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Available at: http://www.pmf.ni.ac.rs/filomat

Function Characterizations of Some Spaces
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Abstract. We use real-valued functions to give characterizations of some topological spaces in which com-
pact subsets are (regular) Gδ, such as c-stratifiable spaces, kc-semi-stratifiable spaces. Also, characterizations
of some other spaces such as K-semimetrizable spaces, strongly first countable spaces are obtained.

1. Introduction

Throughout, a space always means a Hausdorff topological space. For a space X, we denote by CX the
family of all compact subsets of X. τ and τc denote the topology of X and the family of all closed subsets of
X respectively. For a subset A of a space X, we write A (int(A)) for the closure (interior) of A in X. Also, we
use χA to denote the characteristic function of A. The set of all positive integers is denoted byN.

A real-valued function f on a space X is called lower (upper)semi-continuous [2] if for any real number
r, the set {x ∈ X : f (x) > r} ({x ∈ X : f (x) < r}) is open. f is called k-lower semi-continuous [15] if for each
K ∈ CX, f has a minimum value on K. We write L(X) (U(X), KL(X)) for the set of all lower (upper, k-lower)
semi-continuous functions from X into the unit interval [0, 1]. UKL(X) = U(X)∩KL(X). C(X) is the set of all
continuous functions from X into [0, 1]. F(X) is the set of all functions from X into [0, 1].

It is known that many classes of spaces such as stratifiable spaces [5, 6], k-semi-stratifiable space
[8, 15], countably paracompact spaces [9, 16], monotonically countably paracompact spaces [3] can be
characterized with real-valued functions that satisfy certain conditions. In [13], to give characterizations of
some generalized metric spaces, the following conditions were introduced.

Let F ⊂ F(X). For x ∈ X and A ⊂ X, denote F (x) = { f (x) : f ∈ F } and F (A) = ∪{ f (A) : f ∈ F }. Consider
the following conditions on F .

(B) If x < F ∈ τc, then there exists f ∈ F such that f (x) > 0 and f (F) = {0}.
(D) For each x ∈ X and F ′ ⊂ F , if F ′(x) ⊂ (a, 1] for some a > 0, then there exists an open neighborhood

V of x such that F ′(V) ⊂ (0, 1].
(E′′) For each x ∈ X, F ′ ⊂ F and ε > 0, if F ′(x) = {0}, then there exists an open neighborhood V of x

such that F ′(V) ⊂ [0, ε).
(K) For each K ∈ CX, F ∈ τc with K ∩ F = ∅, there exist f ∈ F and m ∈ N such that f (K) ⊂ ( 1

m , 1] and
f (F) = {0}.
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(S) If x < F ∈ τc, then there exist f ∈ F , an open neighborhood V of x and m ∈N such that f (V) ⊂ ( 1
m , 1]

and f (F) = {0}.
With these conditions, Naimpally and Pareek [13] presented characterizations of a broad class of gen-

eralized metric spaces such as first countable spaces, semi-stratifiable spaces, semi-metrizable spaces,
developable spaces, stratifiable spaces and γ-spaces. For example, a space X is first countable if and only
if there exists a family F ⊂ F(X) satisfying (B) and (D). X is stratifiable if and only if there exists a family
F ⊂ F(X) satisfying (S) and (E′′).

In [17], the first author of the present paper introduced another several conditions imposed on real-
valued functions. For example.

Let A,B ⊂ X and fA a real-valued function on X related to A.
(eA) A = f−1

A (0).
(mA) If A1 ⊂ A2, then fA1 ≥ fA2 .
(iAB) If A ∩ B = ∅, then inf{ fA(x) : x ∈ B} > 0.
(i′AB) If A ∩ B = ∅, then there exists an open neighborhood V of B such that inf{ fA(x) : x ∈ V} > 0.
With these conditions, characterizations of some generalized metric spaces were also obtained. For

example, a space X is first countable if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying (e{x}) and
(i{x}F) with F ∈ τc. X is a Nagata space if and only if for each F ∈ τc, there exists fF ∈ C(X) satisfying (eF),
(mF) and (i{x}F).

A 1-function for a space X is a map 1 : N × X → τ such that for every x ∈ X and n ∈ N, x ∈ 1(n, x) and
1(n + 1, x) ⊂ 1(n, x). For a subset A of X, denote 1(n,A) = ∪{1(n, x) : x ∈ A}.

Definition 1.1. A space X is called a c-stratifiable [7] (c-semi-stratifiable [10]) space if there is a 1-function
1 for X such that for each K ∈ CX,

⋂
n∈N 1(n,K) = K (

⋂
n∈N 1(n,K) = K).

