u ; a, b, c ; \lambda) \mathcal{G}_{n-r}(y ; 1-u ; a, b, c ; \lambda) \frac{t^{n}}{n!} \\
&=\left(a^{t}-(1-u) t\right) \sum_{r=0}^{\infty} \mathcal{G}_{r}(x+y ; u, a, b, c ; \lambda) \frac{t^{r}}{r!}-\left(a^{t}-u\right) t \\
& \times \sum_{r=0}^{\infty} \mathcal{G}_{r}(x+y ; 1-u ; a, b, c ; \lambda) \frac{t^{r}}{r!} \\
&(2 u-1) \sum_{n=0}^{\infty} \sum_{r=0}^{n}\binom{n}{r} \mathcal{G}_{r}(x ; u ; a, b, c ; \lambda) \mathcal{G}_{n-r}(y ; 1-u ; a, b, c ; \lambda) \frac{t^{n}}{n!} \\
&=(u-1) \sum_{r=0}^{\infty} \mathcal{G}_{r}(x+y ; u, a, b, c ; \lambda) \frac{t^{r+1}}{r!} \\
&+u \sum_{r=0}^{\infty} \mathcal{G}_{r}(x+y ; 1-u, a, b, c ; \lambda) \frac{r^{r+1}}{r!} \\
&+\sum_{n=0}^{\infty} \sum_{r=0}^{n}\binom{n}{r}(\ln a)^{n-r} \mathcal{G}_{r}(x+y ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!} \\
&- \sum_{n=0}^{\infty} \sum_{r=0}^{n}\binom{n}{r}(\ln a)^{n-r} \mathcal{G}_{r}(x+y ; 1-u ; a, b, c ; \lambda) \frac{t^{n}}{n!}
\end{aligned}
\end{align*}
$$

On comparing the coefficients of t^{n} in both sides, we arrive at the desired result (2.4).
Theorem 2.2. The following relation holds true:

$$
\begin{align*}
& \left(\mathcal{G}_{n+1}(x ; u ; a, b, b ; \lambda)-\ln (b)^{x^{2}} \mathcal{G}_{n}(x ; u ; a, b, b ; \lambda)\right) \\
& \quad=\ln (a)^{\frac{1}{u}} \sum_{k=0}^{n+1}\binom{n+1}{k} Y_{n+1-k}\left(1 ; \frac{1}{u} ; a\right) \mathcal{G}_{k}(x ; u ; a, b, b ; \lambda) \\
& \quad+\ln (b)^{\frac{\lambda}{u}} \sum_{k=0}^{n+2}\binom{n+2}{k} Y_{n+2-k}\left(\frac{1}{u} ; b\right) \mathcal{G}_{k}^{(2)}(x ; u ; a, b, b ; \lambda) \tag{2.9}
\end{align*}
$$

Proof. In order to prove (2.9), we set $c=b$ and $\alpha=1$ in equation (2.1) and then taking it's derivative with respect to t, we have

$$
\begin{gather*}
\sum_{n=0}^{\infty} \mathcal{G}_{n+1}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}=\left[\frac{\left(\lambda b^{t}-u\right)\left(a^{t}-u\right)+t a^{t} \ln (a)-\left(a^{t}-u\right) t \lambda b^{t} \ln (b)}{\left(\lambda b^{t}-u\right)^{2}}\right] b^{\alpha t} \\
+\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u} b^{\alpha t} \ln (b)^{x^{2}} \tag{2.10}
\end{gather*}
$$

On arranging the above equation and making use of (1.11) and (2.1), we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{G}_{n+1}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}= \frac{1}{t} \sum_{n=0}^{\infty} \mathcal{G}_{n}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}+\frac{1}{t} \frac{\ln (a)}{u} \\
& \times \sum_{n=0}^{\infty} Y_{n}\left(1 ; \frac{1}{u} ; a\right) \frac{t^{n}}{n!} \sum_{k=0}^{\infty} \mathcal{G}_{k}(x ; u ; a, b, b ; \lambda) \frac{t^{k}}{k!}-\frac{1}{t^{2}} \lambda b^{t} \ln (b) \\
& \times \sum_{n=0}^{\infty} Y_{n}\left(1 ; \frac{1}{u} ; b\right) \frac{t^{n}}{n!} \sum_{k=0}^{\infty} \mathcal{G}_{k}^{(2)}(x ; u ; a, b, b ; \lambda) \frac{t^{k}}{k!} \\
&+\ln (b)^{x^{2}} \sum_{n=0}^{\infty} \mathcal{G}_{n}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!} \tag{2.11}
\end{align*}
$$

