Function Characterizations of Some Spaces in Which Compacta are G_{δ}

Er-Guang Yang ${ }^{\text {a }}$, Cong-Cong Wu ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics \& Physics, Anhui University of Technology, Maanshan 243002, P.R. China

Abstract

We use real-valued functions to give characterizations of some topological spaces in which compact subsets are (regular) G_{δ}, such as c-stratifiable spaces, $k c$-semi-stratifiable spaces. Also, characterizations of some other spaces such as K-semimetrizable spaces, strongly first countable spaces are obtained.

1. Introduction

Throughout, a space always means a Hausdorff topological space. For a space X, we denote by C_{X} the family of all compact subsets of $X . \tau$ and τ^{c} denote the topology of X and the family of all closed subsets of X respectively. For a subset A of a space X, we write $\bar{A}(\operatorname{int}(A))$ for the closure (interior) of A in X. Also, we use χ_{A} to denote the characteristic function of A. The set of all positive integers is denoted by \mathbb{N}.

A real-valued function f on a space X is called lower (upper)semi-continuous [2] if for any real number r, the set $\{x \in X: f(x)>r\}(\{x \in X: f(x)<r\})$ is open. f is called k-lower semi-continuous [15] if for each $K \in C_{X}, f$ has a minimum value on K. We write $L(X)(U(X), K L(X))$ for the set of all lower (upper, k-lower) semi-continuous functions from X into the unit interval $[0,1] . U K L(X)=U(X) \cap K L(X) . C(X)$ is the set of all continuous functions from X into $[0,1] . F(X)$ is the set of all functions from X into $[0,1]$.

It is known that many classes of spaces such as stratifiable spaces [5, 6], k-semi-stratifiable space [8, 15], countably paracompact spaces [9,16], monotonically countably paracompact spaces [3] can be characterized with real-valued functions that satisfy certain conditions. In [13], to give characterizations of some generalized metric spaces, the following conditions were introduced.

Let $\mathcal{F} \subset F(X)$. For $x \in X$ and $A \subset X$, denote $\mathcal{F}(x)=\{f(x): f \in \mathcal{F}\}$ and $\mathcal{F}(A)=\cup\{f(A): f \in \mathcal{F}\}$. Consider the following conditions on \mathcal{F}.
(B) If $x \notin F \in \tau^{c}$, then there exists $f \in \mathcal{F}$ such that $f(x)>0$ and $f(F)=\{0\}$.
(D) For each $x \in X$ and $\mathcal{F}^{\prime} \subset \mathcal{F}$, if $\mathcal{F}^{\prime}(x) \subset(a, 1]$ for some $a>0$, then there exists an open neighborhood V of x such that $\mathcal{F}^{\prime}(V) \subset(0,1]$.
($E^{\prime \prime}$) For each $x \in X, \mathcal{F}^{\prime} \subset \mathcal{F}$ and $\varepsilon>0$, if $\mathcal{F}^{\prime}(x)=\{0\}$, then there exists an open neighborhood V of x such that $\mathcal{F}^{\prime}(V) \subset[0, \varepsilon)$.
(K) For each $K \in \mathcal{C}_{X}, F \in \tau^{c}$ with $K \cap F=\emptyset$, there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(K) \subset\left(\frac{1}{m}, 1\right]$ and $f(F)=\{0\}$.

[^0](S) If $x \notin F \in \tau^{c}$, then there exist $f \in \mathcal{F}$, an open neighborhood V of x and $m \in \mathbb{N}$ such that $f(V) \subset\left(\frac{1}{m}, 1\right]$ and $f(F)=\{0\}$.

With these conditions, Naimpally and Pareek [13] presented characterizations of a broad class of generalized metric spaces such as first countable spaces, semi-stratifiable spaces, semi-metrizable spaces, developable spaces, stratifiable spaces and γ-spaces. For example, a space X is first countable if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying (B) and (D). X is stratifiable if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying (S) and $\left(E^{\prime \prime}\right)$.

In [17], the first author of the present paper introduced another several conditions imposed on realvalued functions. For example.

Let $A, B \subset X$ and f_{A} a real-valued function on X related to A.
$\left(e_{A}\right) A=f_{A}^{-1}(0)$.
$\left(m_{A}\right)$ If $A_{1} \subset A_{2}$, then $f_{A_{1}} \geq f_{A_{2}}$.
$\left(i_{A B}\right)$ If $A \cap B=\emptyset$, then $\inf \left\{f_{A}(x): x \in B\right\}>0$.
$\left(i_{A B}^{\prime}\right)$ If $A \cap B=\emptyset$, then there exists an open neighborhood V of B such that $\inf \left\{f_{A}(x): x \in V\right\}>0$.
With these conditions, characterizations of some generalized metric spaces were also obtained. For example, a space X is first countable if and only if for each $x \in X$, there exists $f_{x} \in U(X)$ satisfying $\left(e_{\{x\}}\right)$ and ($i_{\{x \mid F}$) with $F \in \tau^{c}$. X is a Nagata space if and only if for each $F \in \tau^{c}$, there exists $f_{F} \in C(X)$ satisfying (e_{F}), $\left(m_{F}\right)$ and $\left(i_{\{x\} F}\right)$.

A g-function for a space X is a map $g: \mathbb{N} \times X \rightarrow \tau$ such that for every $x \in X$ and $n \in \mathbb{N}, x \in g(n, x)$ and $g(n+1, x) \subset g(n, x)$. For a subset A of X, denote $g(n, A)=\cup\{g(n, x): x \in A\}$.

Definition 1.1. A space X is called a c-stratifiable [7] (c-semi-stratifiable [10]) space if there is a g-function g for X such that for each $K \in C_{X}, \bigcap_{n \in \mathbb{N}} \overline{g(n, K)}=K\left(\bigcap_{n \in \mathbb{N}} g(n, K)=K\right)$.

Definition 1.2. ([12]) A space X is called $k c$-semi-stratifiable if there is a g-function for X such that if $K, H \in C_{X}$ and $K \cap H=\emptyset$, then $K \cap g(m, H)=\emptyset$ for some $m \in \mathbb{N}$.
c-stratifiable ($k c$-semi-stratifiable, c-semi-stratifiable) spaces are nature generalizations of stratifiable (k-semi-stratifiable, semi-stratifiable) spaces in which compact subsets are (regular) G_{δ}-sets. The main purpose of this paper is to give characterizations of these spaces with real-valued functions that satisfy some conditions listed above. Moreover, characterizations of some other spaces such as K-semimetrizable spaces, strongly first countable spaces are obtained.

2. The First Kind of Characterizations

In this section, we shall present characterizations of c-stratifiable spaces, $k c$-semi-stratifiable spaces with conditions $\left(e_{A}\right),\left(m_{A}\right)$ and $\left(i_{A B}\right)$ listed in section 1.