Definition 1.2. ([12]) A space X is called kc-semi-stratifiable if there is a 1-function for X such that if K,H ∈ CX
and K ∩H = ∅, then K ∩ 1(m,H) = ∅ for some m ∈N.

c-stratifiable (kc-semi-stratifiable, c-semi-stratifiable) spaces are nature generalizations of stratifiable
(k-semi-stratifiable, semi-stratifiable) spaces in which compact subsets are (regular) Gδ-sets. The main
purpose of this paper is to give characterizations of these spaces with real-valued functions that satisfy
some conditions listed above. Moreover, characterizations of some other spaces such as K-semimetrizable
spaces, strongly first countable spaces are obtained.

2. The First Kind of Characterizations

In this section, we shall present characterizations of c-stratifiable spaces, kc-semi-stratifiable spaces with
conditions (eA), (mA) and (iAB) listed in section 1.

Theorem 2.1. For a space X, the following are equivalent.
(a) X is a c-stratifiable space.
(b) For each K ∈ CX, there exist fK ∈ L(X), hK ∈ UKL(X) with fK ≤ hK such that fK, hK satisfy (eK) and hK

satisfies (mK).
(c) For each K ∈ CX, there exist fK ∈ L(X), hK ∈ U(X) with fK ≤ hK such that fK, hK satisfy (eK) and hK satisfies

(mK).

Proof. (a)⇒ (b) Let 1 be the 1-function for a c-stratifiable space. For each K ∈ CX, let

fK = 1 −
∞∑

n=1

1
2nχ1(n,K)

, hK = 1 −
∞∑

n=1

1
2nχ1(n,K) .

Then fK ∈ L(X), hK ∈ U(X) and fK ≤ hK. It is clear that if K1 ⊂ K2, then hK1 ≥ hK2 . One readily sees that for
each K ∈ CX, fK(x) = 0 if and only if x ∈ K if and only if hK(x) = 0. That is, f−1

K (0) = K = h−1
K (0).
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To show that hK ∈ KL(X). Let H ∈ CX.
Case 1. H ∩ K , ∅. Choose x0 ∈ K ∩H. Then hK(x0) = 0 and thus hK(x) ≥ hK(x0) for each x ∈ H.
Case 2. H ∩ K = ∅. Then H ∩

⋂
n∈N 1(n,K) = ∅. Since H is compact, it follows that H ∩ 1(n,K) = ∅ for

some n ∈ N. Let m = min{n ∈ N : H ∩ 1(n,K) = ∅}. If m = 1, then H ∩ 1(1,K) = ∅ from which it follows
that hK(x) = 1 for each x ∈ H. If m > 1, then H ∩ 1(m − 1,K) , ∅ and H ∩ 1(n,K) = ∅ for each n ≥ m. Choose
x0 ∈ H ∩ 1(m − 1,K). Then hK(x0) = 1

2m−1 . Let x ∈ H and kx = min{n ∈N : x < 1(n,K)}. Then kx ≤ m. Thus

hK(x) = 1 −
kx−1∑
n=1

1
2n =

1
2kx−1

≥
1

2m−1 = hK(x0).

(b)⇒ (c) is clear.
(c)⇒ (a) For each x ∈ X and n ∈ N, let 1(n, x) = {y ∈ X : h{x}(y) < 1

n }. Since h{x} ∈ U(X) and h{x}(x) = 0,
it follows that 1(n, x) is open and x ∈ 1(n, x). It is clear that 1(n + 1, x) ⊂ 1(n, x). Thus 1 is a 1-function
for X. For each K ∈ CX and n ∈ N, let F(n,K) = {y ∈ X : fK(y) ≤ 1

n }. For each x ∈ K and y ∈ 1(n, x),
fK(y) ≤ hK(y) ≤ h{x}(y) < 1

n which implies that 1(n, x) ⊂ F(n,K) and thus 1(n,K) ⊂ F(n,K). Since F(n,K) is
closed, we have that 1(n,K) ⊂ F(n,K).

Let K ∈ CX. If x ∈
⋂

n∈N 1(n,K), then x ∈ 1(n,K) ⊂ F(n,K) and thus fK(x) ≤ 1
n for each n ∈ N. It follows

that fK(x) = 0. Hence, x ∈ K. This implies that
⋂

n∈N 1(n,K) ⊂ K. Since it is clear that K ⊂
⋂

n∈N 1(n,K), we
have that

⋂
n∈N 1(n,K) = K. By Definition 1.1, X is a c-stratifiable space.

Theorem 2.2. For a space X, the following are equivalent.
(a) X is a c-stratifiable space.
(b) For each K ∈ CX, there exists fK ∈ U(X) satisfying (eK), (mK) and (i′KH) with H ∈ CX.
(c) For each K ∈ CX, there exists fK ∈ U(X) satisfying (eK), (mK) and (i′K{x}).

