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Abstract. A number of basic properties ofR-compact spaces in the category Tych of Tychonoff spaces and
their continuous mappings are extended to the category ZUni f of uniform spaces with the special normal
bases and their coz-mappings.

1. Introduction

E. Hewitt introduced the class of R-compact (Tychonoff) spaces [19]. That class was independently
defined by L. Nachbin [24] in terms of uniformities. The important topological and uniform properties of
R-compact spaces are established in works of T. Shirota [25] and S. Mrówka [22]. From a categorical point
of viewR-compact spaces coincide with epi-reflective hull of the real line in the category Tych of Tychonoff
spaces and their continuous mappings [12, 18]. Various problems of the theory of R-compact spaces are
investigated in the books [4, 10, 15, 27]. Spectral Theorem for R-compact spaces is given in [9].
R-compact extensions over the special bases (separating nest-generated intersection ring (s.n.-g.i.r.) or

strong delta normal base) have been investigated in [2, 3, 16, 26]. For any uniform space uX the set Zu
of zero-sets of all uniformly continuous functions forms s.n.-g.i.r. or strong delta normal base [4]. It is
naturally arisen the category ZUni f , whose objects are uniform spaces uX with base Zu and morphisms
are coz-mappings (where a mapping f : uX → vY between uniform spaces uX and vY is coz-mapping,
if f−1(Zv) ⊂ Zu) [8, 14]. The Wallman-Shanin compactification βuX = ω(X,Zu) and the Wallman-Shanin
realcompactification υuX = υ(X,Zu) both are defined over the baseZu [8]. In the category ZUni f a uniform
space uX is R-compact if X = υuX. The category Tych is a full subcategory of ZUni f .

In this work it is shown that a number of basic properties of R-compact spaces in the category Tych can
be extended to the category ZUni f .

2. Preliminaries and Notations

Assume R is the real line with the ordinary metric ρ(x, y) = |x − y| and the uniformity uR generated by
the metric ρ,N is the set of natural numbers, I = [0, 1] is the unit segment with the metric and uniformity
induced from R. If f : X→ Y is a mapping and F ⊂ X, then f |F : F→ Y is the restriction of f on F. If Y = R,
then a mapping f : X → R is a function, where Z( f ) = f−1(0) and X \ Z( f ) = f−1(R \ {0}). RX is the set of
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all functions from X into R. If A ⊂ RX and F ⊂ X, then Z(A) = {Z( f ) : f ∈ A} and A|F = { f |F : f ∈ A}. For
a system F = {Fs}s∈S of sets

⋃
F =

⋃
s∈S Fs is the union and

⋂
F =

⋂
s∈S Fs is the intersection of elements

from F . For systems F and F ′ their inner intersection is F ∧ F ′ = {F ∩ F′ : F ∈ F ,F′ ∈ F ′}. If F ′ = {X},
then F ∧ X = {F ∩ X : F ∈ F }.

All spaces are assumed to be Tychonoff and for any compactum we use its unique uniformity. Denote by
Tych the category of Tychonoff spaces and their continuous mappings. For a space X ∈ Tych denote by C(X)
(C∗(X)) the set of all (bounded) continuous functions on X. We will assume Z(C(X)) = Z(X). Elements of
Z(X) are called zero-sets and elements of CZ(X) = {X \Z : Z ∈ Z(X)} are called cozero-sets. A uniform space
uX is a Tychonoff space X with a uniformity u on it. Uniformities are given by uniform coverings [20]. If uX
is a uniform space and Y ⊂ X, then u|Y is the restriction of the uniformity u on Y and [Y]X is the closure of Y
in X. For a uniform space uX we denote by U(uX) (U∗(uX) ) the set of all (bounded) uniformly continuous
functions on uX. Then Z(U(uX)) = Zu is the set of all u-zero-sets and the family CZu = {X \ Z : Z ∈ Zu}

is the set of all u-cozero-sets. A covering consisting of cozero-sets (u-cozero-sets) is called cozero-covering
(u-cozero-covering). The setZu forms on uX a base of closed sets of the uniform topology [5] and this base is a
separating nest-generated intersection ring (s.n-g.i.r.) [6]. That base is defined in [26] and it is a normal base
in the sense of [13]. The mapping f : uX→ vY between uniform spaces uX and vY is called coz-mapping, if
f−1(Zv) ⊂ Zu or f−1(CZv) ⊂ CZu [14]. All uniform spaces and coz-mappings form the category ZUni f [14].
Objects uX and vY in ZUni f are called coz-homeomorphic, if there exists a bijective coz-mapping f : uX→ vY
such that the inverse mapping f−1 : vY → uX is a coz-mapping. Every Tychonoff space X with the fine
uniformity u f is an element of ZUni f and every continuous mapping f : X → Y is uniformly continuous
f : u f X → v f Y with respect to the fine uniformities u f and v f on X and Y, respectively. Since Zu f = Z(X)
andZv f = Z(Y), then f is a coz-mapping. Hence, the category Tych is a full subcategory of ZUni f .

