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Abstract. The preliminary idea of statistical weighted B-summability was introduced by Kadak et al.
[27]. Subsequently, deferred weighted statistical B-summability has recently been studied by Pradhan et
al. [38]. In this paper, we study statistical versions of deferred weighted B-summability as well as deferred
weighted B-convergence with respect to the difference sequence of order r (> 0) involving (p, q)-integers
and accordingly established an inclusion between them. Moreover, based upon our proposed methods,
we prove an approximation theorem (Korovkin-type) for functions of two variables defined on a Banach
space CB(D) and demonstrated that, our theorem effectively improves and generalizes most (if not all) of
the existing results depending on the choice of (p, q)-integers. Finally, with the help of the modulus of
continuity we estimate the rate of convergence for our proposed methods. Also, an illustrative example is
provided here by generalized (p, q)-analogue of Bernstein operators of two variables to demonstrate that
our theorem is stronger than its traditional and statistical versions.

1. Introduction, Preliminaries and Motivation

Let ω be the set of all real valued sequences and call any subspace of ω the sequence space. Let (xk) be a
sequence with real or complex terms. Suppose `∞ is the class of all bounded linear sequence spaces and let
c, c0 be the respective classes for convergent and null sequences with real or complex terms. We have,

‖x‖∞ = supk|xk| (k ∈N),

and we recall here that under this norm, the above mentioned spaces are all Banach spaces.
The space of difference sequence was initially studied by Kızmaz [30] and then it was extended to the

difference sequence of natural order r (r ∈N0 := {0} ∪N) by defining

λ(∆r) = {x = (xk) : ∆r(x) ∈ λ, λ ∈ (`∞, c0, c)} ;

∆0x = (xk); ∆rx =
(
∆r−1xk − ∆r−1xk+1

)
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and

∆rxk =

r∑
i=1

(−1)i
(
r
i

)
xk+i

(see [20]). Also, these are all Banach spaces under the norm defined by

‖x‖∆r =

r∑
i=0

|xi| + supk|∆
mxk|.

For more details, see the recent works [6, 9, 11, 12, 26].
The basic idea of statistical convergence was initially studied by Fast [21] and Steinhaus [44]. Statistical

convergence being more general than usual convergence, it has so recently been an attractive research area
of current researchers and scope of such theory has been studied in the different areas of (for instance)
Number Theory, Fourier Analysis, Functional Analysis, Topology, and Approximation Theory. For the
study in this direction, one may refer to the current works [4, 13, 16–19, 24, 25, 38–42].

Let K ⊆N (the set of naturals) and let

Kn = {k : k 5 n and k ∈ K}.

The natural (asymptotic) density of K is given by

d(K) = lim
n→∞

|Kn|

n
,

provided the limit exists.
Recall that, a sequence (xn) is statistically convergent (or stat-convergent) to L, if for every ε > 0

Kε = {k : k ∈N and |xk − L| = ε}

has natural density zero (see [21, 44]). That is, for each ε > 0,

d(Kε) = lim
n→∞

|Kε|
n

= 0.

Here, we write

stat lim
n→∞

xn = L.

Consider the following example:

Example 1.1. Let x = (xn) be a sequence given by

xn =


1
2 (n = m2, m ∈N)

n
n+1 (otherwise).

Observe that the sequence (xn) is statistically convergent to l but it is not convergent in the usual sense.
Also, every convergent sequence is statistically convergent in the sense that, the subset to be discarded has
natural density zero. Thus, statistical convergence is more general than usual convergence.

The basic concept of weighted statistical convergence was initially studied by Karakaya and Chishti [29].
Gradually, it was improved by Mursaleen et al. (see [36]) and accordingly some important approximation
results were proved. For more results in this direction one may refer to the following works [13, 18, 40].

Suppose that (pk) is a sequence of nonnegative numbers and

Pn =

n∑
k=0

pk (p0 > 0; n→∞).
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Then, upon setting

tn =
1

Pn

n∑
k=0

pkxk (n ∈N0 :=N ∪ {0}),

(xn) is weighted statistically convergent (or statN̄-convergent) to a number L, if for every ε > 0

{k : k 5 Pn and pk|xk − L| = ε}

has weighted density zero (see [36]). That is, for every ε > 0,

lim
n→∞

1
Pn
|{k : k 5 Pn and pk|xk − L| = ε}| = 0.

Here, we write

statN̄ lim xn = L.

Let X and Y be two sequence spaces and letA = (an,k) be a regular summability matrix (with non-negative
entries). If for each xk ∈ X and for all (n ∈N), the series

Anx =

∞∑
k=1

an,kxk

converges and the sequence (Anx) belongs to Y, then the matrixAmaps X into Y (denoted as (X, Y)).
Now, under the regularity condition (see Silverman-Toeplitz theorem [15]),A is known to be regular if

lim
n→∞
Anx = L whenever lim

k→∞
xk = L.

In 1981, Freedman and Sember [22] introduced A-statistical convergence by considering a regular
summability matrix (with non-negative entries)A = (an,k). We recall here that for any regular summability
matrix (with non-negative entries)A, a sequence (xn) isA-statistically convergent (or statA-convergent) to
a number L if for every ε > 0

dA(Kε) = 0,

where

Kε = {k : k ∈N and |xk − L| = ε}.

That means, for every ε > 0

lim
n→∞

∑
k:|xk−L|=ε

an,k = 0.

Here, we write

statA lim xn = L.

Subsequently, the idea ofA-statistical convergence was improved and enhanced toB-statistical conver-
gence by Kolk [31] with respect to FB-convergence or B-summability (also, see [43]).