Making use of Lemma [13, p.100, Eq.2], above equation reduces as

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathcal{G}_{n+1}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}=\frac{1}{t} \sum_{n=0}^{\infty} \mathcal{G}_{n}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}+\frac{1}{t} \frac{\ln (a)}{u} \\
\times \sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} Y_{n-k}\left(1 ; \frac{1}{u} ; a\right) \frac{t^{n}}{n!} \mathcal{G}_{k}(x ; u ; a, b, b ; \lambda) \\
\quad-\frac{1}{t^{2}} \lambda b^{t} \ln (b) \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\binom{n}{k} Y_{n-k}\left(1 ; \frac{1}{u} ; b\right) \\
\quad \times \mathcal{G}_{k}^{(2)}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}+\ln (b)^{x^{2}} \sum_{n=0}^{\infty} \mathcal{G}_{n}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!} \tag{2.12}
\end{align*}
$$

On equating the coefficients of t^{n} in both sides of the above equation, we arrive at the required result (2.9).

Theorem 2.3. The following relationship holds true

$$
\begin{equation*}
\mathcal{G}_{n}^{(-m)}(u ; a, b, c ; \lambda)=\sum_{k=0}^{n} \mathcal{G}_{k}^{(-\alpha)}(-x ; u ; a, b, c ; \lambda) \mathcal{G}_{(n-k)}^{(\alpha-m)}(x ; u ; a . b . c ; \lambda) \tag{2.13}
\end{equation*}
$$

Proof. In order to prove (2.13), replacing x by $-x$ and α by $-\alpha$ in (2.1), to get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-\alpha)}(-x ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!}=\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{(-\alpha)} c^{-x t} \tag{2.14}
\end{equation*}
$$

Making use of the above equation, we can write

$$
\begin{equation*}
\sum_{k=0}^{\infty} \mathcal{G}_{k}^{(-\alpha)}(-x ; u ; a, b, c ; \lambda) \frac{t^{k}}{k!} \sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha-m)}(x ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!}=\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{-m} \tag{2.15}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{k=0}^{\infty} \mathcal{G}_{k}^{(-\alpha)}(-x ; u ; a, b, c ; \lambda) \frac{t^{k}}{k!} \sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha-m)}(x ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!} \\
&=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-m)}(u ; a, b, c ; \lambda) \frac{t^{n}}{n!} \tag{2.16}
\end{align*}
$$

Using Lemma [13, p.100, Eq.2], and comparing the coefficients of t^{n} from the resulting equation, we acquire the result (2.13).

Theorem 2.4. The following relationships hold true:

$$
\begin{gather*}
\mathcal{G}_{n}^{(\alpha)}(x ; u, a, b, c ; \lambda)=\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{k}^{(\alpha)}(u ; a, b, c ; \lambda)(x \ln c)^{(n-k)} \tag{2.17}\\
\mathcal{G}_{n}^{(\alpha+\beta)}(x+y ; u, a, b, c ; \lambda)=\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{k}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \mathcal{G}_{n-k}^{(\beta)}(y ; u ; a, b, c ; \lambda) . \tag{2.18}\\
((x+y) \ln c)^{n}=\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{n-k}^{(\alpha)}(y ; u ; a, b, c ; \lambda) \mathcal{G}_{k}^{(-\alpha)}(x ; u ; a, b, c ; \lambda) . \tag{2.19}\\
\mathcal{G}_{n}^{(-\alpha)}\left(2 x ; u^{2} ; a^{2}, b^{2}, c^{2} ; \lambda^{2}\right)=\sum_{k=0}^{n}\binom{n}{k} \mathcal{G}_{k}^{(-\alpha)}(x ; u ; a, b, c ; \lambda) \\
\times \mathcal{H}_{n-k}^{(-\alpha)}(x ;-u ; a, b, c ; \lambda) . \tag{2.20}
\end{gather*}
$$

Proof. By using (1.4) and (2.1), we can easily find the results (2.17)-(2.20). We omit the proof.

