Convergence analysis of the generalized Euler-Maclaurin quadrature rule for solving weakly singular integral equations


Grzegorz Rządkowski, Emran Tohidi




In the present paper we use the generalized Euler-Maclaurin summation formula to study the convergence and to solve weakly singular Fredholm and Volterra integral equations. Since these equations have different nature, the proposed convergence analysis for each equation has a different structure. Moreover, as an application of this summation formula, we consider the numerical solution of the fractional ordinary differential equations (FODEs) by transforming FODEs into the associated weakly singular Volterra integral equations of the first kind. Some numerical illustrations are designed to depict the accuracy and versatility of the idea.