Filomat 33:7 (2019), 1855–1863 https://doi.org/10.2298/FIL1907855Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Function Characterizations of Some Spaces in Which Compacta are G_{δ}

Er-Guang Yang^a, Cong-Cong Wu^a

^aSchool of Mathematics & Physics, Anhui University of Technology, Maanshan 243002, P.R. China

Abstract. We use real-valued functions to give characterizations of some topological spaces in which compact subsets are (regular) G_{δ} , such as *c*-stratifiable spaces, *kc*-semi-stratifiable spaces. Also, characterizations of some other spaces such as *K*-semimetrizable spaces, strongly first countable spaces are obtained.

1. Introduction

Throughout, a space always means a Hausdorff topological space. For a space *X*, we denote by C_X the family of all compact subsets of *X*. τ and τ^c denote the topology of *X* and the family of all closed subsets of *X* respectively. For a subset *A* of a space *X*, we write \overline{A} (*int*(*A*)) for the closure (interior) of *A* in *X*. Also, we use χ_A to denote the characteristic function of *A*. The set of all positive integers is denoted by \mathbb{N} .

A real-valued function f on a space X is called *lower (upper)semi-continuous* [2] if for any real number r, the set { $x \in X : f(x) > r$ } ({ $x \in X : f(x) < r$ }) is open. f is called *k-lower semi-continuous* [15] if for each $K \in C_X$, f has a minimum value on K. We write L(X) (U(X), KL(X)) for the set of all lower (upper, *k*-lower) semi-continuous functions from X into the unit interval [0, 1]. $UKL(X) = U(X) \cap KL(X)$. C(X) is the set of all continuous functions from X into [0, 1]. F(X) is the set of all functions from X into [0, 1].

It is known that many classes of spaces such as stratifiable spaces [5, 6], *k*-semi-stratifiable space [8, 15], countably paracompact spaces [9, 16], monotonically countably paracompact spaces [3] can be characterized with real-valued functions that satisfy certain conditions. In [13], to give characterizations of some generalized metric spaces, the following conditions were introduced.

Let $\mathcal{F} \subset F(X)$. For $x \in X$ and $A \subset X$, denote $\mathcal{F}(x) = \{f(x) : f \in \mathcal{F}\}$ and $\mathcal{F}(A) = \bigcup \{f(A) : f \in \mathcal{F}\}$. Consider the following conditions on \mathcal{F} .

(*B*) If $x \notin F \in \tau^c$, then there exists $f \in \mathcal{F}$ such that f(x) > 0 and $f(F) = \{0\}$.

(*D*) For each $x \in X$ and $\mathcal{F}' \subset \mathcal{F}$, if $\mathcal{F}'(x) \subset (a, 1]$ for some a > 0, then there exists an open neighborhood *V* of *x* such that $\mathcal{F}'(V) \subset (0, 1]$.

(*E''*) For each $x \in X$, $\mathcal{F}' \subset \mathcal{F}$ and $\varepsilon > 0$, if $\mathcal{F}'(x) = \{0\}$, then there exists an open neighborhood *V* of *x* such that $\mathcal{F}'(V) \subset [0, \varepsilon)$.

(*K*) For each $K \in C_X$, $F \in \tau^c$ with $K \cap F = \emptyset$, there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(K) \subset (\frac{1}{m}, 1]$ and $f(F) = \{0\}$.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C30; Secondary 54C08, 54E20, 54E25, 54E99

Keywords. Real-valued functions, g-functions, c-stratifiable spaces, kc-semi-stratifiable spaces

Received: 15 May 2018; Revised: 03 March 2019; Accepted: 04 March 2019

Communicated by Ljubiša D.R. Kočinac

Email addresses: egyang@126.com (Er-Guang Yang), ccwu95@126.com (Cong-Cong Wu)

(*S*) If $x \notin F \in \tau^c$, then there exist $f \in \mathcal{F}$, an open neighborhood *V* of *x* and $m \in \mathbb{N}$ such that $f(V) \subset (\frac{1}{m}, 1]$ and $f(F) = \{0\}$.

With these conditions, Naimpally and Pareek [13] presented characterizations of a broad class of generalized metric spaces such as first countable spaces, semi-stratifiable spaces, semi-metrizable spaces, developable spaces, stratifiable spaces and γ -spaces. For example, a space X is first countable if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying (B) and (D). X is stratifiable if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying (S) and (E'').

In [17], the first author of the present paper introduced another several conditions imposed on real-valued functions. For example.

Let $A, B \subset X$ and f_A a real-valued function on X related to A.

 $(e_A) A = f_A^{-1}(0).$

 (m_A) If $A_1 \subset A_2$, then $f_{A_1} \ge f_{A_2}$.

 (i_{AB}) If $A \cap B = \emptyset$, then $\inf\{f_A(x) : x \in B\} > 0$.

 (i'_{AB}) If $A \cap B = \emptyset$, then there exists an open neighborhood *V* of *B* such that $\inf\{f_A(x) : x \in V\} > 0$.

With these conditions, characterizations of some generalized metric spaces were also obtained. For example, a space X is first countable if and only if for each $x \in X$, there exists $f_x \in U(X)$ satisfying $(e_{[x]})$ and $(i_{[x]F})$ with $F \in \tau^c$. X is a Nagata space if and only if for each $F \in \tau^c$, there exists $f_F \in C(X)$ satisfying (e_F) , (m_F) and $(i_{[x]F})$.

A *g*-function for a space *X* is a map $g : \mathbb{N} \times X \to \tau$ such that for every $x \in X$ and $n \in \mathbb{N}$, $x \in g(n, x)$ and $g(n + 1, x) \subset g(n, x)$. For a subset *A* of *X*, denote $g(n, A) = \bigcup \{g(n, x) : x \in A\}$.

Definition 1.1. A space *X* is called a *c*-stratifiable [7] (*c*-semi-stratifiable [10]) space if there is a *g*-function *g* for *X* such that for each $K \in C_X$, $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} = K$ ($\bigcap_{n \in \mathbb{N}} g(n, K) = K$).