3. Implicit Summation Formulae Involving Generalized Apostol-type Frobenius-Genocchi Polynomials

Here in this section, we provide some implicit formulae for generalized Apostol-type FrobeniusGenocchi polynomials.

Theorem 3.1. The following implicit formula for the generalized Apostol-type Frobenius-Genocchi polynomials holds true:

$$
\begin{equation*}
\mathcal{G}_{k+l}^{(\alpha)}(z ; u ; a, b, c ; \lambda)=\sum_{n, m=0}^{k, l}\binom{l}{m}\binom{k}{n}(\ln c)^{(m+n)}(z-x)^{m+n} \mathcal{G}_{k-n, l-m}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \tag{3.1}
\end{equation*}
$$

Proof. Replacing t by $(t+w)$ in (2.1) and rewriting equation (2.1) as

$$
\begin{equation*}
\left(\frac{\left(a^{(t+w)}-u\right)(t+w)}{\lambda b^{t+w}-u}\right)^{\alpha}=c^{-x(t+w)} \sum_{k, l=0}^{\infty} \mathcal{G}_{k+l}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{k}}{k!} \frac{w^{l}}{l!} . \tag{3.2}
\end{equation*}
$$

Replacing x by z, and equating the obtained equation with the above equation, we have

$$
\begin{equation*}
\left.\left.c^{(z-x)(t+w)} \sum_{k, l=0}^{\infty} \mathcal{G}_{k+l}^{(\alpha)}(x ; u ; a, b, c ; \lambda)\right) \frac{t^{k}}{k!} \frac{w^{l}}{l!}=\sum_{k, l=0}^{\infty} \mathcal{G}_{k+l}^{(\alpha)}(z ; u ; a, b, c ; \lambda)\right) \frac{t^{k}}{k!} \frac{w^{l}}{l!} . \tag{3.3}
\end{equation*}
$$

Expanding the exponent part in the above equation, we have

$$
\left.\sum_{N=0}^{\infty} \frac{[(z-x)(t+w)]^{N}}{N!} \sum_{k, l=0}^{\infty} \mathcal{G}_{k+l}^{(\alpha)}(x ; u ; a, b, c ; \lambda)\right) \frac{t^{k}}{k!} \frac{w^{l}}{l!}
$$

$$
\begin{equation*}
=\sum_{k, l=0}^{\infty} \mathcal{G}_{k+l}^{(\alpha)}(z ; u ; a, b, c ; \lambda) \frac{t^{k}}{k!} \frac{w^{l}}{l!} . \tag{3.4}
\end{equation*}
$$

Using the result [13, p.52(2)], we have

$$
\sum_{N=0}^{\infty} f(N) \frac{(x+y)^{N}}{N!}=\sum_{m, n=0}^{\infty} f(n+m) \frac{x^{n}}{n!} \frac{x^{m}}{m!}
$$

in the left-hand side, we get

$$
\begin{align*}
\sum_{n, m=0}^{\infty} \frac{(\ln c)^{n+m}(z-x)^{(n+m)} t^{n} w^{m}}{n!m!} \sum_{k, l=0}^{\infty} & \left.\mathcal{G}_{k+l}^{(\alpha)}(x ; u ; a, b, c ; \lambda)\right) \frac{t^{k}}{k!} \frac{w^{l}}{l!} \\
& =\sum_{k, l=0}^{\infty} \mathcal{G}_{k+l}^{(\alpha)}(z ; u ; a, b, c ; \lambda) \frac{t^{k}}{k!} \frac{w^{l}}{l!} \tag{3.5}
\end{align*}
$$

Replacing k by $k-n$ and l by $l-m$ in the above equation and equating the coefficients of t^{k} and w^{l} from the resulting equation, we obtain the required result (3.1).