Recall the following. Let B = (Bi) be a sequence of matrices (infinite) with Bi = (bn,k(i)) and for xn ∈ `∞,
(xn) is B-summable to the value B- lim

n→∞
(xn), if

lim
n→∞

(Bix)n = lim
n→∞

∞∑
k=0

bn,k(i)(x)k = B- lim
n→∞

(xn) uniformly in i (i = 0, 1, 2, ...).

The method (Bi) is regular (see [14, 43]) if and only if it satisfies the conditions:
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(i) ‖B‖ = sup
n,i→∞

∞∑
k=0

|bn,k(i)| < ∞ (uniformly in i);

(ii) lim
n→∞

bn,k(i) = 0 for each k ∈N (uniformly in i);

(iii) lim
n→∞

∞∑
k=0

bn,k(i) = 1 (uniformly in i).

Let K = {ki} ⊂N (ki < ki+1) for all i, then the B-density of K is given by

dB(K) = lim
n→∞

∞∑
k=0

bn,k(i) uniformly in i.

LetR+ denotes the set of all regular methodsBwith bn,k(i) = 0 (∀ n, k, i ∈N) and supposeB ∈ R+. Recall
that (xn) is B-statistically convergent (or statB-convergent) to a number L, if for each ε > 0

dB(Kε) = 0,

where

Kε = {k : k ∈N and |xk − L| = ε}.

This means that for each ε > 0, we have

lim
n→∞

∑
k:|xk−L|=ε

bn,k(i) = 0 uniformly in i.

Here we write

statB lim xn = L.

Subsequently, with the development of q-calculus, various researchers worked on certain new gener-
alizations of positive linear operators based on q-integers (see [3, 7, 8, 23, 33]). Recently, Mursaleen et
al. [35] introduced the (p, q)-analogue of Bernstein operators in connection with (p, q)-integers and later
on, some approximation results for Baskakov operators and Bernstein-Schurer operators were studied for
(p, q)-integers by [1] and [37].

We now recall some definitions and basic notations on (p, q)-integers for our present study.
LetN be the set of naturals and for n ∈N, the (p, q)-integer [n]p,q is given by

[n]p,q =


pn
−qn

p−q (n ≥ 1)

0 (n = 0)

where 0 < p < q ≤ 1.

The (p, q)-factorial is given by

[n]!p,q =


[1]p,q[2]p,q...[n]p,q (n ≥ 1)

1 (n = 0).

The (p, q)-binomial coefficient is given by[
n
k

]
p,q

=
[n]!p,q

[k]!p,q [n − k]!p,q
for all n, k ∈N and n ≥ k.
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We also recall that, supposing that 0 < q < p ≤ 1 and r is a non-negative integer, the operator

∆[r]
p,q : ω→ ω

is given by

∆[r]
p,q(xn) =

r∑
i=0

(−1)i
[
r
i

]
p,q

xn−i

(see [10, 25, 28]). That is,

∆[r]
p,q(xn) =

[
r
0

]
p,q

xn −

[
r
1

]
p,q

xn−1 +

[
r
2

]
p,q

xn−2 −

[
r
3

]
p,q

xn−3 + ... + (−1)r
[
r
r

]
p,q

xn−r

= xn − [r]p,qxn−1 +
[r]p,q[r − 1]p,q

[2]p,q!
xn−2 −

[r]p,q[r − 1]p,q[r − 2]p,q

[3]!
xn−3 + ... + (−1)rxn−r

= xn −

(
pr
− qr

p − q

)
xn−1 +

(
(pr
− qr)(pr−1

− qr−1)
(p − q)2(p + q)

)
xn−2

−

(
(pr
− qr)(pr−1

− qr−1)(pr−2
− qr−2)

(p − q)3(p2 + pq + q2)(p + q)

)
xn−3 + ... + (−1)mxn−r.

Now we present below the following example to see that a sequence is not convergent; however the
associated difference sequence is convergent.

Example 1.2. Suppose (xn) = n + 1 (n ∈N) is a sequence. It is clear that the sequence (xn) is not convergent
in the usual sense.

Also, we see that

∆[3](xn) = xn − 3xn−1 + 3xn−2 − xn−3 (xn = n + 1)

converges to 0 (n→∞).
For r = 3, we get

∆[3]
p,q(xn) = xn − [3]p,qxn−1 + [3]p,qxn−2 − xn−3 (xn = n + 1)

= xn − (p2
n + pnqn + q2

n)xn−1 + (p2
n + pnqn + q2

n)xn−2 − xn−3

= n + 1 − (p2
n + pnqn + q2

n)n + (p2
n + pnqn + q2

n)(n − 1) − (n − 2) (xn = n + 1)
= 3 − (β2 + αβ + α2).

Clearly, based on the different choice of the values of p and q, the difference sequence ∆[3]
p,q(xn) of third

order has different limits. This fact is due to the usual definition of (p, q)-integers. However, in order to
obtain a criterion of convergence for all the values of p and q belonging to the operator ∆[r]

p,q, we must have
to overcome this difficulty. This type of difficulties can be avoided in the following two ways. The first
one is taking p = q = 1 and thus the operator reduces to the usual difference sequence. Next, the second
way is to replace p = pn and q = qn under the limits, limn qn = α and limn pn = β (0 ≤ α, β ≤ 1) where
0 < qn < pn ≤ 1, for all (n ∈ N). Afterwards, the difference sequence ∆[3]

p,q(xn) of order 3 converges to the

value 3 − (β2 + αβ + α2). Thus, if we take qn =
(

n+1
n+1+s

)
<

(
n+1

n+1+t

)
= pn such that 0 < qn < pn ≤ 1 (s > t > 0),

then limn qn = 1 = limn pn. Hence, ∆[3]
p,q(xn)→ 0 (n→∞).