Theorem 2.1. For a space X, the following are equivalent.
(a) X is a c-stratifiable space.
(b) For each $K \in \mathcal{C}_{X}$, there exist $f_{K} \in L(X), h_{K} \in \operatorname{UKL}(X)$ with $f_{K} \leq h_{K}$ such that f_{K}, h_{K} satisfy $\left(e_{K}\right)$ and h_{K} satisfies $\left(m_{K}\right)$.
(c) For each $K \in C_{X}$, there exist $f_{K} \in L(X), h_{K} \in U(X)$ with $f_{K} \leq h_{K}$ such that f_{K}, h_{K} satisfy $\left(e_{K}\right)$ and h_{K} satisfies (m_{K}).

Proof. (a) $\Rightarrow(b)$ Let g be the g-function for a c-stratifiable space. For each $K \in \mathcal{C}_{X}$, let

$$
f_{K}=1-\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{\overline{g(n, K)}}, \quad h_{K}=1-\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{g(n, K)} .
$$

Then $f_{K} \in L(X), h_{K} \in U(X)$ and $f_{K} \leq h_{K}$. It is clear that if $K_{1} \subset K_{2}$, then $h_{K_{1}} \geq h_{K_{2}}$. One readily sees that for each $K \in C_{X}, f_{K}(x)=0$ if and only if $x \in K$ if and only if $h_{K}(x)=0$. That is, $f_{K}^{-1}(0)=K=h_{K}^{-1}(0)$.

To show that $h_{K} \in K L(X)$. Let $H \in C_{X}$.
Case 1. $H \cap K \neq \emptyset$. Choose $x_{0} \in K \cap \underline{H}$. Then $h_{K}\left(x_{0}\right)=0$ and thus $h_{K}(x) \geq h_{K}\left(x_{0}\right)$ for each $x \in H$.
Case 2. $H \cap K=\emptyset$. Then $H \cap \bigcap_{n \in \mathbb{N}} \overline{\overline{g(n, K)}}=\emptyset$. Since H is compact, it follows that $H \cap \overline{g(n, K)}=\emptyset$ for some $n \in \mathbb{N}$. Let $m=\min \{n \in \mathbb{N}: H \cap g(n, K)=\emptyset\}$. If $m=1$, then $H \cap g(1, K)=\emptyset$ from which it follows that $h_{K}(x)=1$ for each $x \in H$. If $m>1$, then $H \cap g(m-1, K) \neq \emptyset$ and $H \cap g(n, K)=\emptyset$ for each $n \geq m$. Choose $x_{0} \in H \cap g(m-1, K)$. Then $h_{K}\left(x_{0}\right)=\frac{1}{2^{m-1}}$. Let $x \in H$ and $k_{x}=\min \{n \in \mathbb{N}: x \notin g(n, K)\}$. Then $k_{x} \leq m$. Thus

$$
h_{K}(x)=1-\sum_{n=1}^{k_{x}-1} \frac{1}{2^{n}}=\frac{1}{2^{k_{x}-1}} \geq \frac{1}{2^{m-1}}=h_{K}\left(x_{0}\right) .
$$

$(b) \Rightarrow(c)$ is clear.
(c) \Rightarrow (a) For each $x \in X$ and $n \in \mathbb{N}$, let $g(n, x)=\left\{y \in X: h_{\{x\}}(y)<\frac{1}{n}\right\}$. Since $h_{\{x\}} \in U(X)$ and $h_{\{x\}}(x)=0$, it follows that $g(n, x)$ is open and $x \in g(n, x)$. It is clear that $g(n+1, x) \subset g(n, x)$. Thus g is a g-function for X. For each $K \in C_{X}$ and $n \in \mathbb{N}$, let $F(n, K)=\left\{y \in X: f_{K}(y) \leq \frac{1}{n}\right\}$. For each $x \in K$ and $y \in g(n, x)$, $f_{K}(y) \leq h_{K}(y) \leq h_{\{x\}}(y)<\frac{1}{n}$ which implies that $g(n, x) \subset F(n, K)$ and thus $g(n, K) \subset F(n, K)$. Since $F(n, K)$ is closed, we have that $\overline{g(n, K)} \subset F(n, K)$.

Let $K \in \mathcal{C}_{X}$. If $x \in \bigcap_{n \in \mathbb{N}} \overline{g(n, K)}$, then $x \in \overline{g(n, K)} \subset F(n, K)$ and thus $f_{K}(x) \leq \frac{1}{n}$ for each $n \in \mathbb{N}$. It follows that $f_{K}(x)=0$. Hence, $x \in K$. This implies that $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} \subset K$. Since it is clear that $K \subset \bigcap_{n \in \mathbb{N}} \overline{g(n, K)}$, we have that $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)}=K$. By Definition 1.1, X is a c-stratifiable space.

Theorem 2.2. For a space X, the following are equivalent.
(a) X is a c-stratifiable space.
(b) For each $K \in C_{X}$, there exists $f_{K} \in U(X)$ satisfying $\left(e_{K}\right),\left(m_{K}\right)$ and $\left(i_{K H}^{\prime}\right)$ with $H \in C_{X}$.
(c) For each $K \in C_{X}$, there exists $f_{K} \in U(X)$ satisfying $\left(e_{K}\right)$, $\left(m_{K}\right)$ and $\left(i_{K\{x\rangle}^{\prime}\right)$.

Proof. (a) $\Rightarrow(b)$ Let g be the g-function for a c-stratifiable space. For each $K \in C_{X}$, let

$$
f_{K}=1-\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{g(n, K)} .
$$

Then $f_{K} \in U(X)$ satisfies $\left(e_{K}\right)$ and $\left(m_{K}\right)$.
Let $K, H \in C_{X}$ and $K \cap H=\emptyset$, then $H \cap \overline{g(m, K)}=\emptyset$ for some $m \in \mathbb{N}$. Let $V=X \backslash \overline{g(m, K)}$. Then V is an open neighborhood of H. For each $x \in V, x \notin \overline{g(n, K)} \supset g(n, K)$ for all $n \geq m$. Thus

$$
f_{K}(x)=1-\sum_{n=1}^{m-1} \frac{1}{2^{n}} \chi_{g(n, k)}(x) \geq 1-\sum_{n=1}^{m-1} \frac{1}{2^{n}}=\frac{1}{2^{m-1}} .
$$

This implies that $\inf \left\{f_{K}(x): x \in V\right\}>0$.
(b) \Rightarrow (c) is clear.
(c) \Rightarrow (a) For each $x \in X$ and $n \in \mathbb{N}$, let $g(n, x)=\left\{y \in X: f_{\{x\}}(y)<\frac{1}{n}\right\}$. Then g is a g-function for X. Let $K \in C_{X}$. If $x \notin K$, then by $\left(i_{K\{x\}}^{\prime}\right)$, there exist an open neighborhood V of x and $m \in \mathbb{N}$ such that $f_{K}(y)>\frac{1}{m}$ for each $y \in V$. This implies that $x \notin\left\{y \in X: f_{K}(y)<\frac{1}{m}\right\}$. For each $z \in K$, we have that $g(m, z)=\left\{y \in X: f_{\{z\}}(y)<\frac{1}{m}\right\} \subset\left\{y \in X: f_{K}(y)<\frac{1}{m}\right\}$. Thus $g(m, K) \subset\left\{y \in X: f_{K}(y)<\frac{1}{m}\right\}$ and so $x \notin \overline{g(m, K)}$. This implies that $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} \subset K$ and thus $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)}=K$. Therefore, X is a c-stratifiable space.