Corollary 3.1. For $l=0$ in Theorem 3.1, we have the following relation

$$
\begin{equation*}
\mathcal{G}_{k+l}^{(\alpha)}(z ; u ; a, b, c ; \lambda)=\sum_{n=0}^{k}\binom{k}{n}(\ln c)^{n+m}(z-x)^{n} \mathcal{G}_{k+l}^{(\alpha)}(x ; u ; a, b, c ; \lambda) . \tag{3.6}
\end{equation*}
$$

Theorem 3.2. The following relation holds true:

$$
\begin{equation*}
\mathcal{G}_{n}^{(\alpha)}(x+1 ; u ; a, b, c ; \lambda)=\sum_{k=0}^{n}\binom{n}{k} \ln (c)^{n-k} \mathcal{G}_{k}^{(\alpha)}(x ; u ; a, b ; \lambda) . \tag{3.7}
\end{equation*}
$$

Proof. Replacing x by $x+1$ in equation (2.1), we get

$$
\begin{gather*}
\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{\alpha} c^{(x+1) t}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(x+1 ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!} . \tag{3.8}\\
\sum_{k=0}^{\infty} \mathcal{G}_{k}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{k}}{k!} \sum_{n=0}^{\infty}(\ln c)^{n} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(x+1 ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!} . \tag{3.9}
\end{gather*}
$$

On replacing k by $k-n$ and equating the coefficients of t^{n} in the resulting equation, we obtain the desired result (3.7).

Theorem 3.3. The following relation holds true:

$$
\begin{equation*}
\mathcal{G}_{n}^{(\alpha+1)}(x ; u ; a, b, c ; \lambda)=\sum_{m=0}^{n}\binom{n}{m} \mathcal{G}_{n-m}(u ; a, b ; \lambda) \mathcal{G}_{m}^{(\alpha)}(x ; u ; a, b ; \lambda) \tag{3.10}
\end{equation*}
$$

Proof. Replacing α by $(\alpha+1)$ in equation (2.1), we have

$$
\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{\alpha+1} c^{x t}=\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{\alpha} c^{\alpha t}
$$

$$
\begin{equation*}
=\sum_{n=0}^{\infty} \mathcal{G}_{n}(u ; a, b ; \lambda) \frac{t^{n}}{n!} \sum_{m=0}^{\infty} \mathcal{G}_{m}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{m}}{m!} . \tag{3.11}
\end{equation*}
$$

On setting n by $n-m$ in the above equation and equating the coefficients of t^{n}, we obtain the required result.

Theorem 3.4. The following implicit summation formula holds true:

$$
\begin{equation*}
\sum_{m=0}^{n}(-1)^{\alpha}\binom{n}{m}(\ln (a b))^{m}(\alpha)^{m} \mathcal{G}_{n-m}^{(\alpha)}(x ; u ; a, b, c ; \lambda)=(-1)^{n} \mathcal{G}_{n}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \tag{3.12}
\end{equation*}
$$

Proof. First, we replace t by $-t$ in (2.1) and then we subtract the obtained equation with (2.1), we get

$$
\begin{equation*}
\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{\alpha}\left[c^{x t}-(a b)^{\alpha t}(-1)^{\alpha} c^{-x t}\right]=\sum_{n=0}^{\infty}\left[1-(-1)^{n}\right] \mathcal{G}_{n}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!} . \tag{3.13}
\end{equation*}
$$

By using (2.1) and Lemma [13, p.100, Eq.2] we get

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!}-(-1)^{\alpha} \sum_{n=0}^{\infty} \sum_{m=0}^{n}(\alpha)^{m}(\ln a b)^{m} \mathcal{G}_{n-m}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{n}}{(n-m)!} \\
=\sum_{n=0}^{\infty}\left[1-(-1)^{n}\right] \mathcal{G}_{n}^{(\alpha)}(x ; u ; a, b, c ; \lambda) \frac{t^{n}}{n!} \tag{3.14}
\end{array}
$$

On equating the coefficients of t^{n} in the both sides of above equation, yield result (3.12).

4. Symmetric identities for the generalized Apostol-type Frobenius-Genocchi polynomials

In this section, we establish symmetric identities for the generalized Apostol type Frobenius-Genocchi polynomials by applying the generating function (2.1). The results extends some known identities of Khan et al. [3-5] and Pathan and Khan [8-10].

