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Abstract. This paper investigates minimal bases and minimal sub-bases for topological spaces. First, a
necessary and sufficient condition is derived for the existence of minimal base for a general topological
space. Then the concept of minimal sub-base for a topological space is proposed and its properties are
discussed. Finally, for Alexandroff spaces, some special results with respect to minimal bases and minimal
sub-bases are illustrated.

1. Introduction

Base is a basic concept in general topology. R.E. Stong [11] points out that a finite topological space has
a unique minimal base. According to [11], for a finite topological space, a base B is minimal if and only if
there is no union reducible element in B. Finite topological spaces are a special case of Alexandroff spaces,
which are introduced by P. Alexandroff [1]. And some related results are shown in [2, 4, 6–10]. From [10],
an Alexandroff space has a unique minimal base. In addition, F. G. Arenas [2] extended the necessary and
sufficient condition about minimal base for a finite topological space to an Alexandroff space. However, for
a general topological space, there is no necessary and sufficient condition for the existence of minimal base.
This paper presents a necessary and sufficient condition for the existence of minimal base for a general
topological space.

Sub-base is also a basic concept in general topology. If S is a sub-base for a topological space X, then
B = {

⋂
S∈S0

S|S0 is a finite subfamily of S } forms a base for the topological space X, and the topology
τ of X can be denoted by τ = {

⋃
B∈B′ B|B′ ∈ B} [5]. Based on the result above and the fact that there is

no union reducible element in a minimal base, a natural question is: is a sub-base S minimal when there
is no intersection reducible element in S ? This paper introduces the concept of minimal sub-base for a
topological space. And we show that a minimal sub-base of a general topological space does not have
finite intersection reducible elements in this paper. Besides, this paper concludes that a sub-base may not
be minimal if it does not have intersection reducible elements.
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Since a minimal base does not have union reducible elements, another question is: are there intersection
reducible elements in a minimal base? If the answer is yes, then when all the intersection reducible elements
are removed, does the minimal base become a minimal sub-base? In this paper, we prove that a minimal
base is also a minimal sub-base if there are no finite intersection reducible elements in the minimal base.
Furthermore, for an Alexandroff space, this paper shows that a sub-base without intersection reducible
elements is minimal.

The remainder of this paper is organized as follows. In Section 2, a necessary and sufficient condition is
obtained for the existence of minimal base for a general topological space. Then the definition of minimal
sub-base for a topological space is introduced and its properties are investigated. Section 3 discusses some
special results with respect to minimal bases and minimal sub-bases for Alexandroff spaces, which are
different from general topological spaces. Section 4 has some concluding remarks.

2. Minimal Bases and Minimal Sub-bases

We begin with the following example.

Example 2.1. Let R be a topological space with a topology τ = {(−a, a)|a > 0} ∪ {∅,R}, where

a =

{
1
n , 0 < a < 1;
n, a > 1.

It is easy to check that τ is a topology of R and B = τ \ {∅,R} is the minimal base for the topological space
(R, τ). But (R, τ) is not an Alexandroff space. The reason is as follows. Let {(−a, a)|0 < a < 1} be a subfamily
of τ. Then

⋂
{(−a, a)|0 < a < 1} = {0} and {0} is not an open set of the topological space (R, τ).

Example 2.1 shows that a topological space with a minimal base may not be an Alexandroff space.
In [11], R. E. Stong gave a necessary and sufficient condition for the existence of minimal base for a finite

topological space. And F. G. Arenas [2] extended this necessary and sufficient condition to an Alexandroff
space. Combined with Example 2.1, this necessary and sufficient condition holds for a general topological
space. Next we present this necessary and sufficient condition.

Lemma 2.2. ([2]) Let X be an Alexandroff space and B a family of open sets. Then B is the minimal base for the
topology of X if and only if:

(1) B covers X;
(2) If A,B ∈ B, then there exists a subfamily {Bi|i ∈ I} of B such that A ∩ B =

⋃
i∈I Bi;

(3) If a subfamily {Bi|i ∈ I} of B verifies
⋃

i∈I Bi ∈ B, then there exists i0 ∈ I such that
⋃

i∈I Bi = Bi0 .

Suppose B is only a family of non-empty subsets of X. By Conditions (1) and (2) of Lemma 2.2, B is
a base for a topological space, and Condition (3) of Lemma 2.2 states that B is minimal. But there is no
condition to show that the topology generated by B is an Alexandroff topology. Hence, Lemma 2.2 can be
generalized to general topological spaces. The following example further illustrates this point.