Proof. (a)⇒ (b) Let 1 be the 1-function for a c-stratifiable space. For each K ∈ CX, let

fK = 1 −
∞∑

n=1

1
2nχ1(n,K) .

Then fK ∈ U(X) satisfies (eK) and (mK).
Let K,H ∈ CX and K ∩ H = ∅, then H ∩ 1(m,K) = ∅ for some m ∈ N. Let V = X \ 1(m,K). Then V is an

open neighborhood of H. For each x ∈ V, x < 1(n,K) ⊃ 1(n,K) for all n ≥ m. Thus

fK(x) = 1 −
m−1∑
n=1

1
2nχ1(n,K) (x) ≥ 1 −

m−1∑
n=1

1
2n =

1
2m−1 .

This implies that inf{ fK(x) : x ∈ V} > 0.
(b)⇒ (c) is clear.
(c) ⇒ (a) For each x ∈ X and n ∈ N, let 1(n, x) = {y ∈ X : f{x}(y) < 1

n }. Then 1 is a 1-function for
X. Let K ∈ CX. If x < K, then by (i′K{x}), there exist an open neighborhood V of x and m ∈ N such

that fK(y) > 1
m for each y ∈ V. This implies that x < {y ∈ X : fK(y) < 1

m }. For each z ∈ K, we have that
1(m, z) = {y ∈ X : f{z}(y) < 1

m } ⊂ {y ∈ X : fK(y) < 1
m }. Thus 1(m,K) ⊂ {y ∈ X : fK(y) < 1

m } and so x < 1(m,K).
This implies that

⋂
n∈N 1(n,K) ⊂ K and thus

⋂
n∈N 1(n,K) = K. Therefore, X is a c-stratifiable space.

Theorem 2.3. For a space X, the following are equivalent.
(a) X is a kc-semi-stratifiable space.
(b) For each K ∈ CX, there exists fK ∈ UKL(X) satisfying (eK) and (mK).
(c) for each K ∈ CX, there exists fK ∈ U(X) satisfying (eK), (mK) and (iKH) with H ∈ CX.
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Proof. (a)⇒ (b) Let 1 be the 1-function for a kc-semi-stratifiable space. For each K ∈ CX, let

fK = 1 −
∞∑

n=1

1
2nχ1(n,K) .

Then fK ∈ U(X) satisfies (mK). It is clear that K ⊂ f−1
K (0). If x < K, then {x} ∩ 1(n,K) = ∅ for some n ∈ N. It

follows that fK(x) > 0 and thus f−1
K (0) ⊂ K. Consequently, K = f−1

K (0).
With a similar argument to that in the proof of (a)⇒ (b) of Theorem 2.1, we can show that fK ∈ KL(X).
(b)⇒ (c) Assume (b). It suffices to show that fK satisfies (iKH). Let H ∈ CX and K∩H = ∅. Since fK ∈ KL(X),

there exists x0 ∈ H such that fK(x) ≥ fK(x0) for each x ∈ H. It follows that inf{ fK(x) : x ∈ H} ≥ fK(x0) > 0.
(c)⇒ (a) For each x ∈ X and n ∈ N, let 1(n, x) = {y ∈ X : f{x}(y) < 1

n }. Then 1 is a 1-function for X. Let
K,H ∈ CX and K∩H = ∅. By (iKH), there exists m ∈N such that fK(x) > 1

m for each x ∈ H. Then for each y ∈ K
and x ∈ H, f{y}(x) ≥ fK(x) > 1

m from which it follows that x < 1(m, y). Thus H ∩ 1(m,K) = ∅. By Definition
1.2, X is a kc-semi-stratifiable space.

Analogous to Theorem 2.3, we have the following result for c-semi-stratifiable spaces.

Proposition 2.4. A space X is c-semi-stratifiable if and only if for each K ∈ CX, there exists fK ∈ U(X) satisfying
(eK) and (mK).

3. Another Kind of Characterizations

In this section, we introduce the following conditions (BK), (K′) and (SK) as generalizations of conditions
(B), (K) and (S) listed in section 1 with which we present another several characterizations of c-stratifiable
spaces, kc-semi-stratifiable spaces.

Let F ⊂ F(X). Consider the following conditions on F .
(BK) If x < K ∈ CX, then there exists f ∈ F such that f (x) > 0 and f (K) = {0}.
(K′) For each pair H,K ∈ CX with H ∩ K = ∅, there exist f ∈ F and m ∈ N such that f (H) ⊂ ( 1

m , 1] and
f (K) = {0}.