Remark 1.3. If r = 1, limn qn = 1 and limn pn = 1, then the difference operator ∆[r]
p,q reduces to the ∆[1] (see

[5]). Also, if r = 0, limn qn = 1 and limn pn = 1, then the difference operator ∆[r]
p,q reduces to the general

sequence (xn).
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In the year of 2016, Kadak [25] introduced weighted statistical convergence involving (p, q)-integers
and proved some approximation theorems for functions of two variables. Subsequently, it was extended
to the generalized difference sequences involving (p, q)-gamma function and accordingly associated ap-
proximation theorems were proved (see [24]). Mohiuddine [34] also introduced weightedA-summability
as well as weighted A-statistical convergence and accordingly proved certain approximation theorems
(Korovkin-type). Furthermore, Kadak et al. [27] presented the idea of statistical weighted B-summability
and established some approximation theorems on that basis. Very recently, Srivastava et al. [41] intro-
duced the deferred weighted (Nörlund) summability of a sequence and accordingly proved Korvokin-type
approximation theorems based on equi-statistical convergence.

Essentially motivated by the above cited works, here we introduce the (presumably new) notion of
deferred weighted B-statistical convergence and statistical deferred weighted B-summability with respect
to the generalized difference sequences of order r involving (p, q)-integers, and establish some new approx-
imation results on that basis.

2. Definitions, Notations and Regular Methods

In this section, we introduce some definitions (presumably new) those are required for our proposed
study. Also, we present here certain inclusion relations with regard to regular methods.

Let (an) and (bn) be sequences of integers (non-negative) such that, the conditions of regularity for the
deferred weighted mean (see Agnew [2]) can be viewed as:

(i) an < bn (n ∈N)
and

(ii) lim
n→∞

bn = ∞.
Now, we suppose that (sn) is the sequence of real numbers (non-negative) such that

Sn =

bn∑
m=an+1

sm.

To define the deferred weighted mean Db
a(N, s) by the difference operator (∆r

p,q), we first set

Φ
p,q
n (∆x) =

1
Sn

bn∑
m=an+1

sm(∆[r]
p,qxm) (0 < q < p ≤ 1) (r ∈N0 := {0} ∪N).

The given sequence (xn) is deferred weighted summable (or cD(N̄)-summable) to L under the mean of the
difference operator (∆[r]

p,q), if

lim
n→∞

Φ
p,q
n (∆x) = L.

Here we write
cD(N̄)
∆

lim xn = L.

We denote the deferred weighted summable sequences under the difference operator (∆[r]
p,q) by cD(N̄).

Definition 2.1. Let B ∈ R+, 0 < qn < pn ≤ 1 be such that limn qn = α and limn pn = β (0 < α, β ≤ 1) and
suppose that r is a non-negative integer. Also let (an) and (bn) be sequences of non-negative integers. A
sequence (xn) is deferred weighted B-summable (or [D(N̄)A; sn]-summable) to a number L with respect
to the difference operator ∆[r]

p,q, if the B-transform of (xn) is deferred weighted summable to L (the same
number) under the difference operator ∆[r]

p,q, that is,

lim
n→∞

Ψ
p,q
n (∆x) = lim

n→∞

1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk) = L.
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Here, we write
[D(N̄)∆

A; sn] lim
n→∞

xn = L.

We denote the set of all sequences which are deferred weighted summable by the difference operator (∆[r]
p,q)

by [D(N̄)∆
A; sn].

Definition 2.3 below is a generalization of many known definitions as discussed in Remark 2.2 below.

Remark 2.2. If an + 1 = an, limn qn = 1, limn pn = 1 and r = 0, then Ψ
p,q
n (∆x) mean reduces to Ba,b

n (xn) mean
(see [25]), and if B = I, then Ψ

p,q
n (∆x) mean reduces to Λn

p,q(xn)-mean (see [23]). Finally, if limn qn = 1,
limn pn = 1, r = 0, an = 0, bn = n and B = A, then Ψ

p,q
n (∆x) mean reduces toAN̄

n mean (see [31]).

Definition 2.3. Let B = (bn,k(i)) be a matrix, 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β
(0 < α, β ≤ 1) and let r be a non-negative integer. Suppose that (an) and (bn) are the sequences of integers
(non-negative). The matrixB = (bn,k(i)) is a regular deferred weighted matrix (or deferred weighted regular
method), if

Bx ∈ cD(N̄)
∆

(∀ xn ∈ c)

with
cD(N̄)
∆

limBxn = B lim(xn)

and we denote it by B ∈
(
c : cD(N̄)

∆

)
.

This means that Ψ
p,q
n (∆x) exists for each n ∈N, xn ∈ c and

lim
n→∞

Ψ
p,q
n (∆x)→ L whenever lim

n→∞
xn → L.

We denote the set of all deferred weighted regular matrices (methods) by R+
D(w).

We now present the following theorem as a characterization of deferred weighted regular methods.

Theorem 2.4. Let B = (bn,k(i)) be a sequence of infinite matrices, 0 < qn < pn ≤ 1 be such that limn qn = α
and limn pn = β (0 < α, β ≤ 1) and let r is a integer (non-negative). Let (an) and (bn) be sequences of integers
(non-negative). Then B ∈

(
c : cD(N̄)

∆

)
if and only if

sup
n

∞∑
k=1

1
Sn

∣∣∣∣∣∣∣
bn∑

m=an+1

smbm,k(i)

∣∣∣∣∣∣∣ < ∞ uniformly in i; (2.1)

lim
n→∞

1
Sn

bn∑
m=an+1

smbm,k(i) = 0 uniformly in i (for each k ∈N) (2.2)

and

lim
n→∞

1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i) = 1 uniformly in i. (2.3)
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Proof. Assuming (2.1)-(2.3) are true and suppose that (∆[r]
p,qxk) → L (n → ∞), then for every ε > 0 there

exists m0 ∈N such that |(∆[r]
p,qxk) − L| 5 ε (m > m0). Thus, we have

∣∣∣B(an,bn)
n (∆[r]

p,qxk) − L
∣∣∣ =

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk) − L

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk − L) + L

 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i) − 1


∣∣∣∣∣∣∣

5

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk − L)