Example 2.3. Reconsider Example 2.1. First,
⋃

B =
⋃

(τ \ {∅,R}) = R. Next for any subsets A,B ∈ B, it is
obvious that A ⊂ B or B ⊂ A. Without loss of generality, we assume A ⊂ B. Then there exists a subfamily
{Bi|Bi ⊂ A, i ∈ I} of B such that A ∩ B = A =

⋃
{Bi|Bi ⊂ A, i ∈ I}. If a subfamily {Bi|i ∈ I} of B satisfies⋃

i∈I Bi ∈ B, then by the definition of B, there exists i0 ∈ I such that Bi ⊂ Bi0 for any i ∈ I. That is
⋃

i∈I Bi = Bi0 .
The analysis above states that B satisfies the three conditions of Lemma 2.2. From Example 2.1, the covering
B is a minimal base. But the topological space (R, τ) is not an Alexandroff space by Example 2.1.

The following theorem is obtained by a little modification of Lemma 2.2

Theorem 2.4. Let X be a set and B a family of non-empty subsets of X. Then B is the minimal base for a topology
of X if and only if:

(1) B covers X;
(2) If A,B ∈ B, then there exists a subfamily {Bi|i ∈ I} of B such that A ∩ B =

⋃
i∈I Bi;

(3) If a subfamily {Bi|i ∈ I} of B satisfies
⋃

i∈I Bi ∈ B, then there exists i0 ∈ I such that
⋃

i∈I Bi = Bi0 .
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Proof. Suppose B is a minimal base for a topology space X. Then Conditions (1) and (2) must hold. Assume
a subfamily B1 = {Bi|i ∈ I} of B satisfies

⋃
i∈I Bi ∈ B, but

⋃
i∈I Bi , B for each subset B ∈ B1. Then there

exists a subset B′ ∈ B \B1 such that
⋃

i∈I Bi = B′. That implies that B \ {B′} is also a base for the topological
space X. It is a contradiction. Hence, Condition (3) is true.

Obviously, Conditions (1) and (2) state that B is a base for a topological space X. If a subfamily B′ of B
is a base for the topological space X, then for each subset B ∈ B, there exists a subfamily {Bi|i ∈ I} of B′ such
that
⋃

i∈I Bi = B ∈ B. According to Condition (3), there exists i0 ∈ I such that
⋃

i∈I Bi = Bi0 . So B = Bi0 ∈ B′.
That implies B′ = B. Therefore, B is a minimal base for the topological space X.

Definition 2.5. Let X be a topological space and B a family of non-empty subsets of X. For each subset
B ∈ B,

(1) if there exists a subfamily {Bi|i ∈ I} of B such that B < {Bi|i ∈ I} and
⋃

i∈I Bi = B, then B is called a
union reducible element with respect to B;

(2) if there exists a subfamily {Bi|i ∈ I} of B such that B < {Bi|i ∈ I} and
⋂

i∈I Bi = B, then B is called an
intersection reducible element with respect to B.

Combined Theorem 2.4 with Definition 2.5, a base B for a topological space is minimal if and only if
there are no union reducible elements in the base B. Then are there intersection reducible elements in a
minimal base? The following example given in [10] will be used to answer the question.

Example 2.6. Let (Rn, τ) be a topological space with a base B = {B(0, r)|r ∈ R+ ∪ {0}}. In fact, B is a minimal

base for the topological space (Rn, τ). Let r = 1 and n be a natural number, then
⋂
∞

n=1 B(0, 1 + 1
n ) = B(0, 1).

Because B(0, 1) < {B(0, 1 + 1
n )|n is a natural number}, B(0, 1) is an intersection reducible element with respect

to B.

The analysis above shows that a minimal base does not have union reducible elements and may have
intersection reducible elements. When all intersection reducible elements in a minimal base are removed,
what is the minimal base? We show that a base B becomes a minimal sub-base if there are no union and
intersection reducible elements in B.

Definition 2.7. Let S be a sub-base for a topological space X. If the following statement holds, then S is
called a minimal sub-base for the topological space X. The statement is: for any subfamily S ′ of S , if S ′

is a sub-base for the topological space X, then S ′ = S .

We give the following example to illustrate Definition 2.7.

Example 2.8. Let X = R \Z and S = {(n,n + 1)|n ∈ Z}. Obviously, S is a partition of R \Z. This implies
that S is a minimal sub-base for a topology of R \Z.