(SK) If x < K ∈ CX, then there exist f ∈ F , an open neighborhood V of x and m ∈N such that f (V) ⊂ ( 1
m , 1]

and f (K) = {0}.

Remark 3.1. By their definitions, it is clear that (K′) implies (BK). We can also show that (SK) implies (K′).
Assume (SK). Let H,K ∈ CX be such that H ∩ K = ∅. Then x < K for each x ∈ H. By (SK), there exist
fx ∈ F , an open neighborhood Vx of x and mx ∈ N such that fx(K) = {0}, fx(Vx) ⊂ ( 1

mx
, 1]. Since H ∈ CX and

H ⊂ ∪{Vx : x ∈ H}, there exists a finite subset A of H such that H ⊂ ∪{Vx : x ∈ A}. Let f = max{ fx : x ∈ A}
and m = max{mx : x ∈ A}. For each x ∈ A and y ∈ K, fx(y) = 0 from which it follows that f (y) = 0 and so
f (K) = {0}. For each y ∈ H, there is x ∈ A such that y ∈ Vx. Hence, f (y) ≥ fx(y) > 1

mx
≥

1
m . This implies that

f (H) ⊂ ( 1
m , 1].

Theorem 3.2. For a space X, the following are equivalent.
(a) X is c-stratifiable.
(b) There exists a family F ⊂ L(X) satisfying (BK) and (E′′).
(c) There exists a family F ⊂ F(X) satisfying (SK) and (E′′).

Proof. (a)⇒ (b) Let 1 be the 1-function for a c-stratifiable space. For each x ∈ X and K ∈ CX, if x < K, then
there exists m ∈ N such that x < 1(m,K). Set nx(K) = min{n ∈ N : x < 1(n,K)}. For each K ∈ CX, define a
function fK ∈ F(X) by letting fK(x) = 0 whenever x ∈ K and fK(x) = 1

nx(K) whenever x < K. It is clear that
K = f−1

K (0).
Claim 1. For each n ∈N, x < 1(n,K) if and only if fK(x) ≥ 1

n .
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Proof of Claim 1. If x < 1(n,K), then nx(K) ≤ n from which it follows that fK(x) = 1
nx(K) ≥

1
n . Conversely, if

fK(x) ≥ 1
n , then fK(x) = 1

nx(K) from which it follows that nx(K) ≤ n. Thus x < 1(nx(K),K) ⊃ 1(n,K).
Claim 2. For each K ∈ CX, fK ∈ L(X).
Proof of Claim 2. Let a ∈ [0, 1) and fK(x) > a. Then x < K. Set Ox = X \ 1(nx(K),K). Then Ox is an

open neighborhood of x. For each y ∈ Ox, y < 1(nx(K),K) from which it follows that ny(K) ≤ nx(K). Thus
fK(y) = 1

ny(K) ≥
1

nx(K) = fK(x) > a. This implies that fK ∈ L(X).
Now, let F = { fK : K ∈ CX}. It is clear that F satisfies (BK). To show that F satisfies (E′′), let x ∈ X,

F
′
⊂ F and ε > 0. Then there exist A ⊂ CX and m ∈ N such that F ′ = { fK : K ∈ A} and 1

m < ε. Suppose
that F ′(x) = {0}. Then fK(x) = 0 for each K ∈ A from which it follows that x ∈ ∩A. Let V = 1(m,∩A). Then
V is an open neighborhood of x. For each y ∈ V and each K ∈ A, y ∈ 1(m,K) and thus fK(y) < 1

m by Claim
1. It follows that fK(V) ⊂ [0, ε) for each K ∈ A and thus F ′(V) ⊂ [0, ε).

(b)⇒ (c) Let F be the family in (b). Then we only need to show that F satisfies (SK). Let x < K ∈ CX. By
(BK), there exists f ∈ F and m ∈N such that f (K) = {0}, f (x) > 1

m . Set V = {y ∈ X : f (y) > 1
m }. Since f ∈ L(X),

V is an open neighborhood of x. It is clear that f (V) ⊂ ( 1
m , 1].

(c)⇒ (a) Assume (c). For each x ∈ X, let Fx = { f ∈ F : f (x) = 0}. By (SK), Fx , ∅. For each n ∈ N and
x ∈ X, let 1(n, x) = int(∩{ f−1([0, 1

n )) : f ∈ Fx}). Since Fx(x) = {0}, it follows from (E′′) that x ∈ 1(n, x). It is
clear that 1(n + 1, x) ⊂ 1(n, x). Thus 1 is a 1-function for X.