In the case Y = R, the coz-mapping f : uX → R is called coz-function. The set of all coz-functions on uX
is denoted by C(uX) and the set of all bounded coz-functions on uX is denoted by C∗(uX). It is clear that
U(uX) ⊂ C(uX) ⊂ C(X) (U∗(uX) ⊂ C∗(uX) ⊂ C∗(X)). We note thatZu = Z(C(uX)) [6].

A filter F over the baseZu is called zu-filter. A zu-filter F is a prime zu-filter if Z ∪ Z′ ∈ F implies either
Z ∈ F or Z′ ∈ F , where Z and Z′ are members ofZu. If F is a prime zu-filter and if x ∈ X, then the point x
is a cluster point of F if and only if zu-filter F converges to x (≡

⋂
{Z : Z ∈ F } = {x}) [4].

The Wallman-Shanin (WS-) compactification ω(X,Zu) of a uniform space uX is a β-like compactifica-
tion [23] and is denoted by βuX = ω(X,Zu). Points of βuX are all maximal centered systems of elements
of the base Zu (further zu-ultrafilters) and βuX is endowed with the Wallman-Shanin (WS-)topology [1].
The compactification βuX is an epi-reflective functor βu : uX→ βuX, that is coz-homeomorphic embedding.
Compacta in the category ZUni f are precisely elements of epi-reflective hull L([0, 1]) of the unit segment in
ZUni f [8].

The following is a characterization of WS-β-like compactifications.

Theorem 2.1. For every uniform space uX there exists exactly one (up to a homeomorphism) β-like compactification
βuX with equivalent properties:

(I) Every coz-mapping f from uX into a compactum K has a continuous extension βu f from βuX into K.
(II) uX is C∗u-embedded into βuX.

(III) βuX is a completion of X with respect to the uniformity uz
p.

(IV) For any finite family {Zn}
k
n=1 of u-zero-sets if ∩k

n=1Zn = ∅, then ∩k
n=1[Zn]βuX = ∅.

(V) For any finite family {Zn}
k
n=1 of u-zero-sets [∩k

n=1Zn]βuX = ∩k
n=1[Zn]βuX.

(VI) Distinct zu-ultrafilters on uX have distinct limits in βuX.

In the above formulated theorem a uniform space uX is C∗u-embedded into a uniform space vY if X is
topologically a subspace of Y and C∗(vY)|X = C∗(uX), i.e. each bounded coz-function on uX can be extended
to a bounded coz-function on vY [7], the uniformity uz

p on X has a base of all finite u-cozero-coverings [8].
Compact uniform spaces in the category ZUni f have the next characterizations.

Corollary 2.2. For a uniform space uX the following are equivalent:



A.A. Chekeev, T.J. Kasymova / Filomat 33:5 (2019), 1463–1469 1465

(1) uX is a compactum in ZUni f .
(2) X is complete with respect to the uniformity uz

p.
(3) X = βuX.
(4) uX is coz-homeomorphic to the closed uniform subspace of a power of I.

All zu-ultrafilters with CIP (countable intersection property) are the part υuX of the compactification βuX.
The Wallman-Shanin (WS-) realcompactification is the set υuX with the topology induced from the compactum
βuX topology [26]. Moreover, the WS-realcompactification υuX is an epi-reflective functor υu : uX → υuX,
that is coz-homeomorphic embedding [8]. Realcompacta in the category ZUni f are precisely elements
of the epi-reflective hull L(R) of the real line R in ZUni f [8]. The following characterizations of the
WS-realcompactification take place.

Theorem 2.3. For every uniform space uX there exists exactly one (up to a coz-homeomorphism) realcompact space
υuX contained in the β-like compactification βuX with equivalent properties:

(I) Every coz-mapping f from uX into a R-zυ-complete uniform space υR has an extension to a coz-mapping f̂
from υuX into υR.

(II) Every coz-mapping f from uX into a separable metric uniform space uρM has an extension to a coz-mapping f̂
from υuX into uρM.