Example 2.8 shows that S does not have intersection reducible elements. This property is owned by
minimal sub-bases for topological spaces.

Theorem 2.9. Let X be a set and S a family of non-empty subsets of X. If S is a minimal sub-base for a topology
of X, then there is no finite intersection reducible element in the minimal sub-base S .

Proof. By Definition 2.5, we will prove that if a finite subfamily {Si|i ∈ I} of S satisfies
⋂

i∈I Si ∈ S , then
there exists i0 ∈ I such that

⋂
i∈I Si = Si0 . Assume a finite subfamily S1 = {Si|i ∈ I} of S satisfies

⋂
i∈I Si ∈ S ,

but
⋂

i∈I Si , S for each subset S ∈ S1. Then there exists a subset S′ ∈ S \S1 such that
⋂

i∈I Si = S′. That
implies that S \ {S′} is also a sub-base for the topology of X. It is a contradiction. Hence, the minimal
sub-base S does not have finite intersection reducible elements.

From the following theorem, a minimal base is a minimal sub-base when all finite intersection reducible
elements in the minimal base are removed. But there is no approach to obtain directly a minimal base from
a minimal sub-base.
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Theorem 2.10. Let X be a topological space and B a minimal base for the topological space X. If there are no finite
intersection reducible elements in B, then B is a minimal sub-base for the topological space X.

Proof. With no doubt, B can be viewed as a sub-base for the topological space X. Suppose a subfamily S
of B is a sub-base for the topological space X. According to the definitions of base and sub-base, B is a
minimal base generated by S . Then for each subset B ∈ B, there exists a finite subfamily {Si|i ∈ I} of S
such that

⋂
i∈I Si = B ∈ B. There exists i0 ∈ I such that

⋂
i∈I Si = Si0 , because the minimal base B does not

have finite intersection reducible elements. Thus, B = Si0 ∈ S , which means S = B. Therefore, B is a
minimal sub-base for the topological space X.

Note that a minimal sub-base S for a topological space X does not have finite intersection reducible
elements. However, S may have infinite intersection reducible elements.

Example 2.11. Rediscuss Example 2.6. There is no doubt that the minimal base B = {B(0, r)|r ∈ R+ ∪ {0}} is
a sub-base for the topological space (Rn, τ). Then B is a minimal sub-base for the topological space (Rn, τ),
because there is no finite intersection reducible element in the minimal base B. By Example 2.6, B(0, 1) is
an infinite intersection reducible element with respect to B.

Next we give some properties about minimal sub-base for a topological space.

Theorem 2.12. Let X be a set and Y be a topological space. If f : X → Y is a surjective map and S is a minimal
sub-base for the topological space Y, then f−1(S ) = { f−1(S)|S ∈ S } is a minimal sub-base for a topology on X.

Proof. Since S is a minimal sub-base of the topological space Y, we get Y =
⋃

S . And we have X =⋃
f−1(S ). Thus, f−1(S ) is a sub-base for a topology τ on X. Suppose f−1(S ) is not a minimal sub-base

for the topological space (X, τ). Then there exists S0 ∈ S such that f−1(S ) \ { f−1(S0)} is a sub-base for the
topological space (X, τ). Since S \{S0} is not a sub-base for the topological space Y, there exist an open subset
W of Y and y ∈W such that for any finite family F ⊂ S \ {S0}, y ∈

⋂
F ⊂W does not hold. Take x ∈ f−1(y).

Since f−1(W) is open in the topological space (X, τ) and f−1(S ) \ { f−1(S0)} is a sub-base for (X, τ), there exists
a finite family F ⊂ S \ {S0} such that x ∈

⋂
{ f−1(F)|F ∈ F } ⊂ f−1(W). Thus, y ∈

⋂
{F|F ∈ F } =

⋂
F ⊂ W. It

is a contradiction. Hance, f−1(S ) is a minimal sub-base for a topology on X.

Based on Theorem 2.12, the following corollary is obtained.

Corollary 2.13. Let Y be a quotient space of a topological space X. Suppose f : X → Y is a quotient mapping. If a
covering S is a minimal sub-base for the quotient space Y, then f−1(S ) = { f−1(S)|S ∈ S } is a minimal sub-base for
the topological space X.

Theorem 2.14. Let X and Y be two topological spaces and f : X → Y open and one-to-one. If a covering S is a
minimal sub-base for the topological space X, then f (S ) = { f (S)|S ∈ S } is a minimal sub-base for the subspace f (X)
of Y.

