
Filomat 33:5 (2019), 1417–1424
https://doi.org/10.2298/FIL1905417A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We describe the set of holomorphic functions from the Hardy space Hq, 1 ≤ q ≤ ∞, for which
the best polynomial approximation En( f )q is equal to | f (n)(0)|/n!.

1. Introduction

LetD := {z ∈ C : |z| < 1}, T := {z ∈ C : |z| = 1} and let dm be a normalized Lebesgue measure on T. The
Hardy space Hq for 1 ≤ q ≤ ∞ is the class of holomorphic in theD functions f satisfied ‖ f ‖q < ∞, where

‖ f ‖q :=


sup
ρ∈(0,1)

(∫
T

| f (ρt)|qdm(t)
)1/q

, 1 ≤ q < ∞,

sup
z∈D
| f (z)|, q = ∞.

The best approximation of f ∈ Hq is the quantity

En( f )q := inf
Pn−1∈Pn−1

‖ f − Pn−1‖q, n ∈N,

where Pn−1 is the set of all algebraic polynomials of degree at most n − 1.
The polynomial P∗n−1 satisfied ‖ f −P∗n−1‖q = En( f )q is called a best approximation to f among the setPn−1

in the metric ‖ · ‖q.

It is well known that for Taylor coefficients f̂k := f (k)(0)
k! of any function f ∈ Hq, 1 ≤ q ≤ ∞, the Cauchy’s

inequality holds:∣∣∣∣ f̂k∣∣∣∣ ≤ ‖ f ‖q ∀ k ∈ Z+.
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More precise inequalities are∣∣∣∣ f̂k∣∣∣∣ ≤ Ek( f )q ∀ k ∈ Z+. (1)

It is easy to see that

En( f )2 =
∣∣∣∣ f̂n∣∣∣∣ > 0 (2)

if and only if

f (z) =

n∑
k=0

f̂kzk,
∣∣∣∣ f̂n∣∣∣∣ > 0. (3)

Let us call a holomorphic function f trivial polynomial if f has the form (3) (or, equivalently, which
satisfies (2)) for a given natural n.

It is clear that for any q ≥ 1, given natural n and a trivial polynomial f we have equality

En( f )q =
∣∣∣∣ f̂n∣∣∣∣ .

The following question arise naturally: Does there exist a non trivial polynomial f ∈ Hq, 1 ≤ q ≤ ∞,
such that for given natural n,

En( f )q =
∣∣∣∣ f̂n∣∣∣∣ ?

As we will show later, a positive answer to this question is confirmed if and only if q = 1.
More precisely, the aim of the paper is to describe the set of functions f ∈ Hq, 1 ≤ q ≤ ∞, for which

En( f )q =
∣∣∣∣ f̂n∣∣∣∣

for a given natural n.

2. Main Results

We begin with the simpler case, when 1 < q ≤ ∞.

Theorem 2.1. Suppose that n,N ∈ N, n ≤ N, f ∈ Hq, 1 < q ≤ ∞ and
∣∣∣∣ f̂N∣∣∣∣ > 0. The equality Ek( f )q =

∣∣∣∣ f̂N∣∣∣∣,
k = n, . . . ,N, holds true if and only if

f (z) =

n−1∑
l=0

f̂lzl + f̂NzN.

Moreover, the polynomial

P∗n−1(z) =

n−1∑
l=0

f̂lzl

is the unique best approximation to f among class Pk−1 for each k = n, . . . ,N, in the metric ‖ · ‖q.

Corollary 2.2. There is no function f ∈ Hq, 1 < q ≤ ∞, such that

Ek( f )q =
∣∣∣∣ f̂k∣∣∣∣ = const > 0, k = n, . . . ,N,

for some natural numbers n and N, n < N.
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Proof. Sufficiency of this assertion is obvious. To see necessity, observe first of all, that for any s ∈ [1, q],

Ek( f )1 ≤ En( f )s ≤ Ek( f )q =
∣∣∣∣ f̂N∣∣∣∣, k = n, . . . ,N. Hence, if we take into account the inequality (1), we obtain the

equality

EN( f )s =
∣∣∣∣ f̂N∣∣∣∣ ∀ s ∈ [1, q]. (4)