Definition 1.2. ([12]) A space *X* is called *kc-semi-stratifiable* if there is a *g*-function for *X* such that if $K, H \in C_X$ and $K \cap H = \emptyset$, then $K \cap g(m, H) = \emptyset$ for some $m \in \mathbb{N}$.

c-stratifiable (*kc*-semi-stratifiable, *c*-semi-stratifiable) spaces are nature generalizations of stratifiable (*k*-semi-stratifiable, semi-stratifiable) spaces in which compact subsets are (regular) G_{δ} -sets. The main purpose of this paper is to give characterizations of these spaces with real-valued functions that satisfy some conditions listed above. Moreover, characterizations of some other spaces such as *K*-semimetrizable spaces, strongly first countable spaces are obtained.

2. The First Kind of Characterizations

In this section, we shall present characterizations of *c*-stratifiable spaces, *kc*-semi-stratifiable spaces with conditions (e_A), (m_A) and (i_{AB}) listed in section 1.

Theorem 2.1. For a space *X*, the following are equivalent.

(a) X is a c-stratifiable space.

(b) For each $K \in C_X$, there exist $f_K \in L(X)$, $h_K \in UKL(X)$ with $f_K \leq h_K$ such that f_K , h_K satisfy (e_K) and h_K satisfies (m_K) .

(c) For each $K \in C_X$, there exist $f_K \in L(X)$, $h_K \in U(X)$ with $f_K \le h_K$ such that f_K , h_K satisfy (e_K) and h_K satisfies (m_K) .

Proof. (a) \Rightarrow (b) Let *g* be the *g*-function for a *c*-stratifiable space. For each $K \in C_X$, let

$$f_K = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{\overline{g(n,K)}}, \quad h_K = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{g(n,K)}.$$

Then $f_K \in L(X)$, $h_K \in U(X)$ and $f_K \le h_K$. It is clear that if $K_1 \subset K_2$, then $h_{K_1} \ge h_{K_2}$. One readily sees that for each $K \in C_X$, $f_K(x) = 0$ if and only if $x \in K$ if and only if $h_K(x) = 0$. That is, $f_K^{-1}(0) = K = h_K^{-1}(0)$.

To show that $h_K \in KL(X)$. Let $H \in C_X$.

Case 1. $H \cap K \neq \emptyset$. Choose $x_0 \in K \cap H$. Then $h_K(x_0) = 0$ and thus $h_K(x) \ge h_K(x_0)$ for each $x \in H$.

Case 2. $H \cap K = \emptyset$. Then $H \cap \bigcap_{n \in \mathbb{N}} \overline{g(n, K)} = \emptyset$. Since *H* is compact, it follows that $H \cap \overline{g(n, K)} = \emptyset$ for some $n \in \mathbb{N}$. Let $m = \min\{n \in \mathbb{N} : H \cap g(n, K) = \emptyset\}$. If m = 1, then $H \cap g(1, K) = \emptyset$ from which it follows that $h_K(x) = 1$ for each $x \in H$. If m > 1, then $H \cap g(m - 1, K) \neq \emptyset$ and $H \cap g(n, K) = \emptyset$ for each $n \ge m$. Choose $x_0 \in H \cap g(m - 1, K)$. Then $h_K(x_0) = \frac{1}{2^{m-1}}$. Let $x \in H$ and $k_x = \min\{n \in \mathbb{N} : x \notin g(n, K)\}$. Then $k_x \le m$. Thus

$$h_K(x) = 1 - \sum_{n=1}^{k_x-1} \frac{1}{2^n} = \frac{1}{2^{k_x-1}} \ge \frac{1}{2^{m-1}} = h_K(x_0).$$

(b) \Rightarrow (c) is clear.

(c) \Rightarrow (a) For each $x \in X$ and $n \in \mathbb{N}$, let $g(n, x) = \{y \in X : h_{\{x\}}(y) < \frac{1}{n}\}$. Since $h_{\{x\}} \in U(X)$ and $h_{\{x\}}(x) = 0$, it follows that g(n, x) is open and $x \in g(n, x)$. It is clear that $g(n + 1, x) \subset g(n, x)$. Thus g is a g-function for X. For each $K \in C_X$ and $n \in \mathbb{N}$, let $F(n, K) = \{y \in X : f_K(y) \le \frac{1}{n}\}$. For each $x \in K$ and $y \in g(n, x)$, $f_K(y) \le h_{\{x\}}(y) < \frac{1}{n}$ which implies that $g(n, x) \subset F(n, K)$ and thus $g(n, K) \subset F(n, K)$. Since F(n, K) is closed, we have that $\overline{g(n, K)} \subset F(n, K)$.

Let $K \in C_X$. If $x \in \bigcap_{n \in \mathbb{N}} \overline{g(n, K)}$, then $x \in \overline{g(n, K)} \subset F(n, K)$ and thus $f_K(x) \leq \frac{1}{n}$ for each $n \in \mathbb{N}$. It follows that $f_K(x) = 0$. Hence, $x \in K$. This implies that $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} \subset K$. Since it is clear that $K \subset \bigcap_{n \in \mathbb{N}} \overline{g(n, K)}$, we have that $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} = K$. By Definition 1.1, X is a c-stratifiable space. \Box

Theorem 2.2. For a space *X*, the following are equivalent.

- (*a*) *X* is a *c*-stratifiable space.
- (b) For each $K \in C_X$, there exists $f_K \in U(X)$ satisfying (e_K) , (m_K) and (i'_{KH}) with $H \in C_X$.
- (c) For each $K \in C_X$, there exists $f_K \in U(X)$ satisfying (e_K) , (m_K) and $(i'_{K|X})$.

Proof. (a) \Rightarrow (b) Let *g* be the *g*-function for a *c*-stratifiable space. For each $K \in C_X$, let

$$f_K = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{g(n,K)}.$$

Then $f_K \in U(X)$ satisfies (e_K) and (m_K) .