Proof. Obviously, f (S ) = { f (S)|S ∈ S } is a cover of f (X). Since the mapping f : X → Y is open and S is
a sub-base for the topological space X, f (S ) is a sub-base for the topological space f (X). In what follows,
we show that f (S ) is a minimal sub-base for f (X). Suppose f (S ) is not a minimal sub-base for f (X). Then
there exists S0 ∈ S such that { f (S)|S ∈ S \ {S0}} is a sub-base for f (X). Since S is a minimal sub-base for
the topological space X, S \ {S0} is not a sub-base for the topological space X. Thus, there exist an open
subset U0 of X and x ∈ U0 such that for any finite family F ⊂ S \ {S0},

⋂
F 1 U0 if x ∈

⋂
F . Because

the mapping is open, f (U0) is an open subset of f (X). Since f is one-to-one, f (
⋂

F ) 1 f (U0) for any finite
family F ⊂ S \ {S0} with x ∈

⋂
F . Thus,

⋂
{ f (F)|F ∈ F } 1 f (U0) for any finite family F ⊂ S \ {S0} with

x ∈
⋂

F . This contradicts that f (S ) \ { f (S0)} is a sub-base for f (X).

Some mapping properties have been presented in the theorems above. Next some operational properties
will be proposed.
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Theorem 2.15. Let {Xγ}γ∈Γ be a family of topological spaces. For each index γ ∈ Γ, πγ : Πγ∈ΓXγ → Xγ is
a projective mapping. If for each index γ ∈ Γ, Sγ is a minimal sub-base for the topological space Xγ, then
S = {π−1

γ (Sγ)|Sγ ⊂ Sγ, γ ∈ Γ} is a minimal sub-base for the product space Πγ∈ΓXγ.

Proof. It can be seen that S = {π−1
γ (Sγ)|Sγ ⊂ Sγ, γ ∈ Γ} is a sub-base for the product space Πγ∈ΓXγ. Suppose

S is not a minimal sub-base for the product space Πγ∈ΓXγ. Then there exist γ0 ∈ Γ and Sγ0 ∈ Sγ0 such that
S \ {π−1

γ0
(Sγ0 )} is a sub-base of the product space

∏
γ∈Γ Xγ. Thus, Sγ0 \ {Sγ0 } is a sub-base of the space Xγ0 .

This contradicts that Sγ0 is a minimal sub-base for Xγ0 .

Theorem 2.16. Let {Xγ}γ∈Γ be a family of pairwise disjoint topological spaces. For each index γ ∈ Γ, if Sγ is a
minimal sub-base for a topological space (Xγ, τγ), then S = {Sγ|Sγ ∈ Sγ, γ ∈ Γ} is a minimal sub-base for the sum
of the spaces {Xγ}γ∈Γ.

Proof. Suppose (
⊕

γ∈Γ Xγ, τ) is the sum of the spaces {Xγ}γ∈Γ. For each γ ∈ Γ, let Bγ = {
⋂

Sγ∈S ′
γ

Sγ|S ′
γ is a

finite subfamily of Sγ} denote the base generated by Sγ. Then B = {Bγ|Bγ ∈ Bγ, γ ∈ Γ} is a base generated
by S . For each open set U ∈ τ and each point x ∈ U, there exists an index γ ∈ Γ such that x ∈ Xγ. Then
x ∈ U ∩ Xγ. There exists a subset

⋂
Sγ∈S ′

γ
Sγ ∈ Bγ ⊂ B such that x ∈

⋂
Sγ∈S ′

γ
Sγ ⊂ U ∩ Xγ, because U ∩ Xγ is

open in Xγ, x ∈
⋂

Sγ∈S ′
γ

Sγ ⊂ U means that B is a base for the topological space (
⊕

γ∈Γ Xγ, τ). Hence, S is a
sub-base for the topological space (

⊕
γ∈Γ Xγ, τ).

Suppose S is not a minimal sub-base for the topological space (
⊕

γ∈Γ Xγ, τ). Then there exist γ0 ∈ Γ and
Sγ0 ∈ Sγ0 such that S \{Sγ0 } is a sub-base of the topological space (

⊕
γ∈Γ Xγ, τ). Thus, Sγ0 \{Sγ} is a sub-base

of Xγ0 . It is a contradiction. Hance, S is a minimal sub-base for the topological space (
⊕

γ∈Γ Xγ, τ).