(III) υuX is a completion with respect to the uniformity uz
ω.

(IV) uX is Cu-embedded into υuX.
(V) υuX is a completion with respect to the uniformity uz

c .
(VI) For any countable family {Zn}n∈N of u-zero-sets if ∩n∈NZn = ∅, then ∩n∈N[Zn]υuX = ∅.

(VII) For any countable family {Zn}n∈N of u-zero-sets ∩n∈N[Zn]υuX = [∩n∈NZn]υuX.
(VIII) Every point of υuX is a limit of unique countably centered zu-ultrafilter on uX.

Remind, that a uniform space υR is called R-zυ-complete if every CIP zυ-ultrafilter converges.
In the above theorem a uniform space uX is Cu-embedded into a uniform space vY if X is topologically

a subspace of Y and C(vY)|X = C(uX), i.e. each coz-function on uX can be extended to a coz-function on
vY [7], the uniformity uz

ω on X has a base of all countable u-cozero-coverings and the uniformity uz
c is weak

generated by C(uX) [8].
A uniform space uX is called R-compactum in ZUni f , if X = υuX. It follows immediately from Theorem

2.3 that X = υuX if and only if uX is coz-homeomorphic to some closed uniform subspace of RC(uX), that is
Cu-embedded into RC(uX).

The following corollaries are immediate consequences of Theorem 2.3.

Corollary 2.4. The WS-realcompactification υuX of a uniform space uX is the largest subspace of the β-like compact-
ification βuX such that uX is Cu-embedded into it and υuX is the smallest R-compactum between X and βuX.

Corollary 2.5. For a uniform space uX the following are equivalent:
(1) uX is R-compactum in ZUni f .
(2) X is complete with respect to the uniformity uz

ω.
(3) X is complete with respect to the uniformity uz

c .
(4) X = υuX.
(5) uX is coz-homeomorphic to a closed uniform subspace of a power of R.

Further, for simplicity, R-compact in the category ZUni f of uniform spaces will be called R-compactum,
and R-compact in the category Tych Tychonoff spaces will be called R-compact space.

As R-compacta are elements of L(R) in ZUni f , then from [12, 18] it follows:

Proposition 2.6. ([8]) A closed subspace of an R-compactum, product of any family of R-compacta, intersection of
any family of R-compacta is an R-compactum.

We note that the intersection L(R) ∩ Tych in ZUni f coincides with the class of R-compact Tychonoff
spaces.

In this paper the most of properties of R-compact spaces in the category Tych are extended on the
category ZUni f .
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3. Properties of R-Compacta

Proposition 3.1. A metrizable space with a countable base is R-compactum with respect to the metric uniformity.

Proof. Let X be a metrizable space with a countable base and d be a metric which generates the topology
on X. Denote by u the uniformity induced by d. ThenZu = Z(X). Since (X, d) is a paracompactum with a
countable base, then the fine uniformity u f of the space X consists of all countable cozero-coverings. Then
any CIP zu-ultrafilter p is a Cauchy filter with respect to the fine uniformity u f . It is therefore evident that
u ⊂ u f , hence p is a Cauchy filter with respect to the metric uniformity u. Any metric space is weakly
complete (≡ any CIP Cauchy filter converges [21]). Hence, ∩p , ∅. Thus, X is anR-compactum with respect
to the metric uniformity.

Corollary 3.2. Any metrizable space with a countable base is an R-compact space.

Proof. A metrizable space with a countable base is weakly complete with respect to the metric uniformity.
Hence the fine uniformity is weakly complete, therefore every CIP z-ultrafilter has nonempty intersec-
tion.

Remind that a Polish space is a complete metrizable space with a countable base [9].

Corollary 3.3. Any Polish space is an R-compactum with respect to the metric uniformity.

Theorem 3.4. Let uX be an R-compactum and f : uX→ vY be a coz-mapping between uniform spaces uX and vY.
If F ⊂ Y and F is an R-compactum with respect to the uniformity v|F, then f−1(F) = N is an R-compactum with
respect to the uniformity u|N.

Proof. Assume u′ = u|N, v′ = v|F, and 1 = f |N : N → F (we note that 1 is a coz-mapping). Let p be
an arbitrary zu′ -ultrafilter on N over the base Zu′ . Then the families ξ = {Z ∈ Zu : Z ∩ N ∈ p} and
1](p) = {Z ∈ Zv′ : 1−1(Z) ∈ p} are prime CIP zu- and zv′ -filters on X and F, respectively [27]. So there exist
x ∈ ∩ξ and y ∈ ∩1](p). We show that x ∈ N and x ∈ ∩p.