Let $K, H \in C_X$ and $K \cap H = \emptyset$, then $H \cap \overline{g(m, K)} = \emptyset$ for some $m \in \mathbb{N}$. Let $V = X \setminus \overline{g(m, K)}$. Then *V* is an open neighborhood of *H*. For each $x \in V$, $x \notin \overline{g(n, K)} \supset g(n, K)$ for all $n \ge m$. Thus

$$f_{K}(x) = 1 - \sum_{n=1}^{m-1} \frac{1}{2^{n}} \chi_{g(n,K)}(x) \ge 1 - \sum_{n=1}^{m-1} \frac{1}{2^{n}} = \frac{1}{2^{m-1}}.$$

This implies that $\inf\{f_K(x) : x \in V\} > 0$.

(b) \Rightarrow (c) is clear.

(c) \Rightarrow (a) For each $x \in X$ and $n \in \mathbb{N}$, let $g(n, x) = \{y \in X : f_{\{x\}}(y) < \frac{1}{n}\}$. Then g is a g-function for X. Let $K \in C_X$. If $x \notin K$, then by $(i'_{K[x]})$, there exist an open neighborhood V of x and $m \in \mathbb{N}$ such that $f_K(y) > \frac{1}{m}$ for each $y \in V$. This implies that $x \notin \{y \in X : f_K(y) < \frac{1}{m}\}$. For each $z \in K$, we have that $g(m, z) = \{y \in X : f_{\{z\}}(y) < \frac{1}{m}\} \subset \{y \in X : f_K(y) < \frac{1}{m}\}$. Thus $g(m, K) \subset \{y \in X : f_K(y) < \frac{1}{m}\}$ and so $x \notin \overline{g(m, K)}$. This implies that $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} \subset K$ and thus $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} = K$. Therefore, X is a c-stratifiable space. \Box

Theorem 2.3. For a space *X*, the following are equivalent.

(a) X is a kc-semi-stratifiable space.

- (b) For each $K \in C_X$, there exists $f_K \in UKL(X)$ satisfying (e_K) and (m_K) .
- (c) for each $K \in C_X$, there exists $f_K \in U(X)$ satisfying (e_K) , (m_K) and (i_{KH}) with $H \in C_X$.

Proof. (a) \Rightarrow (b) Let *g* be the *g*-function for a *kc*-semi-stratifiable space. For each $K \in C_X$, let

$$f_K = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{g(n,K)}.$$

Then $f_K \in U(X)$ satisfies (m_K) . It is clear that $K \subset f_K^{-1}(0)$. If $x \notin K$, then $\{x\} \cap g(n, K) = \emptyset$ for some $n \in \mathbb{N}$. It follows that $f_K(x) > 0$ and thus $f_K^{-1}(0) \subset K$. Consequently, $K = f_K^{-1}(0)$.

With a similar argument to that in the proof of (a) \Rightarrow (b) of Theorem 2.1, we can show that $f_K \in KL(X)$. (b) \Rightarrow (c) Assume (b). It suffices to show that f_K satisfies (i_{KH}) . Let $H \in C_X$ and $K \cap H = \emptyset$. Since $f_K \in KL(X)$,

there exists $x_0 \in H$ such that $f_K(x) \ge f_K(x_0)$ for each $x \in H$. It follows that $\inf\{f_K(x) : x \in H\} \ge f_K(x_0) > 0$. (c) \Rightarrow (a) For each $x \in X$ and $n \in \mathbb{N}$, let $g(n, x) = \{y \in X : f_{\{x\}}(y) < \frac{1}{n}\}$. Then g is a g-function for X. Let $K, H \in C_X$ and $K \cap H = \emptyset$. By (i_{KH}) , there exists $m \in \mathbb{N}$ such that $f_K(x) > \frac{1}{m}$ for each $x \in H$. Then for each $y \in K$ and $x \in H$, $f_{\{y\}}(x) \ge f_K(x) > \frac{1}{m}$ from which it follows that $x \notin g(m, y)$. Thus $H \cap g(m, K) = \emptyset$. By Definition 1.2, X is a kc-semi-stratifiable space. \Box

Analogous to Theorem 2.3, we have the following result for *c*-semi-stratifiable spaces.

Proposition 2.4. A space X is c-semi-stratifiable if and only if for each $K \in C_X$, there exists $f_K \in U(X)$ satisfying (e_K) and (m_K) .

3. Another Kind of Characterizations

In this section, we introduce the following conditions (B_K) , (K') and (S_K) as generalizations of conditions (B), (K) and (S) listed in section 1 with which we present another several characterizations of *c*-stratifiable spaces, *kc*-semi-stratifiable spaces.

Let $\mathcal{F} \subset F(X)$. Consider the following conditions on \mathcal{F} .

 (B_K) If $x \notin K \in C_X$, then there exists $f \in \mathcal{F}$ such that f(x) > 0 and $f(K) = \{0\}$.

(*K'*) For each pair $H, K \in C_X$ with $H \cap K = \emptyset$, there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(H) \subset (\frac{1}{m}, 1]$ and $f(K) = \{0\}$.

 (S_K) If $x \notin K \in C_X$, then there exist $f \in \mathcal{F}$, an open neighborhood V of x and $m \in \mathbb{N}$ such that $f(V) \subset (\frac{1}{m}, 1]$ and $f(K) = \{0\}$.

Remark 3.1. By their definitions, it is clear that (K') implies (B_K) . We can also show that (S_K) implies (K'). Assume (S_K) . Let $H, K \in C_X$ be such that $H \cap K = \emptyset$. Then $x \notin K$ for each $x \in H$. By (S_K) , there exist $f_x \in \mathcal{F}$, an open neighborhood V_x of x and $m_x \in \mathbb{N}$ such that $f_x(K) = \{0\}$, $f_x(V_x) \subset (\frac{1}{m_x}, 1]$. Since $H \in C_X$ and $H \subset \cup \{V_x : x \in H\}$, there exists a finite subset A of H such that $H \subset \cup \{V_x : x \in A\}$. Let $f = \max\{f_x : x \in A\}$ and $m = \max\{m_x : x \in A\}$. For each $x \in A$ and $y \in K$, $f_x(y) = 0$ from which it follows that f(y) = 0 and so $f(K) = \{0\}$. For each $y \in H$, there is $x \in A$ such that $y \in V_x$. Hence, $f(y) \ge f_x(y) > \frac{1}{m_x} \ge \frac{1}{m}$. This implies that $f(H) \subset (\frac{1}{m}, 1]$.