Let X be a topological space and Y ⊂ X a topological subspace of X. If S is a minimal sub-base for the
topological space X, then S |Y is a sub-base for the topological subspace Y. But S |Y may not be a minimal
sub-base for the subspace Y. The following example is given to show this point.

Example 2.17. Let X = {x1, x2, . . . , x9} and S = {{x1, x2, x4, x5}, {x2, x3, x5, x6}, {x4, x5, x7, x8}, {x5, x6, x8, x9}} be
a sub-base for a topological space X. It is easy to see that S is a minimal sub-base for the topological
space X. Take Y = {x1, x2, x4, x5, x7}. According to the definition of topological subspace, we conclude
that S |Y = {{x1, x2, x4, x5}, {x2, x5}, {x4, x5, x7}, {x5}} is a sub-base for the subspace Y. However, S |Y is not a
minimal sub-base for the subspace Y, because {x5} is a finite intersection reducible element with respect to
S |Y.

3. Some Special Results in Alexandroff Spaces

From [10], a topological space X is an Alexandroff space if and only if each point in X has a unique
minimal open neighborhood. Moreover, for an Alexandroff space, there exists a base B such that B is
composed of all the minimal open neighborhood of each point in X. With no doubt, B is the unique
minimal base for the Alexandroff space X. By Theorem 2.10, a minimal sub-base can be obtained from a
minimal base. Then is the minimal sub-base unique for an Alexandroff space? The answer is no. A simply
example is given to illustrate why.

Example 3.1. Let X = {x1, x2, x3, x4} and S = {{x1, x2}, {x2, x3}, {x3, x4}, {x1, x4}, {x2, x4}, {x1, x3}} be a sub-base
for a topological space (X, τ). Minimal sub-bases are derived for the topological space (X, τ):

S1 = {{x1, x2}, {x3, x4}, {x2, x4}, {x1, x3}},

S2 = {{x2, x3}, {x1, x4}, {x2, x4}, {x1, x3}},

S3 = {{x1, x2}, {x2, x3}, {x3, x4}, {x1, x4}}.
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In fact, Si is a sub-base for a topological space (X, τi) for i = 1, 2, 3. Then it is easy to check that τ and τi
are discrete topologies for i = 1, 2, 3.

Although minimal sub-bases for an Alexandroff space are not unique, there are some special results
which are different from general topological spaces. Let’s begin with the minimal open neighborhood.

Suppose P is a family of subsets of X. Denote the minimal set containing x with respect to P by
NP(x) =

⋂
{U|x ∈ U ∈P}.

Remark 3.2. Let X be a topological space. Suppose B is a base for the topological space X and S is a
sub-base for the topological space X. One can derive Nτ(x) = NB(x) = NS (x) according to the definitions of
base and sub-base. Furthermore, if (X, τ) is an Alexandroff space, then Nτ(x) =

⋂
{U|x ∈ U ∈ τ} is the unique

minimal open neighborhood of each point x ∈ X. Simply denote Nτ(x) by N(x). And B = {N(x)|x ∈ X} is
the unique minimal base for the Alexandroff space X [10].

By Example 2.6, there exist intersection reducible elements in a minimal base. As a special case, if a
minimal base is a partition, then it does not have any intersection reducible element. When a minimal
base is a partition, what conditions does it meet? There is no doubt that a minimal base is a partition for a
discrete topological space. The following theorem gives a necessary and sufficient condition of a minimal
base of an Alexandroff space being a partition.

Theorem 3.3. Let X be an Alexandroff space. For two points x, y ∈ X, define xRy if N(x) = N(y). Then the natural
quotient space X/R is a discrete space if and only if the minimal base B is a partition for the Alexandroff space X.

Proof. Let p : X→ X/R be a natural quotient mapping.
Suppose X/R is a discrete space. For each point x ∈ X, {[x]} is a singleton in X/R and p−1([x]) is

open in X. So N(x) ⊂ p−1([x]). For each point y ∈ p−1([x]), xRy implies N(x) = N(y), i.e., y ∈ N(x).
Then p−1([x]) ⊂ N(x), so p−1([x]) = N(x). For any two minimal open neighborhoods N(x),N(y) ∈ B and
N(x) , N(y), if N(x) ∩ N(y) , ∅, then there exists a point z ∈ X such that z ∈ N(x) ∩ N(y). That is z ∈ N(x)
and z ∈ N(y). So z ∈ p−1([x]) and z ∈ p−1([x]), i.e., xRz and yRz. Then xRy because R is an equivalence
relation, which means N(x) = N(y). Therefore, for any elements N(x),N(y) ∈ B, we have N(x) = N(y) or
N(x) ∩N(y) = ∅, i.e., B is a partition.