Suppose that x < N. Then f (x) < F. Hence, y , f (x). Therefore in the base Zv there exist zero-set
neighborhoods f (x) ∈ Z and y ∈ Z′ such that Z ∩ Z′ = ∅. Since y ∈ ∩1](p), then Z′ ∩ F ∈ 1](p), i.e.
1−1(Z′ ∩ F) = 1−1(Z′) ∩ N ∈ p. The preimage f−1(Z) is a zero-set neighborhood of x, hence f−1(Z) ∈ ξ,
i.e. f−1(Z) ∩ N ∈ p. Since 1−1(Z′) ∩ N = f−1(Z′) ∩ N, then ( f−1(Z) ∩ N) ∩ ( f−1(Z′) ∩ N) ∈ p. Hence, from
f−1(Z) ∩ f−1(Z′) , ∅, we have a contradiction, Z ∩ Z′ , ∅. Thus, x ∈ N.

Now suppose that x < ∩p. Then there exists Z ∈ p such that x < Z. Since [Z]N = [Z]X ∩N and x ∈ N, then
x < [Z]X. Hence there is a zero-set neighborhood Z′ ∈ Zu such that x ∈ Z′ and Z′ ∩ [Z]X = ∅. Moreover,
Z ∩ Z′ = ∅. Further, since x ∈ Z′ ∩N, then Z′ ∈ ξ. Then Z′ ∩N ∈ p. Hence, Z ∩ (Z′ ∩N) , ∅, i.e. Z ∩ Z′ , ∅,
which is a contradiction. Thus, x ∈ ∩p.

Corollary 3.5. Let uX be an R-compactum and G be a u-cozero-set in X. Then G is an R-compactum with respect
to the uniformity u|G.

Proof. Since G is a u-cozero-set in uX, there exists a function f ∈ U(uX), f : uX→ R such that G = f−1(R\{0}).
According to Proposition 3.1, R \ {0} is an R-compactum because it is a metric space with a countable base.
Hence, by Theorem 3.4, G is an R-compactum with respect to the uniformity u|G.

Corollary 3.6. ([9]) Let X be an R-compact space and G be a cozero-set in X. Then G is an R-compact space.

Proof. Since G is a cozero-set in X, then there exists a function f ∈ C(X), f : X→ R such that G = f−1(R\{0}).
According to Proposition 3.1 R \ {0} is an R-compact space because it is a metric space with a countable
base. Hence, by Theorem 3.4, G is an R-compactum with respect to the uniformity u f |G. Then moreover G
is an R-compact space.

The next theorem (and its corollary) is a generalization of results from [15, 8.10(a)].
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Theorem 3.7. If uX is Cu-embedded into vY, then [X]υvY = υuX.

Proof. If uX is Cu-embedded into vY, then uX is Cu-embedded into υvY [7]. Since [X]υvY is a subspace of
υvY, then uX is Cu-embedded into [X]υvY. Because [X]υvY is an R-compactum as closed subspace of the
R-compactum υuY, we have [X]υvY = υuX (see Proposition 2.6, Corollary 2.4).

Corollary 3.8. ([15]) Let uX and vY be R-compacta and uX is Cu-embedded into vY. Then X is closed in Y.

Proof. By the condition X = υuX and Y = υvY. Then [X]Y = [X]υvY = υuX = X.

Definition 3.9. ([22]) A subset F of a space X is said to be Gδ-closed, if for each x < F there exists a Gδ-subset
G such that x ∈ G and G∩ F = ∅. Gδ-closure of F is the set of all x ∈ X which satisfy the condition: whenever
G is Gδ-set containing x, then G∩F , ∅ and the Gδ-closure of F is denoted by Gδ − clXF. A subspace F is said
to be Gδ-dense in X, if X = Gδ − clXF, i.e. if each Gδ-set in X meets F.

Theorem 3.10. Every Gδ-closed subset F of anR-compactum uX is anR-compactum with respect to any uniformity
v on F such thatZu ∧ F ⊆ Zv.

Proof. Let F be a Gδ-closed subset in X and v be a uniformity on F such that Zu ∧ F ⊆ Zv. Let p be an
arbitrary zv-ultrafilter over the base Zv. Let ξ = {Z ∈ Zu : Z ∩ F ∈ p}. It is easy to check that ξ is a prime
CIP zu-filter on uX. Hence, ξ is contained in the unique CIP zu-ultrafilter q on uX [27] and since uX is an
R-compactum, {x} = ∩q ⊆ ∩ξ. We show that x ∈ F and x ∈ ∩p.