Let K ∈ CX and x < K. By (SK), there exist f ∈ F , an open neighborhood V of x and m ∈ N such that
f (K) = {0}, f (V) ⊂ ( 1

m , 1]. For each y ∈ K, f (y) = 0 which implies that f ∈ Fy. By the definition of 1(m, y), we
have that 1(m, y) ⊂ f−1([0, 1

m )). Thus V ∩ 1(m,K) = ∅ from which it follows that x < 1(m,K). Consequently,⋂
n∈N 1(n,K) ⊂ K. By Definition 1.1, X is a c-stratifiable space.

Theorem 3.3. For a space X, the following are equivalent.
(a) X is kc-semi-stratifiable.
(b) There exists a family F ⊂ U(X) satisfying (K′) and (E′′).
(c) There exists a family F ⊂ F(X) satisfying (K′) and (E′′).

Proof. (a)⇒ (b) Let 1 be the 1-function for a kc-semi-stratifiable space. For each x ∈ X and K ∈ CX, if x < K,
then there exists m ∈ N such that x < 1(m,K). Set nx(K) = min{n ∈ N : x < 1(n,K)}. For each K ∈ CX, define
a function fK ∈ F(X) by letting fK(x) = 0 whenever x ∈ K and fK(x) = 1

nx(K) whenever x < K. Then K = f−1
K (0).

Claim 1. For each n ∈N, x < 1(n,K) if and only if fK(x) ≥ 1
n .

Proof of Claim 1. Analogous to the proof of Claim 1 in the proof of (a)⇒ (b) of Theorem 3.2.
Claim 2. For each K ∈ CX, fK ∈ U(X).
Proof of Claim 2. Let a > 0 and fK(x) < a.
Case 1. x ∈ K. Then fK(x) = 0 and thus there is m ∈ N such that 1

m < a. Let V = 1(m,K). Then V is an
open neighborhood of x and fK(y) < 1

m < a for each y ∈ V.
Case 2. x < K. Then fK(x) = 1

nx(K) < a. Case 2.1. nx(K) = 1. Let V = X. Then fK(y) ≤ 1 < a for each
y ∈ V. Case 2.2. nx(K) > 1. Let V = 1(nx(K) − 1,K). Then V is an open neighborhood of x. For each
y ∈ V, if y ∈ K, then fK(y) = 0 < a. If y < K, then nx(K) − 1 < ny(K) and thus nx(K) ≤ ny(K). It follows that
fK(y) = 1

ny(K) ≤
1

nx(K) < a.
By the above argument, we see that fK ∈ U(X) for each K ∈ CX.
Now, let F = { fK : K ∈ CX}. With a similar argument to the proof of (a)⇒ (b) of Theorem 3.2, we can

show that F satisfies (E′′). To show that F satisfies (K′), let H,K ∈ CX with H ∩ K = ∅. Then fK(K) = {0}.
By definition 1.2, H ∩ 1(m,K) = ∅ for some m ∈ N. For each x ∈ H, x < 1(m,K) from which it follows that
fK(x) ≥ 1

m . This implies that fK(H) ⊂ ( 1
m+1 , 1].

(b)⇒ (c) is clear.
(c) ⇒ (a) Assume (c). Define a 1-function 1 for X as that in the proof of (c) ⇒ (a) of Theorem 3.2.

Let H,K ∈ CX with H ∩ K = ∅. By (K′), there exist f ∈ F and m ∈ N such that f (H) ⊂ ( 1
m , 1] and

f (K) = {0}. For each x ∈ K, f (x) = 0 which implies that f ∈ Fx. By the definition of 1(m, x), we have that
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1(m, x) ⊂ f−1([0, 1
m )). Thus 1(m,K) ⊂ f−1([0, 1

m )) from which it follows that H ∩ 1(m,K) = ∅. By Definition
1.2, X is a kc-semi-stratifiable space.

The proof of the following result for c-semi-stratifiable spaces is similar to the proof of Theorem 3.3.

Proposition 3.4. For a space X, the following are equivalent.
(a) X is c-semi-stratifiable.
(b) There exists a family F ⊂ U(X) satisfying (BK) and (E′′).
(c) There exists a family F ⊂ F(X) satisfying (BK) and (E′′).

4. Some Other Spaces

In this section, we introduce another several conditions such as (D′) and (wB) so as to obtain charac-
terizations of some generalized metric spaces other than those in [13]. First, we give a characterization of
stratifiable spaces which improves a corresponding result for stratifiable spaces in [13].

Lemma 4.1. ([1]) A space X is stratifiable if and only if for each F ∈ τc, there exists fF ∈ C(X) satisfying (eF) and
(mF).

Theorem 4.2. For a space X, the following are equivalent.
(a) X is stratifiable.
(b) There exists a family F ⊂ C(X) satisfying (S) and (E′′).
(c) There exists a family F ⊂ C(X) satisfying (K) and (E′′).
(d) There exists a family F ⊂ L(X) satisfying (B) and (E′′).