Since B is a partition, N(x) = N(y) if N(x) ∩N(y) , ∅. Then for each point y ∈ N(x), N(x) = N(y), that is
xRy. Hence, y ∈ p−1([x]) which means N(x) ⊂ p−1([x]). If y ∈ p−1([x]), then xRy which implies N(x) = N(y).
So p−1([x]) ⊂ N(x). Hence, p−1([x]) = N(x) is open in X. Since p is the natural quotient mapping, {[x]} is open
in X/R. Thus, X/R is a discrete space.

The following theorem is about locally connected spaces and locally pathwise connected spaces.

Theorem 3.4. Let X be an Alexandroff space.
(1) X is a locally connected space if and only if for each point x ∈ X, the minimal open neighborhood of the point x

is a connected set;
(2) X is a locally pathwise connected space if and only if for each point x ∈ X, the minimal open neighborhood of

the point x is a pathwise connected set.

Proof. (1) Suppose X is a locally connected space. Then for each point x ∈ X and each neighborhood U of
the point x, there exists a connected neighborhood V such that x ∈ V ⊂ U. This means that the minimal
open neighborhood of the point x is a connected set. Suppose for each point x ∈ X, the minimal open
neighborhood N(x) of the point x is a connected set. Then for each neighborhood U of the point x, N(x) ⊂ U.
Hence, X is a locally connected space.

(2) The proof is similar to (1).

For an Alexandroff space, based on the uniqueness of minimal base, two theorems about sub-base and
minimal sub-base are presented. To this end, a lemma is given.
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Lemma 3.5. ([10]) If τ, τ′ are two topologies on X such that X is an Alexandroff space and Nτ(x) = Nτ′ (x) for all
x ∈ X, then τ = τ′.

Theorem 3.6. Let (X, τ) be an Alexandroff space. A covering S is a sub-base for the Alexandroff space (X, τ) if and
only if the following conditions hold:

(1) S is a sub-base for a topological space X, each point x in the topological space X has the minimal open
neighborhood;

(2) NS (x) = N(x) for each point x ∈ X.

Proof. Suppose S is a sub-base for a topological space (X, τ′). (X, τ′) is an Alexandroff space, because each
point x in the topological space (X, τ′) has the minimal open neighborhood. Since NS (x) = N(x) for each
point x ∈ X and (X, τ) is an Alexandroff space, by Lemma 3.5, τ = τ′. Hence, S is a sub-base for the
Alexandroff space (X, τ).

Suppose S is a sub-base for the Alexandroff space (X, τ). Then each point x in the Alexandroff space
(X, τ) has the minimal open neighborhood. By Remark 3.2, NS (x) = N(x) for each point x ∈ X.

Theorem 3.7. Let S be a sub-base for an Alexandroff space (X, τ). S is a minimal sub-base for the Alexandroff
space (X, τ) if and only if for any covering S ′

⊂ S , if the following conditions hold, then S ′ = S . The conditions
are:

(1) S ′ is a sub-base for a topological space X, each point x in the topological space X has the minimal open
neighborhood;

(2) NS ′ (x) = N(x) for each point x ∈ X.

Proof. Suppose a covering S ′
⊂ S is a sub-base for the Alexandroff space (X, τ). By Theorem 3.6, Conditions

(1) and (2) hold. So S ′ = S . Hence S is a minimal sub-base for (X, τ).
Suppose S is a minimal sub-base for the Alexandroff space (X, τ). For any covering S ′

⊂ S , if
Conditions (1) and (2) hold, by Theorem 3.6, then S ′ is a sub-base for the Alexandroff space (X, τ). Hence,
S ′ = S because S is a minimal sub-base for the Alexandroff space (X, τ).

Section 2 points out that a minimal sub-base may have infinite intersection reducible elements. As we
know, the intersection of every family of open sets is open in an Alexandroff space. Then does a minimal
sub-base for an Alexandroff space X have infinite intersection reducible elements?

Theorem 3.8. Let X be an Alexandroff space and S a family of open sets of X. Then S is a minimal sub-base for
the topology of X if and only if:

(1) S is a sub-base for the Alexandroff space X;
(2) If a subfamily {Si|i ∈ I} of S satisfies

⋂
i∈I Si ∈ S , then there exists i0 ∈ I such that

⋂
i∈I Si = Si0 .