Assume, to the contrary, x < F. Since F is Gδ-closed in X, then there is a Gδ-set G = ∩i∈NOi such that x ∈ G
and G ∩ F = ∅. By properties of the baseZu [7] there are zero-set neighborhoods Zi ∈ Zu (i ∈ N) such that
x ∈ Zi ⊂ Oi. Since the prime zu-filter ξ converges to x, then Zi ∈ ξ for all i ∈N. If we suppose that Zi ∩ F , ∅
for all i ∈N, then Zi ∩ F ∈ p (i ∈N). Hence we have a contradiction

⋂
i∈N(Zi ∩ F) = (

⋂
i∈N Zi)∩ F , ∅, since p

is a prime CIP zv-ultrafilter on F. On the other hand,
⋂

i∈N Zi ⊂ G and G∩ F = ∅. Thus, there exists an index
k ∈N such that x ∈ Zk and Zk ∩ F = ∅. But Zk ∈ ξ, hence Zk ∩ F ∈ p, which is impossible. Thus, x ∈ F.

Suppose that x < ∩p. Then there exists Z ∈ p such that x < Z. Since [Z]F = [Z]X ∩ F and x ∈ F, then
x < [Z]X. Then there is a zero-set neighborhood Z′ ∈ Zu such that x ∈ Z′u and Z′ ∩ Z = ∅. It is evident that
Z′ ∈ ξ. Therefore Z′ ∩ F ∈ p implies (Z′ ∩ F) ∩ Z ∈ p and Z′ ∩ Z , ∅, which is a contradiction. Thus, x ∈ ∩p
and F is an R-compactum with respect to the uniformity v.

Corollary 3.11. ([22]) Every Gδ-closed subspace of an R-compact space is also an R-compact space.

Proof. It follows, as we noted above, from the fact that an R-compact space X is an R-compactum with
respect to the fine uniformity u f or over the baseZ(X).

Theorem 3.12. The following are equivalent:
(I) uX is an R-compactum.

(II) For any y ∈ βuX \ X there exists a continuous function h : βuX → I such that h(y) = 0 and h(x) > 0 for all
x ∈ X.

Proof. (I) ⇒ (II). Since X = υuX, then there exists a unique zu-ultrafilter py without CIP, that converges to
y ∈ βuX \X. Then there exists a sequence {Zi}i∈N ⊂ py such that

⋂
i∈N Zi = ∅. We can assume that Zi = Z(1i),

where 1i : uX → I is a coz-function (i ∈ N). Therefore, by the properties of C(uX) [6], it follows that
1 = Σi∈N(1i/2i) : uX → R is a coz-function and Z(1) =

⋂
i∈N Zi, i.e. Z(1) = ∅. For each i ∈ N, 1i(x) > 0 for all

x ∈ X, hence 1(x) , 0 for all x ∈ X and 1 cannot be coz-extendable to Y = X∪{y}with respect to the uniformity
induced from the compactum βuX. Suppose 1 has a coz-extension 1̃ : Y → R. For each i ∈ N it takes place
[Zi]Y = Zi∪{y}. Because 1̃ is continuous, then we have 1̃(y) = 1̃(

⋂
i∈N[Zi]Y) ⊆ [1̃(

⋂
i∈N Zi)]R = [1(Z(1))]R = ∅.

It is a contradiction. It can be supposed that 1(x) ≥ 1 for all x ∈ X.
Since C(uX) is inversion-closed, then f = 1/1 is a coz-function [6] and f : uX → I. Then the function f

can be extended to the function βu f : βuX → I [17, 26]. If βu f (y) , 0, then 1̃ = 1/βu f is a coz-extension of 1
to Y. So, βu f (y) = 0 and f (x) > 0 for all x ∈ X. Assume h = βu f .

(II) ⇒ (I). It follows from Corollary 3.5 and Proposition 2.6, because uX is an R-compactum as the
intersection of cozero subspaces of βuX, which are R-compacta.



A.A. Chekeev, T.J. Kasymova / Filomat 33:5 (2019), 1463–1469 1468

Corollary 3.13. ([22]) The following are equivalent:
(I) X is an R-compact space.

(II) For any y ∈ βX \X there exists continuous function h : βX→ I such that h(y) = 0 and h(x) > 0 for all x ∈ X.

Proof. If X is endowed by the fine uniformity u f , then X is an R-compactum with respect to the uniformity
u f and C(u f X) = C(X).