Theorem 4.1. The following identity holds true:

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k} b^{k} a^{n-k} \mathcal{G}_{n-k}^{(\alpha)}(b x, b y ; u ; A, B, c ; \lambda) \mathcal{G}_{k}^{(\alpha)}(a x, a y ; u ; A, B, c ; \lambda) \\
& \quad=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \mathcal{G}_{n-k}^{(\alpha)}(a x, a y ; u ; A, B, c ; \lambda) \mathcal{G}_{k}^{(\alpha)}(b x, b y ; u ; A, B, c ; \lambda) \tag{4.1}
\end{align*}
$$

Proof. Let

$$
\begin{equation*}
H(t)=\left[\left(\frac{\left(A^{a t}-u\right) a t}{\lambda B^{a t}-u}\right)\left(\frac{\left(A^{b t}-u\right) b t}{\lambda B^{b t}-u}\right)\right]^{\alpha} c^{a b(x+y) t} \tag{4.2}
\end{equation*}
$$

The above expression is symmetric in a and b, we can write $H(t)$ into two ways as:

$$
\begin{gather*}
H(t)=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(b x, b y ; u ; A, B, c ; \lambda) \frac{(a t)^{n}}{n!} \sum_{k=0}^{\infty} \mathcal{G}_{k}^{(\alpha)}(a x, a y ; u ; A, B, c ; \lambda) \frac{(b t)^{k}}{k!} \\
H(t)=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} b^{k} a^{n-k} \mathcal{G}_{n-k}^{(\alpha)}(b x, b y ; u ; A, B, c ; \lambda) \mathcal{G}_{k}^{(\alpha)}(a x, a y ; u ; A, B, c ; \lambda) \frac{t^{n}}{n!} . \tag{4.3}
\end{gather*}
$$

On the other hand, we have

$$
\begin{equation*}
H(t)=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \mathcal{G}_{n-k}^{(\alpha)}(a x, a y ; u ; A, B, c ; \lambda) \mathcal{G}_{k}^{(\alpha)}(b x, b y ; u ; A, B, c ; \lambda) \frac{t^{n}}{n!} \tag{4.4}
\end{equation*}
$$

On equating the coefficients of t^{n} from equations (4.3) and (4.4), we arrive at the desired result.

Corollary 4.1. For $\alpha=1$, Theorem 4.1 reduces to:

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k} b^{k} a^{n-k} \mathcal{G}_{n-k}(b x ; u ; A, B, c ; \lambda) \mathcal{G}_{k}(a x ; u ; A, B, c ; \lambda) \\
&=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \mathcal{G}_{n-k}(a x ; u ; A, B, c ; \lambda) \mathcal{G}_{k}(b x ; u ; A, B, c ; \lambda) \tag{4.5}
\end{align*}
$$

Theorem 4.2. The following identity holds true:

$$
\begin{array}{r}
\sum_{k=0}^{n}\binom{n}{k} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1}(-\lambda)^{(i+j)} b^{k} a^{n-k} \mathcal{G}_{n-k}^{(\alpha)}\left(b x+\frac{b}{a} i+j ; u ; A, B, c ; \lambda\right) \mathcal{G}_{k}^{(\alpha)}(a y ; u ; A, B, c ; \lambda) \\
=\sum_{k=0}^{n} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1}(-\lambda)^{(i+j)}\binom{n}{k} a^{k} b^{n-k} \mathcal{G}_{n-k}^{(\alpha)}\left(a x+\frac{a}{b} i+j ; u ; A, B, c ; \lambda\right) \\
\times \mathcal{G}_{k}^{(\alpha)}(b y ; u ; A, B, c ; \lambda) \tag{4.6}
\end{array}
$$

Proof. Consider

$$
\begin{gather*}
I(t)=\left[\left(\frac{\left(A^{a t}-u\right) a t}{\lambda B^{a t}-u}\right)\left(\frac{\left(A^{b t}-u\right) b t}{\lambda B^{b t}-u}\right)\right]^{\alpha} \frac{1+\lambda(-1)^{a+1} c^{a b t}}{\left(\lambda c^{a t}+1\right)\left(\lambda c^{b t}+1\right)} c^{a b(x+y) t} \\
=\left(\frac{\left(A^{a t}-u\right) a t}{\lambda B^{a t}-u}\right)^{\alpha} c^{a b x t} \sum_{i=0}^{a-1}(-\lambda)^{i} c^{i b t}\left(\frac{\left(A^{b t}-u\right) b t}{\lambda B^{b t}-u}\right)^{\alpha} c^{a b y t}(-\lambda)^{j} c^{j a t} . \tag{4.7}\\
I(t)=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1}(-\lambda)^{i+j} a^{n-k} b^{k} \mathcal{G}_{n-k}^{(\alpha)}\left(b x+\frac{b}{a} i+j ; u ; A, B, c ; \lambda\right) \\
\quad \times \mathcal{G}_{k}^{(\alpha)}(a y ; u ; A, B, c ; \lambda) \frac{t^{n}}{n!} . \tag{4.8}
\end{gather*}
$$