Denote by P∗n−1(z) =
∑n−1

l=0 cl,n,qzl the polynomial of best approximation to f in the metric ‖·‖q and suppose
that 1 < q ≤ 2. Then by Hausdorff–Young inequality we get

n−1∑
l=0

∣∣∣∣ f̂l − cl,n,q

∣∣∣∣q′ +

∞∑
l=n

∣∣∣∣ f̂l∣∣∣∣q′ ≤ (
Ek( f )q

)q′
=

∣∣∣∣ f̂N∣∣∣∣q′ , 1
q

+
1
q′

= 1.

Consequently,

ck,n,q = f̂k, k = 0, 1, . . . ,n − 1,

and

f̂k = 0, k = n,n + 1 . . . , k , N.

The case when 2 < q ≤ ∞ follows immediately from the above if we take into account (4).
The uniqueness of the polynomial of best approximation follows by general theorem (see, for example

[2]).

The situation in case q = 1 is much more complicated.
The following is the main result of the paper.

Theorem 2.3. Suppose that n ∈N, f ∈ H1 and
∣∣∣∣ f̂n∣∣∣∣ > 0. The equality En( f )1 =

∣∣∣∣ f̂n∣∣∣∣ holds true if and only if

f (z) =

2n∑
k=0

f̂kzk (5)

and

2 Re
n∑

k=0

f̂n+k

f̂n
zk
≥ 1 ∀ z ∈ T. (6)

Moreover, the polynomial

P∗n−1(z) =

n−1∑
k=0

(
f̂k − f̂2n−kei2 arg f̂n

)
zk (7)

is the unique best approximation to f among the set Pn−1 in the metric ‖ · ‖1.

Proof. To our goal we need the following

Lemma 2.4. Suppose that n ∈N, f ∈ H1, and
∣∣∣∣ f̂n∣∣∣∣ > 0. The following assertions are equivalent:

(i)

2 Re
∞∑

k=n

f̂k

f̂n
zk−n
≥ 1 ∀ z ∈ D;
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(ii)

inf
1∈Pn−1+H1

‖ f − 1‖1 =
∣∣∣∣ f̂n∣∣∣∣ , (8)

where

Pn−1 + H1
0 :=

{
1 = P + h : P ∈ Pn−1, h ∈ H1

0

}
, H1

0 :=
{
h ∈ H1 : h(0) = 0

}
;

(iii) the function

1∗(z) =

n−1∑
k=0

(
f̂k − f̂2n−kei2 arg f̂n

)
zk
− ei2 arg f̂n

 ∞∑
k=2n+1

f̂kzk−2n

 (9)

is the unique best approximation to f among the set Pn−1 + H1
0 in the metric ‖ · ‖1.

This lemma is a slight improvement of the main result of [4]. Namely, we decompose the statement
”(i) ⇔ ((ii) ∧ (iii))”, proved in [4, Theorem 3], for the equivalence ”(i) ⇔ (ii) ⇔ (iii)”. The proof of Lemma
2.4 essentially not differ from original one in [4].

Returning to the proof of Theorem 2.3, firs we prove the direct implication.
It is obvious that∣∣∣∣ f̂n∣∣∣∣ ≤ inf

1∈Pn−1+H1
‖ f − 1‖1.

On the other side,

inf
1∈Pn−1+H1

‖ f − 1‖1 ≤ En( f )1.

Thus

inf
1∈Pn−1+H1

‖ f − 1‖1 = En( f )1 =
∣∣∣∣ f̂n∣∣∣∣ .

So, the function 1∗ := P∗, where P∗ is a polynomial of best approximation to f among the set Pn−1, is
the best approximation to f among the set Pn−1 + H1. But by Lemma 2.4 such function 1∗ is unique and
has the form (9). Hence the polynomial P∗ is unique and has the form (7). This yields equalities f̂k = 0 for
k = 2n + 1, . . ., that is, f has the form (5) required by Theorem 2.3. By Lemma 2.4 all this facts are equivalent
to (6).