∣∣∣∣∣∣∣ + |L|

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i) − 1

∣∣∣∣∣∣∣
5

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

bn−2∑
k=1

smbm,k(i)(∆[r]
p,qxk − L)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=bn−1

smbm,k(i)(∆[r]
p,qxk − 1)

∣∣∣∣∣∣∣ + |L|

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i) − 1

∣∣∣∣∣∣∣
5 sup

k
|∆[r]

p,qxk − L|
bn−2∑
k=1

1
Sn

bn∑
m=an+1

smam,k + ε
1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)

+|L|

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i) − 1

∣∣∣∣∣∣∣ .
For n→∞ and using (2.2) and (2.3), we obtain

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk) − L

∣∣∣∣∣∣∣ 5 ε.
Since ε > 0 is arbitrary small, so it clearly implies that

lim
n→∞

1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk) = L = lim(xn).

Conversely, suppose that B ∈
(
c : cD(N̄)

∆

)
and xn ∈ c. As Bx exists, so we fairly have the inclusion(

c : cD(N̄)
∆

)
⊂ (c : L∞).

Thus, there exists a constant M satisfying∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)

∣∣∣∣∣∣∣ 5M (∀ m,n)

and the associated series,∣∣∣∣∣∣∣ 1
Pn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)

∣∣∣∣∣∣∣
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converges for each n (uniformly in i). Therefore, (2.1) is valid.

Next, consider x(n) = (x(n)
k ) ∈ c0 given by

x(n)
k =


1 (n = k)

0 (n , k);

for every n ∈ N and y = (yn) = (1, 1, 1, ...) ∈ c. Moreover, as Bx(n) and By are in cD(N̄)
∆

, so (2.2) and
(2.3) are trivially true.

Furthermore, we consider the following definitions for our study.

Definition 2.5. Let B ∈ R+
D(w), 0 < qn < pn ≤ 1 be such that limn qn = α and limn pn = β (0 < α, β ≤ 1)

and suppose that r is a integer. Let (an) and (bn) be sequences of integers (non-negative) and also let
K = (ki) ⊂N (ki ≤ ki+1) for each i, then the deferred weighted B-density of K is given by

dBD(N̄)(K) = lim
n→∞

1
Sn

bn∑
m=an+1

∑
k∈K

smbm,k(i) (uniformly in i),

subject to the existence of limit. A sequence (xn) is said to be deferred weighted B-statistical convergent to
a number L with respect to the difference operator ∆[r]

p,q, if for each ε > 0

dBD(N̄)(Kε) = 0,

where

Kε = {k : k ∈N and |∆[r]
p,q(xk) − L| = ε}.

Here, we write

statp,q
Ψ∆

lim
n→∞

(xn) = L.

Definition 2.6. Let B ∈ R+
D(w), 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤ 1) and let r

be a integer (non-negative). Let (an) and (bn) be sequences of integers (non-negative). Then, the sequence
is statistical deferred weighted B-summable to a number L under the operator ∆[r]

p,q, if for every ε > 0

d(Eε) = 0,

where

Eε = {k : k ∈N and |Ψp,q
n (∆x) − L| = ε}.

Here, we write

statD(N̄)p,q
Ψ∆

lim
n→∞

(xn) = L.

The following theorem provides a relation between statistical deferred weighted B-summability and
deferred weighted B statistical convergence.
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Theorem 2.7. Suppose that

snbn,k(i)
∣∣∣∆[r]

p,qxn − L
∣∣∣ 5M (n ∈N)

and 0 < qn < pn ≤ 1 (∀n ∈ N) such that limn qn = α and limn pn = β (0 < α, β ≤ 1). If a sequence (xn) is deferred
weighted B-statistical convergent to a number L, then it is statistical deferred weighted B-summable to L (the same
number), but the converse is not necessarily true.

Proof. Let

snbn,k(i)
∣∣∣∆[r]

p,qxn − L
∣∣∣ 5M (n ∈N) and lim

n
qn = α, lim

n
pn = β (0 < α, β ≤ 1).

Also let (xn) be deferred weighted B-statistical convergent to L with respect to the operator ∆[r]
p,q. We have,

dBD(N̄)(Kε) = 0,

where

Kε = {k : k ∈N and |∆[r]
p,q(xk) − L| = ε}.

Thus, we have

∣∣∣Ψp,q
n (∆x) − L

∣∣∣ =

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk − L)

∣∣∣∣∣∣∣
5

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)
(
∆[r]

p,qxk − L
)∣∣∣∣∣∣∣ + |L|

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i) − 1

∣∣∣∣∣∣∣
5

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∑
k∈Kε

smbm,k(i)
(
∆[r]

p,qxk − L
)∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k<Kε

smbm,k(i)
(
∆[r]

p,qxk − L
)∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i) − 1

∣∣∣∣∣∣∣
5 sup

k→∞

∣∣∣∆[r]
p,qxk − L

∣∣∣ 1
Sn

∑
k∈Kε

bn∑
m=an+1

smbm,k(i) + ε
1
Sn

bn∑
m=an+1

∑
k<Kε

smbm,k(i)

+|L|

∣∣∣∣∣∣∣ 1
Sn

bn∑
m=an+1

∑
k∈Kε

smbm,k(i) − 1

∣∣∣∣∣∣∣→ ε (n→∞).

which implies that Ψ
p,q
n (∆x) → L. That is, the sequence (xn) is deferred weighted B-summable to L under

the difference operator ∆[r]
p,q. Hence, the sequence (xn) is statistical deferred weighted B-summable to L (the

same number) with respect to the same difference operator ∆[r]
p,q.