Theorem 3.2. For a space *X*, the following are equivalent.

(*a*) *X* is *c*-stratifiable.

(b) There exists a family $\mathcal{F} \subset L(X)$ satisfying (B_K) and (E'').

(c) There exists a family $\mathcal{F} \subset F(X)$ satisfying (S_K) and (E'').

Proof. (a) \Rightarrow (b) Let *g* be the *g*-function for a *c*-stratifiable space. For each $x \in X$ and $K \in C_X$, if $x \notin K$, then there exists $m \in \mathbb{N}$ such that $x \notin \overline{g(m, K)}$. Set $n_x(K) = \min\{n \in \mathbb{N} : x \notin \overline{g(n, K)}\}$. For each $K \in C_X$, define a function $f_K \in F(X)$ by letting $f_K(x) = 0$ whenever $x \in K$ and $f_K(x) = \frac{1}{n_x(K)}$ whenever $x \notin K$. It is clear that $K = f_K^{-1}(0)$.

Claim 1. For each $n \in \mathbb{N}$, $x \notin g(n, K)$ if and only if $f_K(x) \ge \frac{1}{n}$.

Proof of Claim 1. If $x \notin \overline{g(n, K)}$, then $n_x(K) \le n$ from which it follows that $f_K(x) = \frac{1}{n_x(K)} \ge \frac{1}{n}$. Conversely, if $f_K(x) \ge \frac{1}{n}$, then $f_K(x) = \frac{1}{n_x(K)}$ from which it follows that $n_x(K) \le n$. Thus $x \notin \overline{g(n_x(K), K)} \supset \overline{g(n, K)}$.

Claim 2. For each $K \in C_X$, $f_K \in L(X)$.

Proof of Claim 2. Let $a \in [0, 1)$ and $f_K(x) > a$. Then $x \notin K$. Set $O_x = X \setminus \overline{g(n_x(K), K)}$. Then O_x is an open neighborhood of x. For each $y \in O_x$, $y \notin \overline{g(n_x(K), K)}$ from which it follows that $n_y(K) \le n_x(K)$. Thus $f_K(y) = \frac{1}{n_y(K)} \ge \frac{1}{n_x(K)} = f_K(x) > a$. This implies that $f_K \in L(X)$.

Now, let $\mathcal{F} = \{f_K : K \in C_X\}$. It is clear that \mathcal{F} satisfies (B_K) . To show that \mathcal{F} satisfies (E''), let $x \in X$, $\mathcal{F}' \subset \mathcal{F}$ and $\varepsilon > 0$. Then there exist $\mathcal{A} \subset C_X$ and $m \in \mathbb{N}$ such that $\mathcal{F}' = \{f_K : K \in \mathcal{A}\}$ and $\frac{1}{m} < \varepsilon$. Suppose that $\mathcal{F}'(x) = \{0\}$. Then $f_K(x) = 0$ for each $K \in \mathcal{A}$ from which it follows that $x \in \cap \mathcal{A}$. Let $V = g(m, \cap \mathcal{A})$. Then V is an open neighborhood of x. For each $y \in V$ and each $K \in \mathcal{A}$, $y \in \overline{g(m, K)}$ and thus $f_K(y) < \frac{1}{m}$ by Claim 1. It follows that $f_K(V) \subset [0, \varepsilon)$ for each $K \in \mathcal{A}$ and thus $\mathcal{F}'(V) \subset [0, \varepsilon)$.

(b) \Rightarrow (c) Let \mathcal{F} be the family in (b). Then we only need to show that \mathcal{F} satisfies (S_K). Let $x \notin K \in C_X$. By (B_K), there exists $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(K) = \{0\}, f(x) > \frac{1}{m}$. Set $V = \{y \in X : f(y) > \frac{1}{m}\}$. Since $f \in L(X)$, V is an open neighborhood of x. It is clear that $f(V) \subset (\frac{1}{m}, 1]$.

(c) \Rightarrow (a) Assume (c). For each $x \in X$, let $\mathcal{F}_x = \{f \in \mathcal{F} : f(x) = 0\}$. By $(S_K), \mathcal{F}_x \neq \emptyset$. For each $n \in \mathbb{N}$ and $x \in X$, let $g(n, x) = int(\cap\{f^{-1}([0, \frac{1}{n})) : f \in \mathcal{F}_x\})$. Since $\mathcal{F}_x(x) = \{0\}$, it follows from (E'') that $x \in g(n, x)$. It is clear that $g(n + 1, x) \subset g(n, x)$. Thus g is a g-function for X.

Let $K \in C_X$ and $x \notin K$. By (S_K) , there exist $f \in \mathcal{F}$, an open neighborhood V of x and $m \in \mathbb{N}$ such that $f(K) = \{0\}, f(V) \subset (\frac{1}{m}, 1]$. For each $y \in K$, f(y) = 0 which implies that $f \in \mathcal{F}_y$. By the definition of g(m, y), we have that $g(m, y) \subset f^{-1}([0, \frac{1}{m}))$. Thus $V \cap g(m, K) = \emptyset$ from which it follows that $x \notin \overline{g(m, K)}$. Consequently, $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} \subset K$. By Definition 1.1, X is a c-stratifiable space. \Box

Theorem 3.3. *For a space X, the following are equivalent.*

(a) X is kc-semi-stratifiable.

(b) There exists a family $\mathcal{F} \subset U(X)$ satisfying (K') and (E'').

(c) There exists a family $\mathcal{F} \subset F(X)$ satisfying (K') and (E'').