Proof. (a)⇒ (b) Since X is stratifiable, by Lemma 4.1, for each F ∈ τc, there exists fF ∈ C(X) satisfying (eF)
and (mF). Let F = { fF : F ∈ τc

}. To show that F satisfies (S), let x < F ∈ τc. By (eF), fF(F) = {0} and fF(x) > 0.
Then there exists m ∈ N such that fF(x) > 1

m . Let V = {y ∈ X : fF(y) > 1
m }. Then V is an open neighborhood

of x and it is clear that fF(V) ⊂ ( 1
m , 1].

To show that F satisfies (E′′), let x ∈ X, F ′ ⊂ F and ε > 0. Then there existA ⊂ τc and m ∈N such that
F
′ = { fF : F ∈ A} and 1

m < ε. Suppose that F ′(x) = {0}. Then fF(x) = 0 for each F ∈ A from which it follows
that x ∈ ∩A ∈ τc. Let V = {y ∈ X : f∩A(y) < 1

m }. Then V is an open neighborhood of x. By (mF), for each
y ∈ V and each F ∈ A, fF(y) ≤ f∩A(y) < 1

m . This implies that fF(V) ⊂ [0, 1
m ) ⊂ [0, ε) for each F ∈ A and thus

F
′(V) ⊂ [0, ε).

(b)⇒ (c) We only need to show that (S) implies (K). This can be done with a similar argument to that in
Remark 3.1.

(c)⇒ (d) is clear.
(d) ⇒ (a) For each x ∈ X, let Fx = { f ∈ F : f (x) = 0}. By (B), Fx , ∅. For each n ∈ N and x ∈ X, let

1(n, x) = int(∩{ f−1([0, 1
n )) : f ∈ Fx}). Then 1 is a 1-function for X.

Let F ∈ τc and x < F. By (B), there exist f ∈ F and m ∈ N such that f (x) > 1
m and f (F) = {0}. Set

V = {y ∈ X : f (y) > 1
m }. Since f ∈ L(X), V is an open neighborhood of x. For each y ∈ V, f (y) = 0 which

implies that f ∈ Fy. By the definition of 1(m, y), we have that 1(m, y) ⊂ f−1([0, 1
m )). Thus V∩1(m,F) = ∅ from

which it follows that x < 1(m,F). Consequently,
⋂

n∈N 1(n,F) ⊂ F. Therefore, X is a stratifiable space.

A function d : X × X → [0,∞) is called a symmetric on X if (1) d(x, y) = 0 if and only if x = y; (2)
d(x, y) = d(y, x) for all x, y ∈ X. A space X is called semi-metrizable [14] if there is a symmetric on X such
that for each x ∈ X, {B(x, r) : r > 0} is a neighborhood base of x, where B(x, r) = {y ∈ X : d(x, y) < r}. X is
called K-semimetrizable [11] if there is a semi-metric d on X such that d(H,K) > 0 for every disjoint pair
H,K of nonempty compact subsets of X. It was shown that [13] X is semi-metrizable space if and only if
there exists a family F ⊂ F(X) satisfying (B), (D) and (E′′). As for K-semimetrizable spaces, we have the
following.
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Theorem 4.3. A space X is K-semimetrizable if and only if there exists a family F ⊂ F(X) satisfying (B), (D), (E′′)
and (K′).

Proof. Let d be a K-semimetric on X which is bounded by 1. For each F ∈ τc, define a function fF ∈ F(X) by
letting fF(x) = d(x,F) for each x ∈ X. It is clear that F = f−1

F (0). Let F = { fF : F ∈ τc
}. Then F ⊂ F(X) satisfies

(B).
Let x ∈ X, F ′ ⊂ F and suppose that F ′(x) ⊂ (a, 1] for some a > 0. Then there exist A ⊂ τc and n ∈ N

such that F ′ = { fF : F ∈ A} and 1
n < a. Thus fF(x) > 1

n for each F ∈ A. Let V = int(B(x, 1
n )). Then V is an

open neighborhood of x. For each y ∈ V and F ∈ A, d(x, y) < 1
n from which it follows that y < F (If y ∈ F,

then fF(x) = d(x,F) ≤ d(x, y) < 1
n , a contradiction) and so fF(y) > 0. This implies that F ′(V) ⊂ (0, 1]. Hence,