To prove falsity of converse part, we are presenting the following example.

Example 2.8. For limn qn = 1, limn pn = 1, sn = 1, an = 0 and bn = n (∀n ∈N), consider the sequence x = (xn)
given by
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xn =



1
m2 (n = m2

−m,m2
−m + 1, ...,m2

− 1)

−
1

m3 (n = m2, m > 1)

0 (otherwise).

Consider infinite matrices B = (Bi) with Bi = (bn,k(i)) given by (see [25])

xn =


1

n+1 (i 5 k 5 i + n)

0 (otherwise).

Since, we have

i+n∑
k=i

∆[r]
p,qxk =

i+n∑
k=i

r∑
i=0

(−1)i
[
r
i

]
p,q

xn−i

=

i+n∑
k=i

xn −

[
r
1

]
p,q

xn−1 +

[
r
2

]
p,q

xn−2 −

[
r
3

]
p,q

xn−3 + ... + (−1)r
[
r
r

]
p,q

xn−r


=

i+n∑
k=i

{
xn − [r]p,qxn−1 +

[r]p,q[r − 1]p,q

[2]p,q!
xn−2 −

[r]p,q[r − 1]p,q[r − 2]p,q

[3]!
xn−3 + ... + (−1)rxn−r

}
= {(i + n)xi+n + (1 − [r]p,q)(i + n − 1)xi+n−1 +

(
1 − [r]p,q +

[r]p,q[r − 1]p,q

[2]p,q!
(i + n − 2)xi+n−2

)
+... +

(
1 − [r]p,q +

[r]p,q[r − 1]p,q

[2]p,q!
−

[r]p,q[r − 1]p,q[m − 2]p,q

[3]p,q!
+ ...

)
(i + n − k)xi+n−k} (2.4)

so,

Ψ
p,q
n (∆x) =

1
Sn

bn∑
m=an+1

∞∑
k=1

smbm,k(i)(∆[r]
p,qxk) =

1
n

n∑
m=1

1
m + 1

i+n∑
k=i

∆[r]
p,qxk.

Morwover, each part on the right hand side of (2.4) being convergent to zero (n→∞), thus we obtain

Ψ
p,q
n (∆x)→ 0.

It implies that

statΨp,q
n (∆x)→ 0.

Hence, (xn) is not deferred weighted B-statistical convergenct, even if it is statistical deferred weighted
B-summable.

3. A Korovkin-Type Theorem via Statistical Deferred WeightedB-Summability

In this section, by using the idea of deferred weighted statistical B-summability with respect to the
difference sequence of order r based on (p, q)-integers, we prove a Korovkin type approximation theorem
(see for details [32]) for a function of two variables. Furthermore, we use (p, q)-analogue of Bernstein
operators for two variables and show that our proposed method is stronger than that of traditional and
statistical versions of Korovkin-type theorems.
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Let CB(D) be the space of all real valued functions (continuous) onD equipped with the norm

‖ f ‖CB(D) = sup{| f (x, y)| : (x, y) ∈ D}, f ∈ CB(D),

whereD is any compact subset.
Let T : CB(D)→ CB(D) be a linear operator and let

f = 0 implies T( f ) = 0,

that is, T is a positive linear operator. Also, we use the notation T( f ; x, y) for the values of T( f ) at the a point
(x, y) ∈ D.

Theorem 3.1. Let B ∈ R+, (an) and (bn) be the sequences of non-negative integers, r be a non-negative integer, and
0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α, β ≤ 1). Let Tn : CB(D) → CB(D) be a sequence of
linear operators (positive) and let f ∈ CB(D). Then

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn( f (s, t); x, y) − f (x, y)‖CB(D) = 0, f ∈ CB(D) (3.1)

if and only if

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(1; x, y) − 1‖CB(D) = 0; (3.2)

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(s; x, y) − x‖CB(D) = 0; (3.3)

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(t; x, y) − y‖CB(D) = 0; (3.4)

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(s2 + t2; x, y) − (s2 + t2)‖CB(D) = 0. (3.5)

Proof. Since each of the functions given by

f0(s, t) = 1, f1(s, t) = s, f2(s, t) = t and f3(s, t) = s2 + t2

is in CB(D), the following implication:

(3.1) =⇒ (3.2) − (3.5)

is trivial. To complete the proof, we have to first assume that (3.2)-(3.5) hold true. Let f ∈ CB(D), for all
(x, y) ∈ D. Since f (x, y) is bounded on D, then there exists a constant M > 0 such that | f (x, y)| 5 K for all
x, y ∈ D, which implies that

| f (s, t) − f (x, y)| 5 2K . (3.6)

Clearly, for a given ε > 0, there exists δ = δ(ε) > 0 such that

| f (s, t) − f (x, y)| < ε whenever |s − x| < δ and |t − y| < δ, (3.7)

for all s, t, x, y ∈ D.

From equation (3.6) and (3.7), we get

| f (s, t) − f (x, y)| < ε +
2K
δ2

(
[ϕ(s, x)]2 + [ϕ(t, y)]2

)
(3.8)

where

ϕ(s, x) = s − x and ϕ(t, y) = t − y.