Proof. (a) \Rightarrow (b) Let *g* be the *g*-function for a *kc*-semi-stratifiable space. For each $x \in X$ and $K \in C_X$, if $x \notin K$, then there exists $m \in \mathbb{N}$ such that $x \notin g(m, K)$. Set $n_x(K) = \min\{n \in \mathbb{N} : x \notin g(n, K)\}$. For each $K \in C_X$, define a function $f_K \in F(X)$ by letting $f_K(x) = 0$ whenever $x \in K$ and $f_K(x) = \frac{1}{n_x(K)}$ whenever $x \notin K$. Then $K = f_K^{-1}(0)$. Claim 1. For each $n \in \mathbb{N}$, $x \notin g(n, K)$ if and only if $f_K(x) \ge \frac{1}{n}$.

Proof of Claim 1. Analogous to the proof of Claim 1 in the proof of (a) \Rightarrow (b) of Theorem 3.2.

Claim 2. For each $K \in C_X$, $f_K \in U(X)$.

Proof of Claim 2. Let a > 0 and $f_K(x) < a$.

Case 1. $x \in K$. Then $f_K(x) = 0$ and thus there is $m \in \mathbb{N}$ such that $\frac{1}{m} < a$. Let V = g(m, K). Then V is an open neighborhood of x and $f_K(y) < \frac{1}{m} < a$ for each $y \in V$.

Case 2. $x \notin K$. Then $f_K(x) = \frac{1}{n_x(K)} < a$. Case 2.1. $n_x(K) = 1$. Let V = X. Then $f_K(y) \le 1 < a$ for each $y \in V$. Case 2.2. $n_x(K) > 1$. Let $V = g(n_x(K) - 1, K)$. Then V is an open neighborhood of x. For each $y \in V$, if $y \in K$, then $f_K(y) = 0 < a$. If $y \notin K$, then $n_x(K) - 1 < n_y(K)$ and thus $n_x(K) \le n_y(K)$. It follows that $f_K(y) = \frac{1}{n_x(K)} < \frac{1}{n_x(K)} < a$.

By the above argument, we see that $f_K \in U(X)$ for each $K \in C_X$.

Now, let $\mathcal{F} = \{f_K : K \in C_X\}$. With a similar argument to the proof of (a) \Rightarrow (b) of Theorem 3.2, we can show that \mathcal{F} satisfies (*E''*). To show that \mathcal{F} satisfies (*K'*), let $H, K \in C_X$ with $H \cap K = \emptyset$. Then $f_K(K) = \{0\}$. By definition 1.2, $H \cap g(m, K) = \emptyset$ for some $m \in \mathbb{N}$. For each $x \in H, x \notin g(m, K)$ from which it follows that $f_K(x) \ge \frac{1}{m}$. This implies that $f_K(H) \subset (\frac{1}{m+1}, 1]$.

(b) \Rightarrow (c) is clear.

(c) \Rightarrow (a) Assume (c). Define a *g*-function *g* for *X* as that in the proof of (c) \Rightarrow (a) of Theorem 3.2. Let $H, K \in C_X$ with $H \cap K = \emptyset$. By (*K'*), there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(H) \subset (\frac{1}{m}, 1]$ and $f(K) = \{0\}$. For each $x \in K$, f(x) = 0 which implies that $f \in \mathcal{F}_x$. By the definition of g(m, x), we have that $g(m, x) \subset f^{-1}([0, \frac{1}{m}))$. Thus $g(m, K) \subset f^{-1}([0, \frac{1}{m}))$ from which it follows that $H \cap g(m, K) = \emptyset$. By Definition 1.2, *X* is a *kc*-semi-stratifiable space. \Box

The proof of the following result for *c*-semi-stratifiable spaces is similar to the proof of Theorem 3.3.

Proposition 3.4. For a space *X*, the following are equivalent.

- (a) X is c-semi-stratifiable.
- (b) There exists a family $\mathcal{F} \subset U(X)$ satisfying (B_K) and (E'').
- (c) There exists a family $\mathcal{F} \subset F(X)$ satisfying (B_K) and (E'').

4. Some Other Spaces

In this section, we introduce another several conditions such as (D') and (wB) so as to obtain characterizations of some generalized metric spaces other than those in [13]. First, we give a characterization of stratifiable spaces which improves a corresponding result for stratifiable spaces in [13].

Lemma 4.1. ([1]) A space X is stratifiable if and only if for each $F \in \tau^c$, there exists $f_F \in C(X)$ satisfying (e_F) and (m_F) .

Theorem 4.2. For a space X, the following are equivalent.

(a) X is stratifiable.

(b) There exists a family $\mathcal{F} \subset C(X)$ satisfying (S) and (E'').

(c) There exists a family $\mathcal{F} \subset C(X)$ satisfying (K) and (E'').

(*d*) There exists a family $\mathcal{F} \subset L(X)$ satisfying (B) and (E'').

Proof. (a) \Rightarrow (b) Since *X* is stratifiable, by Lemma 4.1, for each $F \in \tau^c$, there exists $f_F \in C(X)$ satisfying (e_F) and (m_F) . Let $\mathcal{F} = \{f_F : F \in \tau^c\}$. To show that \mathcal{F} satisfies (*S*), let $x \notin F \in \tau^c$. By (e_F) , $f_F(F) = \{0\}$ and $f_F(x) > 0$. Then there exists $m \in \mathbb{N}$ such that $f_F(x) > \frac{1}{m}$. Let $V = \{y \in X : f_F(y) > \frac{1}{m}\}$. Then *V* is an open neighborhood of *x* and it is clear that $f_F(V) \subset (\frac{1}{m}, 1]$.

To show that \mathcal{F} satisfies (E''), let $x \in X$, $\mathcal{F}' \subset \mathcal{F}$ and $\varepsilon > 0$. Then there exist $\mathcal{A} \subset \tau^c$ and $m \in \mathbb{N}$ such that $\mathcal{F}' = \{f_F : F \in \mathcal{A}\}$ and $\frac{1}{m} < \varepsilon$. Suppose that $\mathcal{F}'(x) = \{0\}$. Then $f_F(x) = 0$ for each $F \in \mathcal{A}$ from which it follows that $x \in \cap \mathcal{A} \in \tau^c$. Let $V = \{y \in X : f_{\cap \mathcal{A}}(y) < \frac{1}{m}\}$. Then V is an open neighborhood of x. By (m_F) , for each $y \in V$ and each $F \in \mathcal{A}$, $f_F(y) \le f_{\cap \mathcal{A}}(y) < \frac{1}{m}$. This implies that $f_F(V) \subset [0, \frac{1}{m}) \subset [0, \varepsilon)$ for each $F \in \mathcal{A}$ and thus $\mathcal{F}'(V) \subset [0, \varepsilon)$.