Proof. Suppose S is a minimal sub-base for the Alexandroff space (X, τ). Assume a subfamily S1 = {Si|i ∈ I}
of S satisfies

⋂
i∈I Si ∈ S , but

⋂
i∈I Si < S1, i.e.,

⋂
i∈I Si ∈ S \S1. Then there exists a subset S′ ∈ S \S1

such that
⋂

i∈I Si = S′. For each point x ∈ S′,
NS (x) =

⋂
{S ∈ S |x ∈ S}

= (
⋂
{S ∈ S \ {S′}|x ∈ S}) ∩ S′

= (
⋂
{S ∈ S \ {S′}|x ∈ S}) ∩ (

⋂
i∈I Si)

=
⋂
{S ∈ S \ {S′}|x ∈ S}

= NS \{S′}(x).
Thus, for each point x ∈ X, NS (x) = NS \{S′}(x). In addition, S \ {S′} is a sub-base for an Alexandroff space
(X, τ′). According to Theorem 3.6, S \{S′} is a sub-base for the Alexandroff space (X, τ). It is a contradiction.
Hence, condition (2) holds.

We only need to prove that sub-base S is minimal. Suppose a subfamily S ′ of S is a sub-base for the
Alexandroff space (X, τ), but S ′ , S . Then there exists an open set S′ ∈ S such that S′ < S ′. According
to Condition (2), for any subfamily {Si|i ∈ I} of S \ {S′},

⋂
i∈I Si , S′. Thus, there exists a point x ∈ S′ such

that NS ′ (x) , NS (x). It is a contradiction. Hence, S ′ = S . By the definition of minimal sub-base, S is a
minimal sub-base for the Alexandroff space (X, τ).
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Since an Alexandroff space is a special topological space, some operational properties about minimal
sub-base for an Alexandroff space should hold.

Proposition 3.9. Let S be a sub-base for a topological space (X, τ) and Y a topological space. For two points
x1, x2 ∈ X, define x1Rx2 if NS (x1) = NS (x2). Define a mapping p : X→ X/R a natural quotient mapping. Suppose
a mapping 1 : X/R→ Y is a bijection. If a mapping f : X→ Y satisfies f = 1◦p, then the following statements hold:

(1) For each subset S ∈ S , x1 ∈ S implies x2 ∈ S for any points x1, x2 ∈ X satisfying f (x1) = f (x2);
(2) For any subsets S1,S2 ∈ S , f (S1 ∩ S2) = f (S1) ∩ f (S2);
(3) f (NS (x)) =

⋂
{ f (S)|x ∈ S ∈ S } for each point x ∈ X;

(4) For each subset S ∈ S , f−1( f (S)) = S;
(5) f−1( f (NS (x))) = NS (x) for each point x ∈ X.

Proof. (1) First, we prove that f (x1) = f (x2) implies NS (x1) = NS (x2) for any points x1, x2 ∈ X. Since f
satisfies f = 1 ◦ p, f (x1) = f (x2) implies 1(p(x1)) = 1 ◦ p(x1) = 1 ◦ p(x2) = 1(p(x2)) for any points x1, x2 ∈ X.
Then p(x1) = p(x2) because 1 is a bijection, i.e., [x1] = [x2]. So x1Rx2, which means NS (x1) = NS (x2). Next,
for each subset S ∈ S , x1 ∈ S means x1 ∈ NS (x1) ⊂ S. NS (x1) = NS (x2) because f (x1) = f (x2). This means
NS (x2) ⊂ S. That is x2 ∈ S.

(2) First, we prove that f (S1) ∩ f (S2) = ∅ if S1 ∩ S2 = ∅. By contradiction, assume f (S1) ∩ f (S2) , ∅.
Then there exists a point y ∈ Y such that y ∈ f (S1) ∩ f (S2), i.e., y ∈ f (S1) and y ∈ f (S2). So there exist two
points x1 ∈ S1 and x2 ∈ S2 such that f (x1) = f (x2) = y. By (1), x2 ∈ S1. Then x2 ∈ S1 ∩ S2. It is a contradiction.
Hence, f (S1) ∩ f (S2) = ∅. Next, we prove that if S1 ∩ S2 , ∅, then f (S1 ∩ S2) = f (S1) ∩ f (S2). Obviously,
f (S1 ∩ S2) ⊂ f (S1) ∩ f (S2) holds. For each point y ∈ f (S1) ∩ f (S2), there exist two points x1 ∈ S1 and x2 ∈ S2
such that f (x1) = f (x2) = y. By (1), x2 ∈ S1. Then x2 ∈ S1 ∩ S2, which implies y = f (x2) ∈ f (S1 ∩ S2). So
f (S1) ∩ f (S2) ⊂ f (S1 ∩ S2). That is f (S1 ∩ S2) = f (S1) ∩ f (S2).