Further, as f ∈ CB(D), the inequality (3.8) holds for s, t, x, y ∈ D.
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Now, since the operator Tn( f ; x, y) is monotone and linear, so under this operator the inequality in (3.8)
follows:

|Tn( f (s, t); x, y) − f (x, y)| = |Tn( f (s, t) − f (x, y); x, y) + f (x, y)[Tk( f0; x, y) − f0]|
5 |Tn( f (s, t) − f (x, y); x, y) +K [Tk(1; x, y) − 1]|

5

∣∣∣∣∣∣Tn

(
ε +

2K
δ2

[
ϕ(s, x)2 + ϕ(t, y)2

]
; x, y

)∣∣∣∣∣∣ +K|Tn(1; x, y) − 1|

5 ε + (ε +K )|Tn( f0; x, y) − f0(x, y)| +
2K
δ2 |Tn( f3; x, y) − f3(x, y)|

−
4K
δ2 x|Tn( f1; x, y) − f1(x, y)| −

4K
δ2 y|Tn( f2; x, y) − f2(x, y)|

+
2K
δ2 (x2 + y2)|Tn( f0; x, y) − f0(x, y)|

5 ε +

(
ε +K +

2K
δ2 (|x|2 + |y|2)

)
|Tn(1; x, y) − 1|

+
4K
δ2 |Tn( f1; x, y) − f1(x, y)| +

4K
δ2 |Tn( f3; x, y) − f2(x, y)|

+
2K
δ2 |Tn( f3; x, y) − f3(x, y)|. (3.9)

Next, taking supx,y∈D in both side of (3.9), we obtain

‖Tn( f (s, t); x, y) − f (x, y)‖CB(D) 5 ε +N

3∑
j=0

‖Tn( f j(s, t); x, y) − f j(x, y)‖CB(D), (3.10)

where

N =

{
ε +K +

2K
δ2

}
.

We now replace Tn( f (s, t); x, y) by

Ln( f (s, t); x, y) =
1
Sn

bn∑
m=an+1

∞∑
k=0

smbm,k(i)∆[r]
p,q(Tk( f ; x, y)) (∀ i,m ∈N)

in the equation (3.10).
Now, for a given r > 0, we choose ε′ > 0, such that 0 < ε′ < r. Then, upon setting

An = |{n : n 5N and |Ln( f (s, t); x, y) − f (x, y)| = r}|

and

A j,n =

∣∣∣∣∣{n : n 5N and |Ln( f j(s, t); x, y) − f j(x, y)| =
r − ε′

4N

}∣∣∣∣∣ ,
equation (3.10) implies

An 5
3∑

j=0

A j,n.
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Thus we have

‖An‖CB(D)

n
5

3∑
j=0

‖A j,n‖CB(D)

n
. (3.11)

Finally, under the above assumption for the implication in (3.2)-(3.5) and Definition 2.6, the right-hand
side of (3.11) seems to tend to zero (n→∞). Thus, we get

stat D(N̄)p,q
Ψ∆
− lim

n→∞
‖Tn( f j(s, t); x, y) − f j(x, y)‖CB(D) = 0.

Hence, the implication (3.1) holds true. The proof of Theorem 3.1 is thus completed.

Remark 3.2. If we consider B = I (identity matrix), sn = 1, limn qn = 1, limn pn = 1, r = 0, an = 0
and bn = n (∀ n) in our Theorem 3.1, then we obtain classical version of Korovkin type approximation
theorem [32]. Also, if we put B = (C, 1) (Cesàro matrix), sn = 1, limn qn = 1, limn pn = 1, r = 0, an = 0
and bn = n (∀ n) in our Theorem 3.1, then we obtain statistical version of Korovkin-type approximation
theorem [17]. Moreover, if we put B = (A), sn = 1, limn qn = 1, limn pn = 1, r = 0, an = 0 and bn = n (∀ n)
in our Theorem 3.1, then we obtain statistical weightedA-summability version of approximation theorem
(Korovkin-type) [34]. Finally, if we put an + 1 = an, limn qn = 1, limn pn = 1, r = 0 (∀ n) in our Theorem 3.1,
then we obtain statistical weighted B-summability version of Korovkin type approximation theorem (see
[27]).

We now present below an illustrative example for Theorem 3.1 by using (p, q)-analogue of Bernstein
operators of two variables (see [35]).

Example 3.3. Let I = [0, 1] and for a function f ∈ CB(D) onD = I × I, we have the operators

Bn,p,q( f ; x, y) =

n∑
u=0

m∑
v=0

f
(

[u]p,q

pu−n[n]p,q
,

[v]p,q

pv−m[m]p,q

)
Bu,n(x)Bv,m(y) (3.12)

where

Bu,n(x) =
1

p
n(n−1)

2

[
n
u

]
p,q

p
u(u−1)

2 xu
n−u−1∏

s=0

(ps
− qsx)

and

Bv,m(y) =
1

p
m(m−1)

2

[
m
v

]
p,q

p
v(v−1)

2 yv
m−v−1∏

s=0

(ps
− qsy).

Also, observe that

Bn,p,q(1; x, y) = 1, Bn,p,q(s; x, y) = x, Bn,p,q(t; x, y) = y and

Bn,p,q(s2 + t2; x, y) =
pn−1

[n]p,q
x +

pm−1

[m]p,q
y +

q[n − 1]p,q

[n]p,q
x2 +

q[m − 1]p,q

[m]p,q
y2.

Let us consider a positive linear operator Tn as

Tn : CB(D)→ CB(D)

such that

Tn( f ; x, y) = (1 + xn)Bn,pn,qn ( f ; x, y) (0 < qn < pn ≤ 1, ∀ n ∈N), (3.13)
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where (xn) is a sequence as considered in Example 2.8. Clearly, (Tn) satisfies the conditions (3.2)-(3.5) of our
Theorem 3.1, thus we fairly get:

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(1; x, y) − 1‖CB(D) = 0;

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(s; x, y) − x‖CB(D) = 0;

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(t; x, y) − y‖CB(D) = 0;

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn(s2 + t2; x, y) − (s2 + t2)‖CB(D) = 0.

Hence, from Theorem 3.1, we obtain

stat D(N̄)p,q
Ψ∆
− lim

n
‖Tn( f (s, t); x, y) − f (x, y)‖CB(D) = 0, f ∈ CB(D).