Theorem 2.3. For a space X, the following are equivalent.
(a) X is a kc-semi-stratifiable space.
(b) For each $K \in C_{X}$, there exists $f_{K} \in U K L(X)$ satisfying $\left(e_{K}\right)$ and (m_{K}).
(c) for each $K \in \mathcal{C}_{X}$, there exists $f_{K} \in U(X)$ satisfying $\left(e_{K}\right)$, $\left(m_{K}\right)$ and ($i_{K H}$) with $H \in C_{X}$.

Proof. (a) \Rightarrow (b) Let g be the g-function for a $k c$-semi-stratifiable space. For each $K \in C_{X}$, let

$$
f_{K}=1-\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{g(n, K)} .
$$

Then $f_{K} \in U(X)$ satisfies $\left(m_{K}\right)$. It is clear that $K \subset f_{K}^{-1}(0)$. If $x \notin K$, then $\{x\} \cap g(n, K)=\emptyset$ for some $n \in \mathbb{N}$. It follows that $f_{K}(x)>0$ and thus $f_{K}^{-1}(0) \subset K$. Consequently, $K=f_{K}^{-1}(0)$.

With a similar argument to that in the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ of Theorem 2.1, we can show that $f_{K} \in K L(X)$.
$(b) \Rightarrow$ (c) Assume (b). It suffices to show that f_{K} satisfies $\left(i_{K H}\right)$. Let $H \in \mathcal{C}_{X}$ and $K \cap H=\emptyset$. Since $f_{K} \in K L(X)$, there exists $x_{0} \in H$ such that $f_{K}(x) \geq f_{K}\left(x_{0}\right)$ for each $x \in H$. It follows that $\inf \left\{f_{K}(x): x \in H\right\} \geq f_{K}\left(x_{0}\right)>0$.
(c) \Rightarrow (a) For each $x \in X$ and $n \in \mathbb{N}$, let $g(n, x)=\left\{y \in X: f_{\{x\}}(y)<\frac{1}{n}\right\}$. Then g is a g-function for X. Let $K, H \in C_{X}$ and $K \cap H=\emptyset$. By $\left(i_{K H}\right)$, there exists $m \in \mathbb{N}$ such that $f_{K}(x)>\frac{1}{m}$ for each $x \in H$. Then for each $y \in K$ and $x \in H, f_{\{y\}}(x) \geq f_{K}(x)>\frac{1}{m}$ from which it follows that $x \notin g(m, y)$. Thus $H \cap g(m, K)=\emptyset$. By Definition 1.2, X is a $k c$-semi-stratifiable space.

Analogous to Theorem 2.3, we have the following result for c-semi-stratifiable spaces.
Proposition 2.4. A space X is c-semi-stratifiable if and only if for each $K \in C_{X}$, there exists $f_{K} \in U(X)$ satisfying $\left(e_{K}\right)$ and $\left(m_{K}\right)$.

3. Another Kind of Characterizations

In this section, we introduce the following conditions $\left(B_{K}\right),\left(K^{\prime}\right)$ and $\left(S_{K}\right)$ as generalizations of conditions $(B),(K)$ and (S) listed in section 1 with which we present another several characterizations of c-stratifiable spaces, $k c$-semi-stratifiable spaces.

Let $\mathcal{F} \subset F(X)$. Consider the following conditions on \mathcal{F}.
$\left(B_{K}\right)$ If $x \notin K \in \mathcal{C}_{X}$, then there exists $f \in \mathcal{F}$ such that $f(x)>0$ and $f(K)=\{0\}$.
$\left(K^{\prime}\right)$ For each pair $H, K \in C_{X}$ with $H \cap K=\emptyset$, there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(H) \subset\left(\frac{1}{m}, 1\right]$ and $f(K)=\{0\}$.
$\left(S_{K}\right)$ If $x \notin K \in \mathcal{C}_{X}$, then there exist $f \in \mathcal{F}$, an open neighborhood V of x and $m \in \mathbb{N}$ such that $f(V) \subset\left(\frac{1}{m}, 1\right]$ and $f(K)=\{0\}$.

Remark 3.1. By their definitions, it is clear that $\left(K^{\prime}\right)$ implies $\left(B_{K}\right)$. We can also show that $\left(S_{K}\right)$ implies $\left(K^{\prime}\right)$. Assume $\left(S_{K}\right)$. Let $H, K \in C_{X}$ be such that $H \cap K=\emptyset$. Then $x \notin K$ for each $x \in H$. By $\left(S_{K}\right)$, there exist $f_{x} \in \mathcal{F}$, an open neighborhood V_{x} of x and $m_{x} \in \mathbb{N}$ such that $f_{x}(K)=\{0\}, f_{x}\left(V_{x}\right) \subset\left(\frac{1}{m_{x}}, 1\right]$. Since $H \in C_{X}$ and $H \subset \cup\left\{V_{x}: x \in H\right\}$, there exists a finite subset A of H such that $H \subset \cup\left\{V_{x}: x \in A\right\}$. Let $f=\max \left\{f_{x}: x \in A\right\}$ and $m=\max \left\{m_{x}: x \in A\right\}$. For each $x \in A$ and $y \in K, f_{x}(y)=0$ from which it follows that $f(y)=0$ and so $f(K)=\{0\}$. For each $y \in H$, there is $x \in A$ such that $y \in V_{x}$. Hence, $f(y) \geq f_{x}(y)>\frac{1}{m_{x}} \geq \frac{1}{m}$. This implies that $f(H) \subset\left(\frac{1}{m}, 1\right]$.

Theorem 3.2. For a space X, the following are equivalent.
(a) X is c-stratifiable.
(b) There exists a family $\mathcal{F} \subset L(X)$ satisfying $\left(B_{K}\right)$ and $\left(E^{\prime \prime}\right)$.
(c) There exists a family $\mathcal{F} \subset F(X)$ satisfying $\left(S_{K}\right)$ and $\left(E^{\prime \prime}\right)$.