(3) The proof is similar to (2).
(4) It is obvious that S ⊂ f−1( f (S)) is always true. For each point x ∈ f−1( f (S)), f (x) ∈ f (S). Thus, there

exists a point x′ ∈ S such that f (x) = f (x′). By (1), x ∈ S. So f−1( f (S)) ⊂ S. That is f−1( f (S)) = S.
(5) The proof is similar to (4).

Lemma 3.10. ([3]) Let X be a topological space and R an equivalence relation. If a mapping p : X → X/R is a
natural quotient mapping, then a mapping 1 of a quotient space X/R to a topological space Y is continuous if and
only if the composition 1 ◦ p is continuous.

Theorem 3.11. Let S be a sub-base for an Alexandroff space (X, τX) and Y a topological space. For two points
x1, x2 ∈ X, define x1Rx2 if NS (x1) = NS (x2). Define a mapping p : X→ X/R a natural quotient mapping. Suppose
a mapping 1 : X/R→ Y is a continuous bijection. If a mapping f : X→ Y is an open mapping satisfying f = 1 ◦ p
and S is a minimal sub-base for the Alexandroff space (X, τX), then f (S ) is a minimal sub-base for an Alexandroff
space (Y, τY).

Proof. Because 1 is a continuous bijection, by Lemma 3.10, f is an open and continuous surjection. And
(Y, τY) is an Alexandroff space. Obviously, f (S ) is a covering of Y. By Proposition 3.9 (3),

f (NS (x)) =
⋂
{ f (S)|x ∈ S ∈ S } =

⋂
{ f (S) ∈ f (S )| f (x) ∈ f (S)} = N f (S )( f (x))

for each point x ∈ X. Since S is a minimal sub-base for the Alexandroff space (X, τX), by Theorem 3.6,
NS (x) = N(x) for each point x ∈ X and NS (x) is open in (X, τX). Then N f (S )( f (x)) = f (NS (x)) is open in
(Y, τY) because f is an open mapping. It is easy to see that N f (S )( f (x)) is the minimal set containing f (x) for
each point x ∈ X. So N f (S )( f (x)) is the minimal open neighborhood of f (x). Besides,

N f (S )( f (x)) = f (NS (x)) = f (N(x)) = N( f (x))
for each point x ∈ X. Hence, f (S ) is a sub-base for the Alexandroff space (Y, τY).

For any covering f (S ′) ⊂ f (S ), suppose each point y in a topological space Y generated by f (S ′) as
a sub-base has the minimal open neighborhood. And N f (S ′)(y) = N(y) for each point y ∈ Y. Then S ′ is a
sub-base for the Alexandroff space (X, τX). If not, then there exist points x, x′ ∈ X such that the minimal open
neighborhood of x does not exist or NS (x′) , N(x′). It is obvious that there exist two points y, y′ ∈ Y such
that y = f (x) and y′ = f (x′). According to the proof above, we obtain that the minimal open neighborhood
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of y does not exist or N f (S )(y′) , N(y′). It is a contradiction. So S ′ is a sub-base for the Alexandroff space
(X, τX). Since S is a minimal sub-base for the Alexandroff space (X, τX), by Definition 2.7, S ′ = S . Thus,
f (S ′) = f (S ). By Theorem 3.7, f (S ) is a minimal sub-base for the Alexandroff space (Y, τY).

4. Conclusion

For a topological space, the definition of minimal sub-base has been proposed for the first time in this
paper. Moreover, the relationship between minimal base and minimal sub-base has been investigated.
This paper has re-discussed the necessary and sufficient condition for the existence of minimal base for a
topological space. Based on the particularity of Alexandroff space, a necessary and sufficient condition for
the existence of minimal sub-base has been derived, and an approach to obtain a minimal sub-base from a
covering has been given. Throughout this paper, some criteria of minimal bases and minimal sub-bases for
general topological spaces have been provided.
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