F satisfies (D).
Let x ∈ X, F ′ ⊂ F and ε > 0. Then there existA ⊂ τc and m ∈ N such that F ′ = { fF : F ∈ A} and 1

m < ε.
Suppose that F ′(x) = {0}. Then x ∈ F for each F ∈ A. Let V = int(B(x, 1

m )). Then V is an open neighborhood
of x. For each y ∈ V and each F ∈ A, fF(y) = d(y,F) ≤ d(x, y) < 1

m . This implies that fF(V) ⊂ [0, 1
m ) ⊂ [0, ε) for

each F ∈ A and thus F ′(V) ⊂ [0, ε). Hence, F satisfies (E′′).
Now, let K,H ∈ CX and K ∩H = ∅. Then d(K,H) > 0 from which it follows that there exists m ∈ N such

that d(x, y) > 1
m for each x ∈ K and y ∈ H. Thus fK(y) = d(y,K) ≥ 1

m for each y ∈ H which implies that
fK(H) ⊂ ( 1

m+1 , 1]. Clearly, fK(K) = { fK(x) : x ∈ K} = {0}. This shows that F satisfies (K′).
Conversely, for each x ∈ X, let Fx = { f ∈ F : f (x) = 0}. For each n ∈ N and x ∈ X, let h(n, x) =

int(∩{ f−1([0, 1
n )) : f ∈ Fx}). By (E′′), h is a 1-function for X. For each n ∈ N and x ∈ X, let Gnx = { f ∈ F :

f (x) ≥ 1
n }. Then let e(n, x) = X whenever Gnx = ∅ and e(n, x) = int(∩{ f−1((0, 1]) : f ∈ Gnx}) otherwise. Then

x ∈ e(n, x) by (D). Let 1(n, x) = h(n, x) ∩ ∩i≤ne(i, x). Then 1 is a 1-function for X.
By (B), for each x, y ∈ X with x , y, there is f ∈ F and m ∈ N such that f (x) > 1

m and f (y) = 0. Then
e(m, x) ⊂ f−1((0, 1]) and thus y < e(m, x) ⊃ 1(m, x). Also, h(m, y) ⊂ f−1([0, 1

m )) and thus x < h(m, y) ⊃ 1(m, y).
Let m(x, y) = min{n ∈ N : y < 1(n, x) and x < 1(n, y)}. Define a function d : X × X → [0,∞) by letting
d(x, y) = 0 whenever x = y and d(x, y) = 1

m(x,y) whenever x , y. It is easy to verify that y ∈ B(x, 1
n ) if and only

if x ∈ 1(n, y) or y ∈ 1(n, x).
Claim 1. B(x, r) is a neighborhood of x for each x ∈ X and r > 0.
Proof of Claim 1. Let r > 0 and choose m ∈ N such that 1

m < r. Then 1(m, x) ⊂ B(x, 1
m ) ⊂ B(x, r). This

implies that B(x, r) is a neighborhood of x.
Claim 2. {B(x, r) : r > 0} is a neighborhood base of x for each x ∈ X.
Proof of Claim 2. Let x ∈ U ∈ τ. By (B), there exist f ∈ F and m ∈ N such that f (x) > 1

m and f (y) = 0 for
each y ∈ X \U. Then h(m, y) ⊂ f−1([0, 1

m )) and thus x < h(m, y) ⊃ 1(m, y). Also, e(m, x) ⊂ f−1((0, 1]) and thus
y < e(m, x) ⊃ 1(m, x). As a result, y < B(x, 1

m ). This implies that B(x, 1
m ) ⊂ U.

By Claim 1 and Claim 2, d is a semi-metric on X.
Now, let K,H ∈ CX and K ∩ H = ∅. By (K′), there exist f ∈ F and m ∈ N such that f (K) = {0} and

f (H) ⊂ ( 1
m , 1]. Thus f (x) = 0 and f (y) > 1

m for each x ∈ K, y ∈ H. It follows that x < e(m, y) ⊃ 1(m, y) and
y < h(m, x) ⊃ 1(m, x). Hence, d(x, y) = 1

m(x,y) ≥
1
m . This implies that d(K,H) > 0.

Consequently, X is a K-semimetrizable space.

A space X is called strongly first countable [4] if there exists a 1-function 1 for X such that for each x ∈ X,
{1(n, x) : n ∈N} is a neighborhood base of x and if y ∈ 1(n, x), then 1(n, y) ⊂ 1(n, x). To give a characterization
of strongly first countable spaces, we introduce the following condition.

(D′) For each x ∈ X, F ′ ⊂ F and n ∈ N, if F ′(x) ⊂ [ 1
n , 1], then there exists an open neighborhood V of x

such that F ′(V) ⊂ [ 1
n , 1].

Theorem 4.4. A space X is strongly first countable if and only if there exists a family F satisfying (B) and (D′).