Proof. (a) \Rightarrow (b) Let g be the g-function for a c-stratifiable space. For each $x \in X$ and $K \in C_{X}$, if $x \notin K$, then there exists $m \in \mathbb{N}$ such that $x \notin \overline{g(m, K)}$. Set $n_{x}(K)=\min \{n \in \mathbb{N}: x \notin \overline{g(n, K)}\}$. For each $K \in C_{X}$, define a function $f_{K} \in F(X)$ by letting $f_{K}(x)=0$ whenever $x \in K$ and $f_{K}(x)=\frac{1}{n_{x}(K)}$ whenever $x \notin K$. It is clear that $K=f_{K}^{-1}(0)$.

Claim 1. For each $n \in \mathbb{N}, x \notin \overline{g(n, K)}$ if and only if $f_{K}(x) \geq \frac{1}{n}$.

Proof of Claim 1. If $x \notin \overline{g(n, K)}$, then $n_{x}(K) \leq n$ from which it follows that $f_{K}(x)=\frac{1}{n_{x}(K)} \geq \frac{1}{n}$. Conversely, if $f_{K}(x) \geq \frac{1}{n}$, then $f_{K}(x)=\frac{1}{n_{x}(K)}$ from which it follows that $n_{x}(K) \leq n$. Thus $x \notin \overline{g\left(n_{x}(K), K\right)} \supset \overline{g(n, K)}$.

Claim 2. For each $K \in C_{X}, f_{K} \in L(X)$.
Proof of Claim 2. Let $a \in[0,1)$ and $f_{K}(x)>a$. Then $x \notin K$. Set $O_{x}=X \backslash \overline{g\left(n_{x}(K), K\right)}$. Then O_{x} is an open neighborhood of x. For each $y \in O_{x}, y \notin \overline{g\left(n_{x}(K), K\right)}$ from which it follows that $n_{y}(K) \leq n_{x}(K)$. Thus $f_{K}(y)=\frac{1}{n_{y}(K)} \geq \frac{1}{n_{x}(K)}=f_{K}(x)>a$. This implies that $f_{K} \in L(X)$.

Now, let $\mathcal{F}=\left\{f_{K}: K \in \mathcal{C}_{X}\right\}$. It is clear that \mathcal{F} satisfies $\left(B_{K}\right)$. To show that \mathcal{F} satisfies $\left(E^{\prime \prime}\right)$, let $x \in X$, $\mathcal{F}^{\prime} \subset \mathcal{F}$ and $\varepsilon>0$. Then there exist $\mathcal{A} \subset C_{X}$ and $m \in \mathbb{N}$ such that $\mathcal{F}^{\prime}=\left\{f_{K}: K \in \mathcal{A}\right\}$ and $\frac{1}{m}<\varepsilon$. Suppose that $\mathcal{F}^{\prime}(x)=\{0\}$. Then $f_{K}(x)=0$ for each $K \in \mathcal{A}$ from which it follows that $x \in \cap \mathcal{A}$. Let $V=g(m, \cap \mathcal{A})$. Then V is an open neighborhood of x. For each $y \in V$ and each $K \in \mathcal{A}, y \in \overline{g(m, K)}$ and thus $f_{K}(y)<\frac{1}{m}$ by Claim 1. It follows that $f_{K}(V) \subset[0, \varepsilon)$ for each $K \in \mathcal{A}$ and thus $\mathcal{F}^{\prime}(V) \subset[0, \varepsilon)$.
(b) \Rightarrow (c) Let \mathcal{F} be the family in (b). Then we only need to show that \mathcal{F} satisfies $\left(S_{K}\right)$. Let $x \notin K \in \mathcal{C}_{X}$. By $\left(B_{K}\right)$, there exists $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(K)=\{0\}, f(x)>\frac{1}{m}$. Set $V=\left\{y \in X: f(y)>\frac{1}{m}\right\}$. Since $f \in L(X)$, V is an open neighborhood of x. It is clear that $f(V) \subset\left(\frac{1}{m}, 1\right]$.
(c) \Rightarrow (a) Assume (c). For each $x \in X$, let $\mathcal{F}_{x}=\{f \in \mathcal{F}: f(x)=0\}$. By $\left(S_{K}\right), \mathcal{F}_{x} \neq \emptyset$. For each $n \in \mathbb{N}$ and $x \in X$, let $g(n, x)=\operatorname{int}\left(\cap\left\{f^{-1}\left(\left[0, \frac{1}{n}\right)\right): f \in \mathcal{F}_{x}\right\}\right)$. Since $\mathcal{F}_{x}(x)=\{0\}$, it follows from $\left(E^{\prime \prime}\right)$ that $x \in g(n, x)$. It is clear that $g(n+1, x) \subset g(n, x)$. Thus g is a g-function for X.

Let $K \in C_{X}$ and $x \notin K$. By $\left(S_{K}\right)$, there exist $f \in \mathcal{F}$, an open neighborhood V of x and $m \in \mathbb{N}$ such that $f(K)=\{0\}, f(V) \subset\left(\frac{1}{m}, 1\right]$. For each $y \in K, f(y)=0$ which implies that $f \in \mathcal{F}_{y}$. By the definition of $g(m, y)$, we have that $g(m, y) \subset f^{-1}\left(\left[0, \frac{1}{m}\right)\right)$. Thus $V \cap g(m, K)=\emptyset$ from which it follows that $x \notin \overline{g(m, K)}$. Consequently, $\bigcap_{n \in \mathbb{N}} \overline{g(n, K)} \subset K$. By Definition 1.1, X is a c-stratifiable space.

Theorem 3.3. For a space X, the following are equivalent.
(a) X is kc-semi-stratifiable.
(b) There exists a family $\mathcal{F} \subset U(X)$ satisfying $\left(K^{\prime}\right)$ and $\left(E^{\prime \prime}\right)$.
(c) There exists a family $\mathcal{F} \subset F(X)$ satisfying $\left(K^{\prime}\right)$ and $\left(E^{\prime \prime}\right)$.

Proof. (a) $\Rightarrow(\mathrm{b})$ Let g be the g-function for a $k c$-semi-stratifiable space. For each $x \in X$ and $K \in \mathcal{C}_{X}$, if $x \notin K$, then there exists $m \in \mathbb{N}$ such that $x \notin g(m, K)$. Set $n_{x}(K)=\min \{n \in \mathbb{N}: x \notin g(n, K)\}$. For each $K \in C_{X}$, define a function $f_{K} \in F(X)$ by letting $f_{K}(x)=0$ whenever $x \in K$ and $f_{K}(x)=\frac{1}{n_{x}(K)}$ whenever $x \notin K$. Then $K=f_{K}^{-1}(0)$.