Let us prove the inverse implication. Suppose that (5) and (6) are satisfied. Than by Lemma 2.4, the
equality (8) hold, that is also equivalent to assertion (iii) of Lemma 2.4. Thus the function P∗ := 1∗ has the
form (7) and

En( f )1 ≤ ‖ f − P∗‖1 =
∣∣∣∣ f̂n∣∣∣∣ .

The result follows by (1).

Remark 2.5. If function f satisfy conditions (5) and (6), then∣∣∣∣ f̂n∣∣∣∣ > ∣∣∣∣ f̂n+1

∣∣∣∣ , . . . , ∣∣∣∣ f̂2n

∣∣∣∣ .
Indeed,∣∣∣∣∣∣∣ f̂k+n

f̂n

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫ 2π

0

1 + 2 Re
n∑

l=1

f̂l+n

f̂n
eilx

 e−ikx dx
2π

∣∣∣∣∣∣∣ ≤
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≤

∫ 2π

0

1 + 2 Re
n∑

l=1

f̂l+n

f̂n
eilx

 dx
2π

= 1, k = 1, 2, . . . ,n.

If we suppose that
∣∣∣∣ f̂l+n

∣∣∣∣ =
∣∣∣∣ f̂n∣∣∣∣, l = 1, . . . ,n, we would obtain that trigonometric polynomial

Tn(x) = 1 + 2 Re
n∑

l=1

f̂l+n

f̂n
eilx = 1 + 2

n∑
l=1

(cosθl cos(lx) + sinθl sin(lx)) ,

where θl = arg f̂l+n − arg f̂n, is positive. Thus by Egerváry–Szász’s theorem [3],(
(2 cosθk)2 + (2 sinθk)2

)1/2
= 2 ≤ 2 cos

π[n
k

]
+ 2

, k = 1, 2, . . . ,n, .

We have the contradiction.
Taken into account Remark 2.5, we conclude similarly to Corollary 2.2, that there is no polynomial f of

degree 2n,n ∈N, such that
∣∣∣∣ f̂n∣∣∣∣ = . . . =

∣∣∣∣ f̂2n

∣∣∣∣ = c > 0 and Ek( f )1 = c for k = n, . . . , 2n. But in the next assertion
we shall establish that there exist polynomial f of degree 2n, such that

Ek( f )1 =
∣∣∣∣ f̂k∣∣∣∣ , k = n, . . . , 2n. (10)

Corollary 2.6. Suppose that n ∈N and f (z) =
∑2n

l=0 f̂lzl,
∏2n

l=n

∣∣∣∣ f̂l∣∣∣∣ > 0. The equality (10) holds true if and only if

2 Re
2n−k∑
l=0

f̂k+l

f̂k
zl
≥ 1 ∀ z ∈ T, k = n, . . . , 2n − 1.

Moreover, the polynomials

P∗k−1(z) =

2(k−n)−1∑
l=0

f̂lzl +

k−1∑
l=2(k−n)

(
f̂l − f̂2k−lei2 arg f̂k

)
zl, k = n, . . . , 2n,

(the sum
∑M

l=N · · · for M < N is empty) are the unique best approximation to f among class Pk−1 in the metric ‖ · ‖1.

As an illustration to Corollary 2.6 we state following assertions that are also of some independent
interest.

Example 2.7. Suppose that n ∈N, {al}
2n
l=n be sequence of positive numbers and let

f (z) = P(z) +

2n∑
l=n

alzl, P ∈ Pn−1.

If

an+ j − 2an+ j+1 + an+ j+2 ≥ 0, j = 0, 1, . . . ,n − 2, n ≥ 2,

and

a2n−1 − 2a2n ≥ 0,
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then

Ek( f )1 =

ak, k = n, . . . , 2n,
0, k ≥ 2n + 1.

(11)

The polynomials

P∗k−1(z) =


P(z) −

k−1∑
l=2(k−n)

a2k−lzl +

k−1∑
l=n

alzl, k = n, . . . , 2n,

f (z), k ≥ 2n + 1

are the best approximations to f among class Pk−1, k = n, . . . , 2n, in the norm ‖ · ‖1.