On the other hand, we have

$$
\begin{align*}
I(t)=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} \sum_{i=0}^{b-1} \sum_{j=0}^{a-1}(-\lambda)^{i+j} b^{n-k} a^{k} \mathcal{G}_{n-k}^{(\alpha)}(a x & \left.+\frac{a}{b} i+j ; u ; A, B, c ; \lambda\right) \\
& \times \mathcal{G}_{k}^{(\alpha)}(b y ; u ; A, B, c ; \lambda) \frac{t^{n}}{n!} \tag{4.9}
\end{align*}
$$

On equating the coefficients of t^{n} from last two equations (4.8) and (4.9), we acquire at the desired result (4.6).

5. Relation between λ-type Striling polynomials, Apostol-Bernoulli polynomial and generalized Apostoltype Frobenius-Genocchi polynomial

This section deals with some relationships in between Array-type polynomials, Apostol-Bernoulli polynomial and generalized Apostol-type Frobenius-Genocchi polynomial.

Theorem 5.1. The following relationship holds true:

$$
\begin{equation*}
\mathcal{G}_{n-2 v}^{(-v)}(x ; u ; a, b, b ; \lambda)=\frac{(v)!}{(-n)_{2 v}} \sum_{k=0}^{n}\binom{n}{k} S_{v}^{n}\left(x ; 1, b ; \frac{\lambda}{u}\right) Y_{n-k}^{(v)}\left(\frac{1}{u} ; a\right) . \tag{5.1}
\end{equation*}
$$

Proof. On replacing c by b and α by $-v$ in equation (2.1), we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}=\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{(-v)} b^{x t} . \tag{5.2}\\
& \sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}=v!\frac{\left(\frac{\lambda}{u} b^{t}-1\right)^{v} b^{x t}}{(v!)\left(\frac{a^{t}}{u}-1\right)^{v} t^{v}} \frac{t^{v}}{v} \tag{5.3}
\end{align*}
$$

Using equations (1.10) and (1.11), the above equation reduces to

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n+2 v}}{n!}=v!\sum_{k=0}^{\infty} S_{v}^{k}\left(x ; 1, b ; \frac{\lambda}{u}\right) \frac{t^{k}}{k!} \sum_{m=0}^{\infty} Y_{m}^{(v)}\left(\frac{1}{u} ; a\right) \frac{t^{m}}{m!} \tag{5.4}
\end{equation*}
$$

Replacing m by $m-k$ in the above equation, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n+2 v}}{n!}=v!\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} S_{v}^{k}\left(x ; 1, b ; \frac{\lambda}{u}\right) Y_{n-k}^{(v)}\left(\frac{1}{u} ; a\right) \frac{t^{n}}{n!} \tag{5.5}
\end{equation*}
$$

On equating the coefficients of t^{n}, we arrive at the required result.
Theorem 5.2. The following relationship holds true:

$$
\begin{equation*}
\mathcal{G}_{n-2 v}^{(-v)}(x ; u ; a, b, b ; \lambda)=\frac{(v)!}{(-n)_{2 v}} \sum_{k=0}^{n}\binom{n}{k} \mathcal{S}\left(k, v, 1, b ; \frac{\lambda}{u}\right) \mathcal{B}_{n-k}^{(v)}\left(x, \frac{1}{u}, 1, a, b\right) . \tag{5.6}
\end{equation*}
$$

Proof. Making replacement of c with b and α with $-v$ in equation (2.1), we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}=\left(\frac{\left(a^{t}-u\right) t}{\lambda b^{t}-u}\right)^{(-v)} b^{x t} \tag{5.7}\\
& \sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n}}{n!}=(v!) \frac{\left(\frac{\lambda}{u} b^{t}-1\right)^{v} b^{x t}}{(v!)\left(\frac{a^{t}}{u}-1\right)^{v} t^{v}} \frac{t^{v}}{t^{v}} \tag{5.8}
\end{align*}
$$