Claim 1. For each $n \in \mathbb{N}, x \notin g(n, K)$ if and only if $f_{K}(x) \geq \frac{1}{n}$.
Proof of Claim 1. Analogous to the proof of Claim 1 in the proof of $(a) \Rightarrow(b)$ of Theorem 3.2.
Claim 2. For each $K \in C_{X}, f_{K} \in U(X)$.
Proof of Claim 2. Let $a>0$ and $f_{K}(x)<a$.
Case 1. $x \in K$. Then $f_{K}(x)=0$ and thus there is $m \in \mathbb{N}$ such that $\frac{1}{m}<a$. Let $V=g(m, K)$. Then V is an open neighborhood of x and $f_{K}(y)<\frac{1}{m}<a$ for each $y \in V$.

Case 2. $x \notin K$. Then $f_{K}(x)=\frac{1}{n_{x}(K)}<a$. Case 2.1. $n_{x}(K)=1$. Let $V=X$. Then $f_{K}(y) \leq 1<a$ for each $y \in V$. Case 2.2. $n_{x}(K)>1$. Let $V=g\left(n_{x}(K)-1, K\right)$. Then V is an open neighborhood of x. For each $y \in V$, if $y \in K$, then $f_{K}(y)=0<a$. If $y \notin K$, then $n_{x}(K)-1<n_{y}(K)$ and thus $n_{x}(K) \leq n_{y}(K)$. It follows that $f_{K}(y)=\frac{1}{n_{y}(K)} \leq \frac{1}{n_{x}(K)}<a$.

By the above argument, we see that $f_{K} \in U(X)$ for each $K \in C_{X}$.
Now, let $\mathcal{F}=\left\{f_{K}: K \in C_{X}\right\}$. With a similar argument to the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ of Theorem 3.2, we can show that \mathcal{F} satisfies $\left(E^{\prime \prime}\right)$. To show that \mathcal{F} satisfies $\left(K^{\prime}\right)$, let $H, K \in C_{X}$ with $H \cap K=\emptyset$. Then $f_{K}(K)=\{0\}$. By definition 1.2, $H \cap g(m, K)=\emptyset$ for some $m \in \mathbb{N}$. For each $x \in H, x \notin g(m, K)$ from which it follows that $f_{K}(x) \geq \frac{1}{m}$. This implies that $f_{K}(H) \subset\left(\frac{1}{m+1}, 1\right]$.
(b) \Rightarrow (c) is clear.
(c) \Rightarrow (a) Assume (c). Define a g-function g for X as that in the proof of $(c) \Rightarrow$ (a) of Theorem 3.2. Let $H, K \in C_{X}$ with $H \cap K=\emptyset$. By (K^{\prime}), there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(H) \subset\left(\frac{1}{m}, 1\right]$ and $f(K)=\{0\}$. For each $x \in K, f(x)=0$ which implies that $f \in \mathcal{F}_{x}$. By the definition of $g(m, x)$, we have that
$g(m, x) \subset f^{-1}\left(\left[0, \frac{1}{m}\right)\right)$. Thus $g(m, K) \subset f^{-1}\left(\left[0, \frac{1}{m}\right)\right)$ from which it follows that $H \cap g(m, K)=\emptyset$. By Definition $1.2, X$ is a $k c$-semi-stratifiable space.

The proof of the following result for c-semi-stratifiable spaces is similar to the proof of Theorem 3.3.
Proposition 3.4. For a space X, the following are equivalent.
(a) X is c-semi-stratifiable.
(b) There exists a family $\mathcal{F} \subset U(X)$ satisfying $\left(B_{K}\right)$ and $\left(E^{\prime \prime}\right)$.
(c) There exists a family $\mathcal{F} \subset F(X)$ satisfying $\left(B_{K}\right)$ and $\left(E^{\prime \prime}\right)$.

4. Some Other Spaces

In this section, we introduce another several conditions such as $\left(D^{\prime}\right)$ and $(w B)$ so as to obtain characterizations of some generalized metric spaces other than those in [13]. First, we give a characterization of stratifiable spaces which improves a corresponding result for stratifiable spaces in [13].

Lemma 4.1. ([1]) A space X is stratifiable if and only if for each $F \in \tau^{c}$, there exists $f_{F} \in C(X)$ satisfying (e_{F}) and (m_{F}).

Theorem 4.2. For a space X, the following are equivalent.
(a) X is stratifiable.
(b) There exists a family $\mathcal{F} \subset C(X)$ satisfying (S) and ($E^{\prime \prime}$).
(c) There exists a family $\mathcal{F} \subset C(X)$ satisfying (K) and ($\left.E^{\prime \prime}\right)$.
(d) There exists a family $\mathcal{F} \subset L(X)$ satisfying (B) and $\left(E^{\prime \prime}\right)$.

Proof. (a) \Rightarrow (b) Since X is stratifiable, by Lemma 4.1, for each $F \in \tau^{c}$, there exists $f_{F} \in C(X)$ satisfying (e_{F}) and $\left(m_{F}\right)$. Let $\mathcal{F}=\left\{f_{F}: F \in \tau^{c}\right\}$. To show that \mathcal{F} satisfies (S), let $x \notin F \in \tau^{c}$. By $\left(e_{F}\right), f_{F}(F)=\{0\}$ and $f_{F}(x)>0$. Then there exists $m \in \mathbb{N}$ such that $f_{F}(x)>\frac{1}{m}$. Let $V=\left\{y \in X: f_{F}(y)>\frac{1}{m}\right\}$. Then V is an open neighborhood of x and it is clear that $f_{F}(V) \subset\left(\frac{1}{m}, 1\right]$.