Indeed, the trigonometric polynomials

Tk(θ) :=
an+k

2
+

n−k∑
l=1

an+k+l cos(lθ), k = 0, 1, . . . ,n,

where the sum
∑0

l=1 · · · is empty, are not negative for all θ ∈ [0, 2π] [4]. Therefore for each k = n, . . . , 2n,

1 + 2 Re

2n−k∑
l=1

ak+l

ak
zl +

k∑
l=2n−k+1

0
ak

zl

 =

=
1
ak

Tk−n(θ) ≥ 0 ∀ θ ∈ [0, 2π], z = eiθ.

Example 2.8. Suppose that n ∈N, 0 ≤ ρ ≤ 1
2 and let

f (z) =

2n∑
l=0

ρlzl.

Then

Ek( f )1 =

ρk, k = n, . . . , 2n,
0, k ≥ 2n.

The polynomials

P∗k−1(z) =


2(k−n)−1∑

l=0

ρlzl +

k−1∑
l=2(k−n)

(
1 − ρ2(k−l)

)
ρlzl, k = n, . . . , 2n,

f (z), k ≥ 2n

are the best approximations to f among the class Pk−1 in the metric ‖ · ‖1.

Indeed, the coefficients al := ρl, l = n, . . . , 2n, satisfies the conditions of Example 2.7:

an+ j − 2an+ j+1 + an+ j+2 = ρn+ j (1 − ρ)2
≥ 0, j = 0, 1, . . . ,n − 2,
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a2n−1 − 2a2n = ρ2n−1 (
1 − 2ρ

)
≥ 0 ∀ ρ ∈

[
0,

1
2

]
.

Let us remark that bound ρ ≤ 1
2 in Example 2.8 can not be improved in general case. Namely, if n = 1

the criteria (6) take the following form

1 + 2 Re
n∑

k=1

ak+1

an
zk = 1 + 2ρ cosθ ≥ 0 ∀ θ ∈ [0, 2π]⇔ 0 ≤ ρ ≤

1
2
. (12)

In the following assertion we give a generalization of criteria (12) for arbitrary natural n.

Theorem 2.9. Suppose that n ∈N, 0 < ρ < 1 and let

f (z) =

2n∑
k=0

ρkzk.

Then the following assertions are equivalent:

(i) En( f )1 = ρn;

(ii) 1 − ρ2
− 2ρn+1 (

cos ((n + 1)t) − ρ cos(nt)
)
≥ 0 ∀ t ∈ [0, 2π]. (13)

Proof. First of all we establish the following

Lemma 2.10. Let the function 1(z) =
∑
∞

k=0 ckzk be holomorphic in the diskD and suppose that |c0| > 0. Then

2 Re
∞∑

k=0

ck

c0
zk
≥ 1 ∀ z ∈ D (14)

iff

|1(z)|2 ≥ |1(z) − c0|
2
∀ z ∈ D.

This follows immediately from obvious identity

2 Re ζ − 1 = |ζ|2 − |ζ − 1|2 ∀ ζ ∈ C.

Returning to the proof of Theorem 2.9 we note that by Theorem 2.3,

En( f )1 = ρn
⇐⇒ 2 Re

n∑
k=0

ρkzk
≥ 1 ∀ z ∈ T.

Further, by Lemma 2.10 we have the equivalence

2 Re
n∑

k=0

ρkzk
≥ 1 ∀ z ∈ T⇐⇒

⇐⇒

∣∣∣∣∣∣∣
n∑

k=0

ρkzk

∣∣∣∣∣∣∣
2

≥

∣∣∣∣∣∣∣
n∑

k=1

ρkzk

∣∣∣∣∣∣∣
2

∀ z ∈ T

It is easy to see that last inequality is equivalent to∣∣∣1 − ρn+1zn+1
∣∣∣2 ≥ ρ2

∣∣∣1 − ρnzn
∣∣∣2 ∀ z ∈ T,

that after simplifying is equivalent to such one

1 − 2ρn+1 cos ((n + 1)t) + ρ2(n+1)
≥ ρ2

(
1 − 2ρn cos(nt) + ρ2n

)
∀ z = eit

∈ T.
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