(b) \Rightarrow (c) We only need to show that (*S*) implies (*K*). This can be done with a similar argument to that in Remark 3.1.

(c) \Rightarrow (d) is clear.

(d) \Rightarrow (a) For each $x \in X$, let $\mathcal{F}_x = \{f \in \mathcal{F} : f(x) = 0\}$. By (*B*), $\mathcal{F}_x \neq \emptyset$. For each $n \in \mathbb{N}$ and $x \in X$, let $g(n, x) = int(\cap\{f^{-1}([0, \frac{1}{n})) : f \in \mathcal{F}_x\})$. Then *g* is a *g*-function for *X*.

Let $F \in \tau^c$ and $x \notin F$. By (*B*), there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x) > \frac{1}{m}$ and $f(F) = \{0\}$. Set $V = \{y \in X : f(y) > \frac{1}{m}\}$. Since $f \in L(X)$, *V* is an open neighborhood of *x*. For each $y \in V$, f(y) = 0 which implies that $f \in \mathcal{F}_y$. By the definition of g(m, y), we have that $g(m, y) \subset f^{-1}([0, \frac{1}{m}))$. Thus $V \cap g(m, F) = \emptyset$ from which it follows that $x \notin \overline{g(m, F)}$. Consequently, $\bigcap_{n \in \mathbb{N}} \overline{g(n, F)} \subset F$. Therefore, *X* is a stratifiable space. \Box

A function $d : X \times X \rightarrow [0, \infty)$ is called a symmetric on X if (1) d(x, y) = 0 if and only if x = y; (2) d(x, y) = d(y, x) for all $x, y \in X$. A space X is called semi-metrizable [14] if there is a symmetric on X such that for each $x \in X$, {B(x, r) : r > 0} is a neighborhood base of x, where $B(x, r) = \{y \in X : d(x, y) < r\}$. X is called *K*-semimetrizable [11] if there is a semi-metric *d* on X such that d(H, K) > 0 for every disjoint pair *H*, *K* of nonempty compact subsets of X. It was shown that [13] X is semi-metrizable space if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying (*B*), (*D*) and (*E''*). As for *K*-semimetrizable spaces, we have the following.

Theorem 4.3. A space X is K-semimetrizable if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying (B), (D), (E'') and (K').

Proof. Let *d* be a *K*-semimetric on *X* which is bounded by 1. For each $F \in \tau^c$, define a function $f_F \in F(X)$ by letting $f_F(x) = d(x, F)$ for each $x \in X$. It is clear that $F = f_F^{-1}(0)$. Let $\mathcal{F} = \{f_F : F \in \tau^c\}$. Then $\mathcal{F} \subset F(X)$ satisfies (*B*).

Let $x \in X$, $\mathcal{F}' \subset \mathcal{F}$ and suppose that $\mathcal{F}'(x) \subset (a, 1]$ for some a > 0. Then there exist $\mathcal{A} \subset \tau^c$ and $n \in \mathbb{N}$ such that $\mathcal{F}' = \{f_F : F \in \mathcal{A}\}$ and $\frac{1}{n} < a$. Thus $f_F(x) > \frac{1}{n}$ for each $F \in \mathcal{A}$. Let $V = int(B(x, \frac{1}{n}))$. Then V is an open neighborhood of x. For each $y \in V$ and $F \in \mathcal{A}$, $d(x, y) < \frac{1}{n}$ from which it follows that $y \notin F$ (If $y \in F$, then $f_F(x) = d(x, F) \le d(x, y) < \frac{1}{n}$, a contradiction) and so $f_F(y) > 0$. This implies that $\mathcal{F}'(V) \subset (0, 1]$. Hence, \mathcal{F} satisfies (D).

Let $x \in X$, $\mathcal{F}' \subset \mathcal{F}$ and $\varepsilon > 0$. Then there exist $\mathcal{A} \subset \tau^{\varepsilon}$ and $m \in \mathbb{N}$ such that $\mathcal{F}' = \{f_F : F \in \mathcal{A}\}$ and $\frac{1}{m} < \varepsilon$. Suppose that $\mathcal{F}'(x) = \{0\}$. Then $x \in F$ for each $F \in \mathcal{A}$. Let $V = int(B(x, \frac{1}{m}))$. Then V is an open neighborhood of x. For each $y \in V$ and each $F \in \mathcal{A}$, $f_F(y) = d(y, F) \le d(x, y) < \frac{1}{m}$. This implies that $f_F(V) \subset [0, \frac{1}{m}) \subset [0, \varepsilon)$ for each $F \in \mathcal{A}$ and thus $\mathcal{F}'(V) \subset [0, \varepsilon)$. Hence, \mathcal{F} satisfies (E'').

Now, let $K, H \in C_X$ and $K \cap H = \emptyset$. Then d(K, H) > 0 from which it follows that there exists $m \in \mathbb{N}$ such that $d(x, y) > \frac{1}{m}$ for each $x \in K$ and $y \in H$. Thus $f_K(y) = d(y, K) \ge \frac{1}{m}$ for each $y \in H$ which implies that $f_K(H) \subset (\frac{1}{m+1}, 1]$. Clearly, $f_K(K) = \{f_K(x) : x \in K\} = \{0\}$. This shows that \mathcal{F} satisfies (K').