To show that \mathcal{F} satisfies $\left(E^{\prime \prime}\right)$, let $x \in X, \mathcal{F}^{\prime} \subset \mathcal{F}$ and $\varepsilon>0$. Then there exist $\mathcal{A} \subset \tau^{c}$ and $m \in \mathbb{N}$ such that $\mathcal{F}^{\prime}=\left\{f_{F}: F \in \mathcal{A}\right\}$ and $\frac{1}{m}<\varepsilon$. Suppose that $\mathcal{F}^{\prime}(x)=\{0\}$. Then $f_{F}(x)=0$ for each $F \in \mathcal{A}$ from which it follows that $x \in \cap \mathcal{A} \in \tau^{c}$. Let $V=\left\{y \in X: f_{\cap \mathcal{A}}(y)<\frac{1}{m}\right\}$. Then V is an open neighborhood of x. By $\left(m_{F}\right)$, for each $y \in V$ and each $F \in \mathcal{A}, f_{F}(y) \leq f_{\cap \mathcal{A}}(y)<\frac{1}{m}$. This implies that $f_{F}(V) \subset\left[0, \frac{1}{m}\right) \subset[0, \varepsilon)$ for each $F \in \mathcal{A}$ and thus $\mathcal{F}^{\prime}(V) \subset[0, \varepsilon)$.
(b) \Rightarrow (c) We only need to show that (S) implies (K). This can be done with a similar argument to that in Remark 3.1.
$(c) \Rightarrow(d)$ is clear.
(d) \Rightarrow (a) For each $x \in X$, let $\mathcal{F}_{x}=\{f \in \mathcal{F}: f(x)=0\}$. By $(B), \mathcal{F}_{x} \neq \emptyset$. For each $n \in \mathbb{N}$ and $x \in X$, let $g(n, x)=\operatorname{int}\left(\cap\left\{f^{-1}\left(\left[0, \frac{1}{n}\right)\right): f \in \mathcal{F}_{x}\right\}\right)$. Then g is a g-function for X.

Let $F \in \tau^{c}$ and $x \notin F$. By (B), there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x)>\frac{1}{m}$ and $f(F)=\{0\}$. Set $V=\left\{y \in X: f(y)>\frac{1}{m}\right\}$. Since $f \in L(X), V$ is an open neighborhood of x. For each $y \in V, f(y)=0$ which implies that $f \in \mathcal{F}_{y}$. By the definition of $g(m, y)$, we have that $g(m, y) \subset f^{-1}\left(\left[0, \frac{1}{m}\right)\right)$. Thus $V \cap g(m, F)=\emptyset$ from which it follows that $x \notin \overline{g(m, F)}$. Consequently, $\bigcap_{n \in \mathbb{N}} \overline{g(n, F)} \subset F$. Therefore, X is a stratifiable space.

A function $d: X \times X \rightarrow[0, \infty)$ is called a symmetric on X if $(1) d(x, y)=0$ if and only if $x=y ;(2)$ $d(x, y)=d(y, x)$ for all $x, y \in X$. A space X is called semi-metrizable [14] if there is a symmetric on X such that for each $x \in X,\{B(x, r): r>0\}$ is a neighborhood base of x, where $B(x, r)=\{y \in X: d(x, y)<r\}$. X is called K-semimetrizable [11] if there is a semi-metric d on X such that $d(H, K)>0$ for every disjoint pair H, K of nonempty compact subsets of X. It was shown that [13] X is semi-metrizable space if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying $(B),(D)$ and $\left(E^{\prime \prime}\right)$. As for K-semimetrizable spaces, we have the following.

Theorem 4.3. A space X is K-semimetrizable if and only if there exists a family $\mathcal{F} \subset F(X)$ satisfying $(B),(D),\left(E^{\prime \prime}\right)$ and $\left(K^{\prime}\right)$.

Proof. Let d be a K-semimetric on X which is bounded by 1 . For each $F \in \tau^{c}$, define a function $f_{F} \in F(X)$ by letting $f_{F}(x)=d(x, F)$ for each $x \in X$. It is clear that $F=f_{F}^{-1}(0)$. Let $\mathcal{F}=\left\{f_{F}: F \in \tau^{c}\right\}$. Then $\mathcal{F} \subset F(X)$ satisfies (B).

Let $x \in X, \mathcal{F}^{\prime} \subset \mathcal{F}$ and suppose that $\mathcal{F}^{\prime}(x) \subset(a, 1]$ for some $a>0$. Then there exist $\mathcal{A} \subset \tau^{c}$ and $n \in \mathbb{N}$ such that $\mathcal{F}^{\prime}=\left\{f_{F}: F \in \mathcal{A}\right\}$ and $\frac{1}{n}<a$. Thus $f_{F}(x)>\frac{1}{n}$ for each $F \in \mathcal{A}$. Let $V=\operatorname{int}\left(B\left(x, \frac{1}{n}\right)\right)$. Then V is an open neighborhood of x. For each $y \in V$ and $F \in \mathcal{A}, d(x, y)<\frac{1}{n}$ from which it follows that $y \notin F$ (If $y \in F$, then $f_{F}(x)=d(x, F) \leq d(x, y)<\frac{1}{n}$, a contradiction) and so $f_{F}(y)>0$. This implies that $\mathcal{F}^{\prime}(V) \subset(0,1]$. Hence, \mathcal{F} satisfies (D).

Let $x \in X, \mathcal{F}^{\prime} \subset \mathcal{F}$ and $\varepsilon>0$. Then there exist $\mathcal{A} \subset \tau^{c}$ and $m \in \mathbb{N}$ such that $\mathcal{F}^{\prime}=\left\{f_{F}: F \in \mathcal{A}\right\}$ and $\frac{1}{m}<\varepsilon$. Suppose that $\mathcal{F}^{\prime}(x)=\{0\}$. Then $x \in F$ for each $F \in \mathcal{A}$. Let $V=\operatorname{int}\left(B\left(x, \frac{1}{m}\right)\right)$. Then V is an open neighborhood of x. For each $y \in V$ and each $F \in \mathcal{A}, f_{F}(y)=d(y, F) \leq d(x, y)<\frac{1}{m}$. This implies that $f_{F}(V) \subset\left[0, \frac{1}{m}\right) \subset[0, \varepsilon)$ for each $F \in \mathcal{A}$ and thus $\mathcal{F}^{\prime}(V) \subset[0, \varepsilon)$. Hence, \mathcal{F} satisfies $\left(E^{\prime \prime}\right)$.

Now, let $K, H \in C_{X}$ and $K \cap H=\emptyset$. Then $d(K, H)>0$ from which it follows that there exists $m \in \mathbb{N}$ such that $d(x, y)>\frac{1}{m}$ for each $x \in K$ and $y \in H$. Thus $f_{K}(y)=d(y, K) \geq \frac{1}{m}$ for each $y \in H$ which implies that $f_{K}(H) \subset\left(\frac{1}{m+1}, 1\right]$. Clearly, $f_{K}(K)=\left\{f_{K}(x): x \in K\right\}=\{0\}$. This shows that \mathcal{F} satisfies $\left(K^{\prime}\right)$.

Conversely, for each $x \in X$, let $\mathcal{F}_{x}=\{f \in \mathcal{F}: f(x)=0\}$. For each $n \in \mathbb{N}$ and $x \in X$, let $h(n, x)=$ $\operatorname{int}\left(\cap\left\{f^{-1}\left(\left[0, \frac{1}{n}\right)\right): f \in \mathcal{F}_{x}\right\}\right)$. By $\left(E^{\prime \prime}\right), h$ is a g-function for X. For each $n \in \mathbb{N}$ and $x \in X$, let $\mathcal{G}_{n x}=\{f \in \mathcal{F}:$ $\left.f(x) \geq \frac{1}{n}\right\}$. Then let $e(n, x)=X$ whenever $\mathcal{G}_{n x}=\emptyset$ and $e(n, x)=\operatorname{int}\left(\cap\left\{f^{-1}((0,1]): f \in \mathcal{G}_{n x}\right\}\right)$ otherwise. Then $x \in e(n, x)$ by (D). Let $g(n, x)=h(n, x) \cap \cap_{i \leq n} e(i, x)$. Then g is a g-function for X.