Definition 3.14. A uniform space uX is said to be strongly C∗u-embedded into a uniform space vY if X is a
topological subspace of Y and for any bounded coz-function 1 ∈ C∗(uX) there exists a bounded coz-function
h ∈ C∗(vY) such that h|X = 1 and sup|h| = sup|1|, where sup|h| = sup{h(y) : y ∈ Y} and sup|1| = sup{1(x) : x ∈ X}.
If u = u f , v = v f are the fine uniformities, then the space X is strongly C∗-embedded into the space Y.

Theorem 3.15. Let uX be a uniform space such that X =
⋃

n∈N Xn. For each n ∈ N let un be a uniformity on Xn
such that Xn is strongly C∗un

-embedded in uX and Xn is anR-compactum with respect to the uniformity un. Then uX
is an R-compactum.

Proof. Let y ∈ βuX \ X. If y <
⋃

n∈N[Xn]βuX for all n ∈ N, and since βuX is a Tychonoff space, then there
exists a continuous function fn : βuX → I such that fn(y) = 0 and fn(x) = 2−n for all x ∈ [Xn]βuX. Then
1n = fn|X is a coz-function and βu1n = fn [6]. The series 1 = Σn∈N1n is uniformly converging, so 1 ∈ C(uX)
and 1 : uX→ I [6]. It is therefore evident that βu1(y) = 0 and 1(x) > 0 for all x ∈ X.

Now suppose that y ∈ [Xk]βuX for some k ∈ N. Because ukXk is strongly C∗uk
-embedded in uX, and uX

is C∗u-embedded in βuX, then ukXk is C∗uk
-embedded in βuX [7]. Hence [Xk]βuX = βuk Xk [7]. Since Xk is an

R-compactum with respect to the uniformity uk, there exists a continuous function 1 : βuk Xk → I such that
1(y) = 0 and 1(x) > 0 for all x ∈ Xk (by Theorem 3.12). By strongly C∗uk

-embeddedness of ukXk into uX there
exists a bounded coz-function h ∈ C∗(uX) such that h|Xk = 1|Xk and sup|h| = sup|1|. Hence h(x) > 0 for all
x ∈ X.

Let βuh : uX → [−∞,+∞] be a continuous extension of h [6]. Then βuh|Xk = h|Xk implies βuh(y) = 0 and
h(x) > 0 for all x ∈ X. Thus, uX is an R-compactum.

Corollary 3.16. Let X be a Tychonoff space such that X =
⋃

n∈N Xn and every Xn is R-compact and strongly
C∗-embedded subspace of X (n ∈N). Then X is an R-compact space.

Proof. If X is endowed with the fine uniformity u f and all Xn are endowed by the fine uniformities (un) f ,
we get the result.

Remark 3.17. It is known that every closed subspace of a normal space is strongly C∗-embedded (by the
Brouwer–Tietze–Uryshon Theorem [11, Theorem 2.21]). So, we obtain the next corollary.

Corollary 3.18. ([22]) Let X be a normal space such that X =
⋃

n∈N Xn, where any Xn is a closedR-compact subspace
of X. Then X is an R-compact space.

Definition 3.19. Let uX, vY be uniform spaces and X ⊂ Y. A uniform space uX is said to be zu-embedded in
vY, ifZv ∧ X = Zu.

It is clear, that Cu-embeddedness implies zu-embeddedness. Simple examples demonstrate that zu-
embeddedness need not imply Cu-embeddedness. We note, if X is z-embedded in Y, then X is zu f -embedded
in Y, i.e. Zv f ∧ X = Zu f , where u f , v f are fine uniformities on X and Y, respectively.

Below we formulate some problems.
(I) Let Z ∈ Zu for a uniform space uX. Which of the following statements are equivalent:

(1) a set Z is Cu|Z -embedded in X;
(2) a set Z is C∗u|Z -embedded in X;
(3) a set Z is zu|Z -embedded in X.

(II) Let S ∈ CZu for a uniform space uX. Is S zu|S -embedded in uX?
(III) Let uX be a uniform space such that X =

⋃
n∈N Xn. For each n ∈N let un be a uniformity on Xn such that Xn

is zun -embedded in uX and Xn is an R-compactum with respect to the uniformity un. Is uX anR-compactum?

Remark 3.20. In the category Tych, A. Chigogidze proved the Spectral Theorem for R-compact spaces [9].
So, the following problem naturally arises: Prove the Spectral Theorem for R-compacta in the category ZUni f .
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