Conversely, for each $x \in X$, let $\mathcal{F}_x = \{f \in \mathcal{F} : f(x) = 0\}$. For each $n \in \mathbb{N}$ and $x \in X$, let $h(n, x) = int(\cap\{f^{-1}([0, \frac{1}{n})) : f \in \mathcal{F}_x\})$. By (E''), h is a g-function for X. For each $n \in \mathbb{N}$ and $x \in X$, let $\mathcal{G}_{nx} = \{f \in \mathcal{F} : f(x) \ge \frac{1}{n}\}$. Then let e(n, x) = X whenever $\mathcal{G}_{nx} = \emptyset$ and $e(n, x) = int(\cap\{f^{-1}((0, 1]) : f \in \mathcal{G}_{nx}\})$ otherwise. Then $x \in e(n, x)$ by (D). Let $g(n, x) = h(n, x) \cap \cap_{i \le n} e(i, x)$. Then g is a g-function for X.

By (*B*), for each $x, y \in X$ with $x \neq y$, there is $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x) > \frac{1}{m}$ and f(y) = 0. Then $e(m, x) \subset f^{-1}((0, 1])$ and thus $y \notin e(m, x) \supset g(m, x)$. Also, $h(m, y) \subset f^{-1}([0, \frac{1}{m}])$ and thus $x \notin h(m, y) \supset g(m, y)$. Let $m(x, y) = \min\{n \in \mathbb{N} : y \notin g(n, x) \text{ and } x \notin g(n, y)\}$. Define a function $d : X \times X \to [0, \infty)$ by letting d(x, y) = 0 whenever x = y and $d(x, y) = \frac{1}{m(x,y)}$ whenever $x \neq y$. It is easy to verify that $y \in B(x, \frac{1}{n})$ if and only if $x \in g(n, y)$ or $y \in g(n, x)$.

Claim 1. B(x, r) is a neighborhood of x for each $x \in X$ and r > 0.

Proof of Claim 1. Let r > 0 and choose $m \in \mathbb{N}$ such that $\frac{1}{m} < r$. Then $g(m, x) \subset B(x, \frac{1}{m}) \subset B(x, r)$. This implies that B(x, r) is a neighborhood of x.

Claim 2. {B(x, r) : r > 0} is a neighborhood base of x for each $x \in X$.

Proof of Claim 2. Let $x \in U \in \tau$. By (B), there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x) > \frac{1}{m}$ and f(y) = 0 for each $y \in X \setminus U$. Then $h(m, y) \subset f^{-1}([0, \frac{1}{m}))$ and thus $x \notin h(m, y) \supset g(m, y)$. Also, $e(m, x) \subset f^{-1}((0, 1])$ and thus $y \notin e(m, x) \supset g(m, x)$. As a result, $y \notin B(x, \frac{1}{m})$. This implies that $B(x, \frac{1}{m}) \subset U$.

By Claim 1 and Claim 2, *d* is a semi-metric on *X*.

Now, let $K, H \in C_X$ and $K \cap H = \emptyset$. By (K'), there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(K) = \{0\}$ and $f(H) \subset (\frac{1}{m}, 1]$. Thus f(x) = 0 and $f(y) > \frac{1}{m}$ for each $x \in K$, $y \in H$. It follows that $x \notin e(m, y) \supset g(m, y)$ and $y \notin h(m, x) \supset g(m, x)$. Hence, $d(x, y) = \frac{1}{m(x, y)} \ge \frac{1}{m}$. This implies that d(K, H) > 0.

Consequently, *X* is a *K*-semimetrizable space. \Box

A space *X* is called strongly first countable [4] if there exists a *g*-function *g* for *X* such that for each $x \in X$, $\{g(n, x) : n \in \mathbb{N}\}$ is a neighborhood base of *x* and if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$. To give a characterization of strongly first countable spaces, we introduce the following condition.

(*D*') For each $x \in X$, $\mathcal{F}' \subset \mathcal{F}$ and $n \in \mathbb{N}$, if $\mathcal{F}'(x) \subset [\frac{1}{n}, 1]$, then there exists an open neighborhood *V* of *x* such that $\mathcal{F}'(V) \subset [\frac{1}{n}, 1]$.

Theorem 4.4. A space X is strongly first countable if and only if there exists a family \mathcal{F} satisfying (B) and (D').

Proof. Let *g* be the *g*-function for a strongly first countable space. Let $x \in X$ and $F \in \tau^c$. If $x \notin F$, then there exists $m \in \mathbb{N}$ such that $g(m, x) \cap F = \emptyset$. Set $n_x(F) = \min\{n \in \mathbb{N} : g(n, x) \cap F = \emptyset\}$. For each $F \in \tau^c$, define a

function $f_F \in F(X)$ by letting $f_F(x) = 0$ whenever $x \in F$ and $f_F(x) = \frac{1}{n_x(F)}$ whenever $x \notin F$. Then $F = f_F^{-1}(0)$. It is easy to verify that for each $n \in \mathbb{N}$, $g(n, x) \cap F = \emptyset$ if and only if $f_F(x) \ge \frac{1}{n}$.

Let $\mathcal{F} = \{f_F : F \in \tau^c\}$. Then \mathcal{F} satisfies (*B*). To show that \mathcal{F} satisfies (*D'*), let $x \in X, \mathcal{F}' \subset \mathcal{F}$ and $n \in \mathbb{N}$. Then there exists $\mathcal{A} \subset \tau^c$ such that $\mathcal{F}' = \{f_F : F \in \mathcal{A}\}$. Suppose that $\mathcal{F}'(x) \subset [\frac{1}{n}, 1]$. Then $f_F(x) \ge \frac{1}{n}$ and thus $g(n, x) \cap F = \emptyset$ for each $F \in \mathcal{A}$. Let V = g(n, x). Then for each $y \in V, g(n, y) \subset g(n, x)$ from which it follows that $g(n, y) \cap F = \emptyset$ and thus $f_F(y) \ge \frac{1}{n}$ for each $F \in \mathcal{A}$. This implies that $\mathcal{F}'(V) \subset [\frac{1}{n}, 1]$.

Conversely, for each $n \in \mathbb{N}$ and $x \in X$, let $\mathcal{G}_{nx} = \{f \in \mathcal{F} : f(x) \ge \frac{1}{n}\}$. Then let h(n, x) = X whenever $\mathcal{G}_{nx} = \emptyset$ and $h(n, x) = int(\cap\{f^{-1}([\frac{1}{n}, 1]) : f \in \mathcal{G}_{nx}\})$ otherwise. Then $x \in h(n, x)$ by (D'). Now, for each $n \in \mathbb{N}$ and $x \in X$, let $g(n, x) = \bigcap_{i \le n} h(i, x)$. Then g is a g-function for X.