By (B), for each $x, y \in X$ with $x \neq y$, there is $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x)>\frac{1}{m}$ and $f(y)=0$. Then $e(m, x) \subset f^{-1}((0,1])$ and thus $y \notin e(m, x) \supset g(m, x)$. Also, $h(m, y) \subset f^{-1}\left(\left[0, \frac{1}{m}\right)\right)$ and thus $x \notin h(m, y) \supset g(m, y)$. Let $m(x, y)=\min \{n \in \mathbb{N}: y \notin g(n, x)$ and $x \notin g(n, y)\}$. Define a function $d: X \times X \rightarrow[0, \infty)$ by letting $d(x, y)=0$ whenever $x=y$ and $d(x, y)=\frac{1}{m(x, y)}$ whenever $x \neq y$. It is easy to verify that $y \in B\left(x, \frac{1}{n}\right)$ if and only if $x \in g(n, y)$ or $y \in g(n, x)$.

Claim 1. $B(x, r)$ is a neighborhood of x for each $x \in X$ and $r>0$.
Proof of Claim 1. Let $r>0$ and choose $m \in \mathbb{N}$ such that $\frac{1}{m}<r$. Then $g(m, x) \subset B\left(x, \frac{1}{m}\right) \subset B(x, r)$. This implies that $B(x, r)$ is a neighborhood of x.

Claim 2. $\{B(x, r): r>0\}$ is a neighborhood base of x for each $x \in X$.
Proof of Claim 2. Let $x \in U \in \tau$. By (B), there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x)>\frac{1}{m}$ and $f(y)=0$ for each $y \in X \backslash U$. Then $h(m, y) \subset f^{-1}\left(\left[0, \frac{1}{m}\right)\right)$ and thus $x \notin h(m, y) \supset g(m, y)$. Also, $e(m, x) \subset f^{-1}((0,1])$ and thus $y \notin e(m, x) \supset g(m, x)$. As a result, $y \notin B\left(x, \frac{1}{m}\right)$. This implies that $B\left(x, \frac{1}{m}\right) \subset U$.

By Claim 1 and Claim 2, d is a semi-metric on X.
Now, let $K, H \in C_{X}$ and $K \cap H=\emptyset$. By $\left(K^{\prime}\right)$, there exist $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(K)=\{0\}$ and $f(H) \subset\left(\frac{1}{m}, 1\right]$. Thus $f(x)=0$ and $f(y)>\frac{1}{m}$ for each $x \in K, y \in H$. It follows that $x \notin e(m, y) \supset g(m, y)$ and $y \notin h(m, x) \supset g(m, x)$. Hence, $d(x, y)=\frac{1}{m(x, y)} \geq \frac{1}{m}$. This implies that $d(K, H)>0$.

Consequently, X is a K-semimetrizable space.
A space X is called strongly first countable [4] if there exists a g-function g for X such that for each $x \in X$, $\{g(n, x): n \in \mathbb{N}\}$ is a neighborhood base of x and if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$. To give a characterization of strongly first countable spaces, we introduce the following condition.
$\left(D^{\prime}\right)$ For each $x \in X, \mathcal{F}^{\prime} \subset \mathcal{F}$ and $n \in \mathbb{N}$, if $\mathcal{F}^{\prime}(x) \subset\left[\frac{1}{n}, 1\right]$, then there exists an open neighborhood V of x such that $\mathcal{F}^{\prime}(V) \subset\left[\frac{1}{n}, 1\right]$.

Theorem 4.4. A space X is strongly first countable if and only if there exists a family \mathcal{F} satisfying (B) and $\left(D^{\prime}\right)$.
Proof. Let g be the g-function for a strongly first countable space. Let $x \in X$ and $F \in \tau^{c}$. If $x \notin F$, then there exists $m \in \mathbb{N}$ such that $g(m, x) \cap F=\emptyset$. Set $n_{x}(F)=\min \{n \in \mathbb{N}: g(n, x) \cap F=\emptyset\}$. For each $F \in \tau^{c}$, define a
function $f_{F} \in F(X)$ by letting $f_{F}(x)=0$ whenever $x \in F$ and $f_{F}(x)=\frac{1}{n_{x}(F)}$ whenever $x \notin F$. Then $F=f_{F}^{-1}(0)$. It is easy to verify that for each $n \in \mathbb{N}, g(n, x) \cap F=\emptyset$ if and only if $f_{F}(x) \geq \frac{1}{n}$.

Let $\mathcal{F}=\left\{f_{F}: F \in \tau^{c}\right\}$. Then \mathcal{F} satisfies (B). To show that \mathcal{F} satisfies $\left(D^{\prime}\right)$, let $x \in X, \mathcal{F}^{\prime} \subset \mathcal{F}$ and $n \in \mathbb{N}$. Then there exists $\mathcal{A} \subset \tau^{c}$ such that $\mathcal{F}^{\prime}=\left\{f_{F}: F \in \mathcal{A}\right\}$. Suppose that $\mathcal{F}^{\prime}(x) \subset\left[\frac{1}{n}, 1\right]$. Then $f_{F}(x) \geq \frac{1}{n}$ and thus $g(n, x) \cap F=\emptyset$ for each $F \in \mathcal{A}$. Let $V=g(n, x)$. Then for each $y \in V, g(n, y) \subset g(n, x)$ from which it follows that $g(n, y) \cap F=\emptyset$ and thus $f_{F}(y) \geq \frac{1}{n}$ for each $F \in \mathcal{A}$. This implies that $\mathcal{F}^{\prime}(V) \subset\left[\frac{1}{n}, 1\right]$.

Conversely, for each $n \in \mathbb{N}$ and $x \in X$, let $\mathcal{G}_{n x}=\left\{f \in \mathcal{F}: f(x) \geq \frac{1}{n}\right\}$. Then let $h(n, x)=X$ whenever $\mathcal{G}_{n x}=\emptyset$ and $h(n, x)=\operatorname{int}\left(\cap\left\{f^{-1}\left(\left[\frac{1}{n}, 1\right]\right): f \in \mathcal{G}_{n x}\right\}\right)$ otherwise. Then $x \in h(n, x)$ by $\left(D^{\prime}\right)$. Now, for each $n \in \mathbb{N}$ and $x \in X$, let $g(n, x)=\cap_{i \leq n} h(i, x)$. Then g is a g-function for X.