Using equations (1.10) and (1.1), the above equation reduces to

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n+2 v}}{n!}=(v!) \sum_{k=0}^{\infty} & \mathcal{S}\left(k, v, 1, b ; \frac{\lambda}{u}\right) \frac{t^{k}}{k!} \\
& \times \sum_{n=0}^{\infty} \mathcal{B}_{n}^{(v)}\left(x, \frac{1}{u}, 1, a, b\right) \frac{t^{n}}{n!} \tag{5.9}
\end{align*}
$$

Using Lemma [13, p.100, Eq.2], we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(-v)}(x ; u ; a, b, b ; \lambda) \frac{t^{n+2 v}}{n!}=v!\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} & \mathcal{S}\left(k, v, 1, b, \frac{\lambda}{u}\right) \\
& \times \mathcal{B}_{n-k}^{(v)}\left(x, \frac{1}{u}, 1, a, b\right) \frac{t^{n}}{n!} \tag{5.10}
\end{align*}
$$

On equating the coefficients of t^{n}, we arrive at the required result.

Acknowledge

The authors are thankful to Integral University, Lucknow, India for acknowledging the paper with the manuscript number "IU/R\&D/2018-MCN-000399".

References

[1] B. Kurt, Y. Simsek, On the generalized Apostol-type Frobenius-Euler polynomials, Advances in difference equation, 2013(1) (2013) 1-9.
[2] D. S. Kim, T. Kim, Some identities of degenerate special polynomials, Open Mathematics 13 (2015) 380-389.
[3] W. A. Khan, S. Araci, M. Acikgoz, H. Haroon, A new class of partially degenerate Hermite-Genocchi polynomials, Journal of Nonlinear Science Applications 10 (2017) 5072-5081.
[4] W. A. Khan, Some properties of generalized Apostol-type Hermite-based polynomials, Kyungpook Math. Journal 55 (2015) 597-614.
[5] W. A. Khan, H. Haroon, Some symmetric identities for generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials, Springer plus 5 (2016) 1-21.
[6] Q. M. Luo, B. M. Guo, F. Qi, L. Debnath, Generalization of Bernoulli numbers and polynomials, Int. J. M. M. Sciencs 59 (2003) 3769-3776.
[7] Q. M. Luo, B. M. Guo, F. Qi, L. Debnath, Generalization of Euler numbers and polynomials, Int. J. M. M. Sciencs 61 (2003) 3893-3901.
[8] M. A. Pathan, W. A. Khan, Some implicit summation formulas and symmetric identities for the generalized Hermite Bernoulli polynomials, Meditter Journal of Mathematics 12 (2015) 679-695.
[9] M. A. Pathan, W. A. Khan, A new class of generalizedpolynomials associated with Hermite and Euler polynomials, Mediterr J. of Mathematics 13(3) (2016) 913-928.
[10] M. A. Pathan, W. A. Khan, Some new class of generalized Hermite based Apostol-type Euler and Apostol-type Genocchi polynomials, Fasciculi Mathematici 55(1) (2015) 153-170.
[11] Y. Simsek, Generatinng function for Strilling-type numbers, Array type polynomials, Eulerian type polynomials and their applications, Fixed point Th. Applications (2013) DOI:1186/1687-1812-2013-87.
[12] Y. Simsek, Gemerating functions for q-Apostol-type Frobenius-Euler numbers and polynomials, Axioms 1 (2012) 395-403.
[13] H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Ellis Horwood Ltd. Co., New York, 1984.
[14] H. M. Srivastava, M. Garg, S. Choudhari, A new generalization of the Bernoulli and related polynomials, Russ. J. Math. and Physics 17 (2010) 251-261.
[15] B. Y. Yasar, M. A. Ozarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations, The new Trends in Math. Sci., 3(2) (2015) 172-180.

[^0]: 2010 Mathematics Subject Classification. 11B68, 05A10, 05A15, 33C45, 26B99
 Keywords. (Frobenius-Genocchi polynomials, Apostol-type Genocchi polynomials)
 Received: 19 June 2018; Accepted: 28 Sepetember 2019
 Communicated by Dragan S. Djordjević
 Email addresses: waseem08_khan@rediffmail.com (Waseem A. Khan), divesh2712@gmail.com (Divesh Srivastava)