Let $x \in U \in \tau$. By (B), there exists $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x) \ge \frac{1}{m}$ and $f^{-1}((0,1]) \subset U$. Then $f \in \mathcal{G}_{mx}$ and thus $g(m, x) \subset h(m, x) \subset f^{-1}([\frac{1}{m}, 1]) \subset f^{-1}((0,1]) \subset U$.

Now, let $y \in g(n, x) = \bigcap_{i \le n} h(i, x)$. For each $i \le n$, if h(i, x) = X, then $h(i, y) \subset h(i, x)$. If $h(i, x) = int(\bigcap\{f^{-1}([\frac{1}{i}, 1]) : f \in \mathcal{G}_{ix}\})$, from $y \in h(i, x)$ it follows that $\mathcal{G}_{ix} \subset \mathcal{G}_{iy}$ and thus $h(i, y) \subset h(i, x)$. This implies that $g(n, y) \subset g(n, x)$. Consequently, X is strongly first countable. \Box

A space *X* is called an α -spaces [4] if there exists a *g*-function *g* for *X* such that $\{x\} = \bigcap_{n \in \mathbb{N}} g(n, x)$ for each $x \in X$ and if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$.

(*wB*) If $x \neq a$, then there exists $f \in \mathcal{F}$ such that f(x) > 0 and f(a) = 0.

Theorem 4.5. A space X is an α -space if and only if there exists a family \mathcal{F} satisfying (wB) and (D').

Proof. Let *g* be the *g*-function for an α -space. Let $x, a \in X$. If $x \neq a$, then there exists $m \in \mathbb{N}$ such that $a \notin g(m, x)$. Set $n_x(a) = \min\{n \in \mathbb{N} : a \notin g(n, x)\}$. For each $a \in X$, define a function $f_a \in F(X)$ by letting $f_a(x) = 0$ whenever x = a and $f_a(x) = \frac{1}{n_x(a)}$ whenever $x \neq a$. Then $\{a\} = f_a^{-1}(0)$. It is easy to verify that for each $n \in \mathbb{N}, a \notin g(n, x)$ if and only if $f_a(x) \ge \frac{1}{n}$.

Let $\mathcal{F} = \{f_a : a \in X\}$. Then \mathcal{F} satisfies (*wB*). To show that \mathcal{F} satisfies (*D'*), let $x \in X, \mathcal{F}' \subset \mathcal{F}$ and $n \in \mathbb{N}$. Then there exists $A \subset X$ such that $\mathcal{F}' = \{f_a : a \in A\}$. Suppose that $\mathcal{F}'(x) \subset [\frac{1}{n}, 1]$. Then $f_a(x) \ge \frac{1}{n}$ for each $a \in A$. It follows that $a \notin g(n, x)$ for each $a \in A$. Let V = g(n, x). Then for each $y \in V, g(n, y) \subset g(n, x)$ from which it follows that $a \notin g(n, y)$ for each $a \in A$. Thus $f_a(y) \ge \frac{1}{n}$ for each $a \in A$. This implies that $\mathcal{F}'(V) \subset [\frac{1}{n}, 1]$.

Conversely, define a *g*-function *g* for *X* as that in the proof of Theorem 4.4.

Let $x, a \in X$ and $x \neq a$. By (*wB*), there exists $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x) \ge \frac{1}{m}$ and f(a) = 0. Then $f \in \mathcal{G}_{mx}$ and thus $g(m, x) \subset h(m, x) \subset f^{-1}([\frac{1}{m}, 1])$. It follows that $a \notin g(m, x)$.

With a similar argument to that in the proof of Theorem 4.4, we can show that if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$. Consequently, *X* is an α -space. \Box

Acknowledgements

The authors would like to thank the referee for the valuable comments and suggestions.

References

- [1] C.J.R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966) 1–16.
- [2] R. Engelking, General Topology, Revised and Completed Edition, Heldermann Verlag, Berlin, 1989.
- [3] C. Good, L. Haynes, Monotone versions of countable paracompactness, Topol. Appl. 154 (2007) 734–740.
- [4] R.E. Hodel, Spaces defined by sequence of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972) 253–263.
- [5] Y. Jin, L. Xie, H. Yue, Monotone insertion of semi-continuous functions on stratifiable spaces, Filomat 31 (2017) 575–584.
- [6] E. Lane, P. Nyikos, C. Pan, Continuous function characterizations of stratifiable spaces, Acta Math. Hungar. 92 (2001) 219–231.
- [7] K. B. Lee, Spaces in which compact aare uniformly regular G_{δ} , Pacific J. Math. 81 (1979) 435–446.
- [8] K. Li, S. Lin, R. Shen, Insertions of k-semi-stratifiable spaces by semi-continuous functions, Stud. Sci. Math. Hung. 48 (2011) 320–330.
- [9] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970) 265–272.

- [10] H. Martin, Metrizability of M-spaces, Canad. J. Math. 4 (1973) 840–841.
 [11] H. W. Martin, Local connectedness in developable spaces, Pacific J. Math. 61 (1975) 219–224.
- [12] H.W. Martin II, Metrization and submetrization of topological spaces, Ph D thesis, University of Pittsburgh, 1973.
- [13] S.A. Naimpally, C.M. Pareek, Characterizations of metric and generalized metric spaces by real valued functions, Q & A in General Topology, 8 (1990) 51-59.
- [14] W.A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931) 361-373.
- [15] P. Yan, E. Yang, Semi-stratifiable spaces and the insertion of semi-continuous functions, J. Math. Anal. Appl. 38 (2007) 429–437.
- [16] E. Yang, Properties defined with semi-continuous functions and some related spaces, Houston J. Math. 41 (2015) 1097–1106.
- [17] E. Yang, Real-valued functions and some related spaces, Top. Appl. 238 (2018) 76-89.