Let $x \in U \in \tau$. By (B), there exists $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x) \geq \frac{1}{m}$ and $f^{-1}((0,1]) \subset U$. Then $f \in \mathcal{G}_{m x}$ and thus $g(m, x) \subset h(m, x) \subset f^{-1}\left(\left[\frac{1}{m}, 1\right]\right) \subset f^{-1}((0,1]) \subset U$.

Now, let $y \in g(n, x)=\cap_{i \leq n} h(i, x)$. For each $i \leq n$, if $h(i, x)=X$, then $h(i, y) \subset h(i, x)$. If $h(i, x)=$ $\operatorname{int}\left(\cap\left\{f^{-1}\left(\left[\frac{1}{i}, 1\right]\right): f \in \mathcal{G}_{i x}\right\}\right)$, from $y \in h(i, x)$ it follows that $\mathcal{G}_{i x} \subset \mathcal{G}_{i y}$ and thus $h(i, y) \subset h(i, x)$. This implies that $g(n, y) \subset g(n, x)$. Consequently, X is strongly first countable.

A space X is called an α-spaces [4] if there exists a g-function g for X such that $\{x\}=\bigcap_{n \in \mathbb{N}} g(n, x)$ for each $x \in X$ and if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$.
$(w B)$ If $x \neq a$, then there exists $f \in \mathcal{F}$ such that $f(x)>0$ and $f(a)=0$.
Theorem 4.5. A space X is an α-space if and only if there exists a family \mathcal{F} satisfying $(w B)$ and $\left(D^{\prime}\right)$.
Proof. Let g be the g-function for an α-space. Let $x, a \in X$. If $x \neq a$, then there exists $m \in \mathbb{N}$ such that $a \notin g(m, x)$. Set $n_{x}(a)=\min \{n \in \mathbb{N}: a \notin g(n, x)\}$. For each $a \in X$, define a function $f_{a} \in F(X)$ by letting $f_{a}(x)=0$ whenever $x=a$ and $f_{a}(x)=\frac{1}{n_{x}(a)}$ whenever $x \neq a$. Then $\{a\}=f_{a}^{-1}(0)$. It is easy to verify that for each $n \in \mathbb{N}, a \notin g(n, x)$ if and only if $f_{a}(x) \geq \frac{1}{n}$.

Let $\mathcal{F}=\left\{f_{a}: a \in X\right\}$. Then \mathcal{F} satisfies $(w B)$. To show that \mathcal{F} satisfies $\left(D^{\prime}\right)$, let $x \in X, \mathcal{F}^{\prime} \subset \mathcal{F}$ and $n \in \mathbb{N}$. Then there exists $A \subset X$ such that $\mathcal{F}^{\prime}=\left\{f_{a}: a \in A\right\}$. Suppose that $\mathcal{F}^{\prime}(x) \subset\left[\frac{1}{n}, 1\right]$. Then $f_{a}(x) \geq \frac{1}{n}$ for each $a \in A$. It follows that $a \notin g(n, x)$ for each $a \in A$. Let $V=g(n, x)$. Then for each $y \in V, g(n, y) \subset g(n, x)$ from which it follows that $a \notin g(n, y)$ for each $a \in A$. Thus $f_{a}(y) \geq \frac{1}{n}$ for each $a \in A$. This implies that $\mathcal{F}^{\prime}(V) \subset\left[\frac{1}{n}, 1\right]$.

Conversely, define a g-function g for X as that in the proof of Theorem 4.4.
Let $x, a \in X$ and $x \neq a$. By $(w B)$, there exists $f \in \mathcal{F}$ and $m \in \mathbb{N}$ such that $f(x) \geq \frac{1}{m}$ and $f(a)=0$. Then $f \in \mathcal{G}_{m x}$ and thus $g(m, x) \subset h(m, x) \subset f^{-1}\left(\left[\frac{1}{m}, 1\right]\right)$. It follows that $a \notin g(m, x)$.

With a similar argument to that in the proof of Theorem 4.4, we can show that if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$. Consequently, X is an α-space.

Acknowledgements

The authors would like to thank the referee for the valuable comments and suggestions.

References

[1] C.J.R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966) 1-16.
[2] R. Engelking, General Topology, Revised and Completed Edition, Heldermann Verlag, Berlin, 1989.
[3] C. Good, L. Haynes, Monotone versions of countable paracompactness, Topol. Appl. 154 (2007) 734-740.
[4] R.E. Hodel, Spaces defined by sequence of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972) 253-263.
[5] Y. Jin, L. Xie, H. Yue, Monotone insertion of semi-continuous functions on stratifiable spaces, Filomat 31 (2017) 575-584.
[6] E. Lane, P. Nyikos, C. Pan, Continuous function characterizations of stratifiable spaces, Acta Math. Hungar. 92 (2001) $219-231$.
[7] K. B. Lee, Spaces in which compacta are uniformly regular G_{δ}, Pacific J. Math. 81 (1979) 435-446.
[8] K. Li, S. Lin, R. Shen, Insertions of k-semi-stratifiable spaces by semi-continuous functions, Stud. Sci. Math. Hung. 48 (2011) 320-330.
[9] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970) 265-272.
[10] H. Martin, Metrizability of M-spaces, Canad. J. Math. 4 (1973) 840-841.
[11] H. W. Martin, Local connectedness in developable spaces, Pacific J. Math. 61 (1975) 219-224.
[12] H.W. Martin II, Metrization and submetrization of topological spaces, Ph D thesis, University of Pittsburgh, 1973.
[13] S.A. Naimpally, C.M. Pareek, Characterizations of metric and generalized metric spaces by real valued functions, Q \& A in General Topology, 8 (1990) 51-59.
[14] W.A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931) 361-373.
[15] P. Yan, E. Yang, Semi-stratifiable spaces and the insertion of semi-continuous functions, J. Math. Anal. Appl. 38 (2007) 429-437.
[16] E. Yang, Properties defined with semi-continuous functions and some related spaces, Houston J. Math. 41 (2015) 1097-1106.
[17] E. Yang, Real-valued functions and some related spaces, Top. Appl. 238 (2018) 76-89.

[^0]: 2010 Mathematics Subject Classification. Primary 54C30; Secondary 54C08, 54E20, 54E25, 54E99 $K e y w o r d s$. Real-valued functions, g-functions, c-stratifiable spaces, $k c$-semi-stratifiable spaces Received: 15 May 2018; Revised: 03 March 2019; Accepted: 04 March 2019
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: egyang@126.com (Er-Guang Yang), ccwu95@126.com (Cong-Cong Wu)