Moreover, since (xn) is not statistical weighted B-summable, so the outcomes of Pradhan et al. [38], does
not hold true for our operators defined by (3.13). Moreover, since (xn) is statistical deferred weighted
B-summable with respect to the difference operator of order r based on (p, q)-integers, thus we conclude
that our Theorem 3.1 fairly works for the same operators.

4. Rate of the Deferred WeightedB-Statistical Convergence

In this section, we investigate the rate of the deferred weighted B-statistical convergence of a sequence
of linear operators (positive) of function of two variables defined on CB(D) into itself with the help of the
modulus of continuity.

Definition 4.1. Let B ∈ R+
D(w), r be a non-negative integer, (an) and (bn) be sequences of non-negative inte-

gers. Suppose that 0 < qn < pn ≤ 1 such that limn qn = α and limn pn = β (0 < α < β ≤ 1). Also, let (un)
be a positive non-decreasing sequence. A sequence (xn) is deferred weighted B-statistical convergent to a
number L with rate o(un), if for each ε > 0

lim
n→∞

1
unSn

bn∑
m=an+1

∑
k∈Kε

smbm,k(i) = 0 (uniformly in i),

where

Kε = {k : k 5N and |(∆[r]
p,qx)k − L| = ε}.

Here, we may write

xn − L = statp,q
Ψ∆
− o(un).

Let us now consider the following lemma:

Lemma 4.2. Let (un) and (vn) be two positive non-decreasing sequences. Assume that B ∈ R+
D(w), (an) and (bn) are

sequences of integers (non-negative), and let x = (xn) and y = (yn) be two sequences such that

xn − L1 = statp,q
Ψ∆
− o(un)

and

yn − L2 = statp,q
Ψ∆

= o(vn).

Then, each of the following assertions hold true:
(i) (xn − L1) ± (yn − L2) = statp,q

Ψ∆
− o(wn);
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(ii) (xn − L1)(yn − L2) = statp,q
Ψ∆
− o(unvn);

(iii) γ(xn − L1) = statp,q
Ψ∆
− o(un) (for any scalar γ);

(iv)
√
|xn − L1| = statp,q

Ψ∆
− o(un),

where wn = max{un, vn}.

Proof. To prove the assertion (i) of Lemma 4.2, we define the following sets for ε > 0 and x ∈ D:

Nn =
∣∣∣∣{k : k 5 Sn and |

(
∆[r]

p,qxk + ∆[r]
p,qyk

)
− (L1 + L2)| = ε

}∣∣∣∣ ,
N0;n =

∣∣∣∣∣{k : k 5 Sn and |∆[r]
p,qxk − L1| =

ε
2

}∣∣∣∣∣
and

N1,n =

∣∣∣∣∣{k : k 5 Sn and |∆[r]
p,qyk − L2| =

ε
2

}∣∣∣∣∣ .
Clearly, we have

Nn ⊆ N0,n ∪N1,n

and this implies that, for n ∈N,

lim
n→∞

1
Sn

bn∑
m=an+1

∑
k∈Nn

smbm,k(i) 5 lim
n→∞

1
Sn

bn∑
m=an+1

∑
k∈N0,n

smbm,k(i)

5 lim
n→∞

1
Sn

bn∑
m=an+1

∑
k∈∞,Nn

smbm,k(i). (4.1)

Moreover, since

wn = max{un, vn}, (4.2)

so by (4.1), we get

lim
n→∞

1
wnSn

bn∑
m=an+1

∑
k∈Nn

smbm,k(i) 5 lim
n→∞

1
unSn

bn∑
m=an+1

∑
k∈N0,n

smbm,k(i)

5 lim
n→∞

1
vnSn

bn∑
m=an+1

∑
k∈N1,n

smbm,k(i). (4.3)

Further, by applying Theorem 3.1, we get

lim
n→∞

1
wnSn

bn∑
m=an+1

∑
k∈Nn

smbm,k(i) = 0. (4.4)

This proves the assertion (i) of Lemma 4.2.
Next, assertions (ii) to (iv) being similar to (i), so in the similar lines it can be proved. This completes

the proof of Lemma 4.2.
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We now recall the modulus of continuity, f (x, y) ∈ CB(D) given by

ω( f ; δ) = sup
(s,t),(x,y)∈D

{
| f (s, t) − f (x, y)| :

√
(s − x)2 + (t − y)2 5 δ

}
(δ > 0), (4.5)

and this implies that

| f (s, t) − f (x, y)| 5 ω
[

f ;
√

(s − x)2 + (t − y)2
]
. (4.6)

Now we prove the following theorem.

Theorem 4.3. Let B ∈ R+
D(W) and (an) and (bn) be sequences of integers (non-negative). Let Tn : CB(D) → CB(D)

be sequences of linear operators (positive). Also let (un) and (vn) be the positive non-decreasing sequences. Suppose
that the following conditions are satisfied:

(i) ‖Tn(1; x, y) − 1‖CB(D) = statp,q
Ψ∆
− o(un);

(ii) ω( f , λn) = statp,q
Ψ∆
− o(vn) onD,

where

λn =
√
‖Tn(ψ2(s, t), x, y)‖CB(D) and ψ(s, t) = (s − x)2 + (t − y)2.

Then, for all f ∈ CB(D), the assertion as below holds true:

‖Tn( f ; x, y) − f (x, y)‖CB(D) = statp,q
Ψ∆
− o(wn), (4.7)

where (wn) is given by (4.2).

Proof. Let f ∈ CB(D) and (x, y) ∈ D. Using (4.6), we get

|Tn( f ; x, y) − f (x, y)| 5 Tn(| f (s, t) − f (x, y)|; x, y) + | f (x, y)||Tn(1; x, y) − 1|

5 Tn


√

(s − x)2 + (t − y)2

δ
+ 1; x, y

ω( f , δ) + M|Tn(1; x, y) − 1|

5
(
Tn(1; x, y) +

1
δ2 Tn(ψ(s, t); x, y)

)
ω( f , δ) + M|Tn(1; x, y) − 1|,

where
M = ‖ f ‖CB(D).