Proof. Let 1 be the 1-function for a strongly first countable space. Let x ∈ X and F ∈ τc. If x < F, then there
exists m ∈ N such that 1(m, x) ∩ F = ∅. Set nx(F) = min{n ∈ N : 1(n, x) ∩ F = ∅}. For each F ∈ τc, define a
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function fF ∈ F(X) by letting fF(x) = 0 whenever x ∈ F and fF(x) = 1
nx(F) whenever x < F. Then F = f−1

F (0). It
is easy to verify that for each n ∈N, 1(n, x) ∩ F = ∅ if and only if fF(x) ≥ 1

n .
Let F = { fF : F ∈ τc

}. Then F satisfies (B). To show that F satisfies (D′), let x ∈ X, F ′ ⊂ F and n ∈ N.
Then there existsA ⊂ τc such that F ′ = { fF : F ∈ A}. Suppose that F ′(x) ⊂ [ 1

n , 1]. Then fF(x) ≥ 1
n and thus

1(n, x) ∩ F = ∅ for each F ∈ A. Let V = 1(n, x). Then for each y ∈ V, 1(n, y) ⊂ 1(n, x) from which it follows
that 1(n, y) ∩ F = ∅ and thus fF(y) ≥ 1

n for each F ∈ A. This implies that F ′(V) ⊂ [ 1
n , 1].

Conversely, for each n ∈ N and x ∈ X, let Gnx = { f ∈ F : f (x) ≥ 1
n }. Then let h(n, x) = X whenever

Gnx = ∅ and h(n, x) = int(∩{ f−1([ 1
n , 1]) : f ∈ Gnx}) otherwise. Then x ∈ h(n, x) by (D′). Now, for each n ∈ N

and x ∈ X, let 1(n, x) = ∩i≤nh(i, x). Then 1 is a 1-function for X.
Let x ∈ U ∈ τ. By (B), there exists f ∈ F and m ∈N such that f (x) ≥ 1

m and f−1((0, 1]) ⊂ U. Then f ∈ Gmx

and thus 1(m, x) ⊂ h(m, x) ⊂ f−1([ 1
m , 1]) ⊂ f−1((0, 1]) ⊂ U.

Now, let y ∈ 1(n, x) = ∩i≤nh(i, x). For each i ≤ n, if h(i, x) = X, then h(i, y) ⊂ h(i, x). If h(i, x) =
int(∩{ f−1([ 1

i , 1]) : f ∈ Gix}), from y ∈ h(i, x) it follows thatGix ⊂ Giy and thus h(i, y) ⊂ h(i, x). This implies that
1(n, y) ⊂ 1(n, x). Consequently, X is strongly first countable.

A space X is called an α-spaces [4] if there exists a 1-function 1 for X such that {x} =
⋂

n∈N 1(n, x) for each
x ∈ X and if y ∈ 1(n, x), then 1(n, y) ⊂ 1(n, x).

(wB) If x , a, then there exists f ∈ F such that f (x) > 0 and f (a) = 0.

Theorem 4.5. A space X is an α-space if and only if there exists a family F satisfying (wB) and (D′).

Proof. Let 1 be the 1-function for an α-space. Let x, a ∈ X. If x , a, then there exists m ∈ N such that
a < 1(m, x). Set nx(a) = min{n ∈ N : a < 1(n, x)}. For each a ∈ X, define a function fa ∈ F(X) by letting
fa(x) = 0 whenever x = a and fa(x) = 1

nx(a) whenever x , a. Then {a} = f−1
a (0). It is easy to verify that for each

n ∈N, a < 1(n, x) if and only if fa(x) ≥ 1
n .

Let F = { fa : a ∈ X}. Then F satisfies (wB). To show that F satisfies (D′), let x ∈ X, F ′ ⊂ F and n ∈ N.
Then there exists A ⊂ X such that F ′ = { fa : a ∈ A}. Suppose that F ′(x) ⊂ [ 1

n , 1]. Then fa(x) ≥ 1
n for each

a ∈ A. It follows that a < 1(n, x) for each a ∈ A. Let V = 1(n, x). Then for each y ∈ V, 1(n, y) ⊂ 1(n, x)
from which it follows that a < 1(n, y) for each a ∈ A. Thus fa(y) ≥ 1

n for each a ∈ A. This implies that
F
′(V) ⊂ [ 1

n , 1].
Conversely, define a 1-function 1 for X as that in the proof of Theorem 4.4.
Let x, a ∈ X and x , a. By (wB), there exists f ∈ F and m ∈ N such that f (x) ≥ 1

m and f (a) = 0. Then
f ∈ Gmx and thus 1(m, x) ⊂ h(m, x) ⊂ f−1([ 1

m , 1]). It follows that a < 1(m, x).
With a similar argument to that in the proof of Theorem 4.4, we can show that if y ∈ 1(n, x), then

1(n, y) ⊂ 1(n, x). Consequently, X is an α-space.
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