Finite spectrum of Sturm-Liouville problems with eigenparameter-dependent boundary conditions on time scales


Ji-Jun Ao, Juan Wang




The spectral analysis of a class of Sturm-Liouville problems with eigenparameter-dependent boundary conditions on bounded time scales is investigated. By partitioning the bounded time scale such that the coefficients of Sturm-Liouville equation satisfy certain conditions on the adjacent subintervals, the finite eigenvalue results are obtained. The results show that the number of eigenvalues not only depend on the partition of the bounded time scale, but also depend on the eigenparameter-dependent boundary conditions. Both of the self-adjoint and non-self-adjoint cases are considered in this paper