Now, by taking supremum over (x, y) ∈ D on both sides, we get

‖Tn( f ; x, y) − f (x, y)‖CB(D) 5 ω( f , δ)
{ 1
δ2 ‖Tn(ψ(s, t); x, y)‖CB(D) + ‖Tn(1; x, y) − 1‖CB(D) + 1

}
+M‖Tn(1; x, y) − 1‖CB(D).

Now, substituting δ = λn =
√

Tn(ψ2; x, y), we obtain

‖Tn( f ; x, y) − f (x, y)‖CB(D) 5 ω( f , λn)
{
‖Tn(1; x, y) − 1‖CB(D) + 2

}
+ M‖Tn(1; x, y) − 1‖CB(D)

5 ω( f , λn)‖Tn(1; x, y) − 1‖CB(D) + 2ω( f , λn) + M‖Tn(1; x, y) − 1‖CB(D).

So, we fairly get

‖Tn( f ; x, y) − f (x, y)‖CB(D) 5 ϑ
{
ω( f , λn)‖Tn(1; x, y) − 1‖CB(D) + ω( f , λn) + ‖Tn(1; x, y) − 1‖CB(D)

}
.
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ϑ = max{2,M}. (4.8)

Next, for a given ε > 0, we consider the sets as follows:

Hn =
{
n : n 5 Sn and ‖Tn( f ; x, y) − f (x, y)‖CB(D) = ε

}
; (4.9)

H0,n =

{
n : n 5 Sn and ω( f , λn)‖Tn( f ; x, y) − f (x, y)‖CB(D) =

ε
3µ

}
; (4.10)

H1,n =

{
n : n 5 Sn and ω( f , λn) =

ε
3µ

}
(4.11)

and

H2,n =

{
n : n 5 Sn and ‖Tn(1; x, y) − 1‖CB(D) =

ε
3µ

}
. (4.12)

Finally, by conditions (i) and (ii) of Theorem 4.3, together with Lemma 4.2, the last inequalities (4.9)-(4.12)
lead us to the assertion (4.7) of Theorem 4.3 and it completes the proof of Theorem 4.3.

5. Concluding Remarks and Observations

In this concluding section of our study, we present some further observations and remarks in relevance
to different results that we have proved here.

Remark 5.1. Let (xn)n∈N be the sequence given in Example 2.8. Then, since

stat D(N̄)p,q
Ψ∆
− lim

n→∞
xn → 0 on CB(D),

we have

stat D(N̄)p,q
Ψ∆
− lim

n→∞
‖Tn( f j; x, y) − f j(x, y)‖CB(D) = 0 ( j = 0, 1, 2, 3). (5.1)

Hence, by applying Theorem 3.1, we have

stat D(N̄)p,q
Ψ∆
− lim

n→∞
‖Tn( f ; x, y) − f (x, y)‖CB(D) = 0, f ∈ CB(D), (5.2)

where

f0(s, t) = 1, f1(s, t) = s f2(s, t) = t and f3(s, t) = s2 + t2.

However, since (xn) is not ordinary convergent and so also it does not converge uniformly in the usual sense.
Thus, the usual Korovkin-type theorem does not work here for the operators defined by (3.13). Hence,
this application clearly indicates that our Theorem 3.1 is a non-trivial generalization of the traditional
Korovkin-type theorem (see [32]).

Remark 5.2. Let (xn)n∈N be the sequence as given in Example 2.8. Then, since

stat D(N̄)p,q
Ψ∆
− lim

n→∞
xn → 0 on CB(D),

so (5.1) holds. Now by applying (5.1) and our Theorem 3.1, condition (5.2) holds. However, since (xn) does
not deferred weighted B-statistically converge, we can say that the result of Pradhan et al. ([38], p. 11,
Theorem 3) does not hold true for our operator defined in (3.13). Thus, our Theorem 3.1 is also a non-trivial
extension of Pradhan et al. ([38], p. 11, Theorem 3) and [36]. Based upon the above results, it is concluded
here that our proposed method has successfully worked for the operators defined in (3.13) and therefore, it
is stronger than the classical and statistical versions of the Korovkin type approximation theorems (see [38]
and [32]) established earlier.
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Remark 5.3. If we replace the conditions (i) and (ii) in our Theorem 4.3 by the following condition:

|Tn( f j; x, y) − f j(x, y)|CB(D) = statp,q
Ψ∆
− o(un j ) ( j = 0, 1, 2, 3), (5.3)

then we can write

Tn(ϕ2; x, y) = N
3∑

j=0

‖Tn( f j(s, t); x, y) − f j(x, y)‖CB(D), (5.4)

where

N =
{
ε + M +

2M
δ2

}
, ( j = 0, 1, 2, 3).

It thus follows from (5.3), (5.4) and Lemma 4.2 that

λn =
√

Tn(ϕ2) = statp,q
Ψ∆
− o(dn) on CB(D), (5.5)

where

o(dn) = max{un0 ,un1 ,un2 ,un3 }.

Hence, we fairly get

ω( f , δ) = statp,q
Ψ∆
− o(dn) on CB(D).

By using (5.5) in Theorem 4.3, we immediately see for all f ∈ CB(D) that

Tn( f ; x, y) − f (x, y) = statp,q
Ψ∆
− o(dn) on CB(D). (5.6)

Hence, if we use condition (5.3) in Theorem 4.3 in place of conditions (i) and (ii), then certainly we get the
rates of the deferred weighted B-statistical convergence of the sequence (Tn) of linear operators (positive)
in Theorem 3.1.
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