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Abstract. In this paper we define the q-Laguerre type polynomials Un(x, y, z; q), which include q-Laguerre
polynomials, generalized Stieltjes-Wigert polynomials, little q-Laguerre polynomials and q-Hermite poly-
nomials as special cases. We also establish a generalized q-differential operator, with which we build
the relations between analytic functions and Un(x, y, z; q) by using certain q-partial differential equations.
Therefore, the corresponding conclusions about q-Laguerre polynomials, little q-Laguerre polynomials and
q-Hermite polynomials are gained as corollaries. As applications, some generating functions and general-
ized Andrews-Askey integral formulas are given in the final section.

1. Introduction

The explicit form of q-Laguerre polynomials are

L(α)
n (x; q) =

(qα+1; q)n

(q; q)n

n∑
k=0

[
n
k

]
q

(−1)k qk2+kα

(qα+1; q)k
xk, α > −1. (1)

q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey
scheme [24, 33]. More detailed researches can be found in the papers [6, 14, 15, 17, 18, 22–25, 32, 33].

The little q-Laguerre (or Wall) polynomials are

pn(x, a; q) = 2φ1(q−n, 0; aq; q, qx) =
(−1)nq−(

n
2)

(aq; q)n

n∑
k=0

[
n
k

]
q

(−1)kq(k
2) (aq; q)n

(aq; q)n−k
xn−k, a , q−1, q−2, · · · , (2)

where rφs are the basic hypergeometric series [19, Eq. (1.2.22)] defined by

rφs

( a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z
)

=

∞∑
n=0

(
a1, a2, . . . , ar; q

)
n(

q, b1, b2, . . . , bs; q
)

n

[
(−1)nq(n

2)
]1+s−r

zn, (3)

2010 Mathematics Subject Classification. Primary 05A30; Secondary 11B65, 33D15, 33D45, 39A13
Keywords. q-series, q-derivative, q-partial differential equation, q-Laguerre polynomial, little q-Laguerre polynomial, q-Hahn

polynomial, generating function
Received: 09 August 2018; Revised: 05 February 2019; Accepted: 09 February 2019
Communicated by Ljubiša D.R. Kočinac
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which if 0 < |q| < 1, converges absolutely for all z if r ≤ s and for |z| < 1 if r = s + 1.
The q-Hahn (or Al-Salam-Carlitz [4]) polynomials [2, 12] are defined by

φ(b)
n (z; q) =

n∑
k=0

[
n
k

]
q

(b; q)kzk and ψ(b)
n (z; q) =

n∑
k=0

[
n
k

]
q

qk(k−n)(bq1−k; q)kzk. (4)

In [9], Cao introduced a generalized version of (4):

φ(a,b,c)
n (x, y; q) =

n∑
k=0

[
n
k

]
q

(a; q)k(b; q)k

(c; q)k
xkyn−k (5)

and

ψ(a,b,c)
n (x, y; q) =

n∑
k=0

(−1)k
[
n
k

]
q

(a; q)k(b; q)k

(c; q)k
q−nk+(k+1

2 )xkyn−k. (6)

For nonzero series ck that are independent of n, we define a class of generalized q-Laguerre type
polynomials

Un(x, y, z; q) =

n∑
k=0

(−1)kck

[
n
k

]
q

qrnk−r(k+1
2 ) (aq; q)n

(aq; q)n−k
xn−kyn−kzk, r ∈ R, a , q−1, q−2, · · · , (7)

particularly, we choose

ck = ωkλ(k
2) (β, d)k(η, d)k

(γ; h)k
, ω, λ, β, η, γ, d, h ∈ C, γ , 1, h−1, h−2, · · · , (8)

in the rest of the paper. Many konwn polynomials, such as the little q-Laguerre polynomials, q-Hahn
polynomials, q-Laguerre polynomials and generalized Stieltjes-Wigert polynomials are special cases of (7).

In fact, taking r = 0 and ck = q(k
2) in (7) yields generalized little q-Laguerre polynomials

Pn(x, y, z; q) =

n∑
k=0

(−1)kq(k
2)
[
n
k

]
q

(aq; q)n

(aq; q)n−k
xn−kyn−kzk. (9)

It is clear that

pn(x, a; q) =
(−1)nq−(

n
2)

(aq; q)n
Pn(x, 1, 1; q).

Choosing r = 0 and ck = (−1)k(b; q)k in (7), we get generalized q-Hahn polynomials

Φ(a,b)
n (x, y, z; q) =

n∑
k=0

(b; q)k

[
n
k

]
q

(aq; q)n

(aq; q)n−k
xn−kyn−kzk, (10)

which become φ(b)
n (z; q) in (4) by letting a = 0 and x = y = 1 in (10).

Set r = −1 and ck = (−1)kq(k
2)(aq1−k; q)k in (7) to get

Ψ (a,b)
n (x, y, z; q) =

n∑
k=0

[
n
k

]
q

qk(k−n)(bq1−k; q)k
(aq; q)n

(aq; q)n−k
xn−kyn−kzk. (11)

Obviously, polynomials (11) reduce to ψ(b)
n (z; q) in (4) by letting a = 0 and x = y = 1 in (11).
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Taking r = −2 and ck = (bq)−k in (7), we get generalized q-Laguerre polynomials

L
(a,b)
n (x, y, z; q) =

n∑
k=0

(−1)kqk2
−2nkb−k

[
n
k

]
q

(aq; q)n

(aq; q)n−k
xn−kyn−kzk. (12)

Set a = b = qα and y = z = 1 in (12) to get

L(α)
n (x; q) =

(qα+1; q)n

(q; q)n
L

(qα,qα)
n (x, 1, 1; q).

Set b =
√

q and y = z = 1 in (12) to get the generalized Stieltjes-Wigert polynomials ([19], p. 214)

Sn(x; aq; q) =

n∑
k=0

(−1)kqk2
−2nk− k

2

[
n
k

]
q

(aq; q)n

(aq; q)n−k
xn−k.

Letting r = a = 0, ck = (−1)k(α; q)k(η; q)k/(γ; q)k and y = 1 in (7) gives (5). Choosing r = −1, a = 0,
ck = (α; q)k(η; q)k/(γ; q)k and y = 1 in (7) yields (6).

In recent years, by using the theory of analytic functions of several complex variables, Liu published a
series of papers to prove that if an analytic function in several variables satisfies a system of q-partial (or
partial) differential equations, then it can be expanded in terms of certain important polynomials. Many
orthogonal polynomials are studied and their applications are obtained, please see [5, pp. 445-461], [26–30]
for details. In [7–11], Cao applied Liu’s methods of q-partial difference equations to various q-orthogonal
polynomials and proved many q-identities and q-integrals.

Liu’s method shows its universality when applied to many q-orthogonal polynomials or classical or-
thogonal polynomials. However we find it hardly be used directly to q-Laguerre and more complicated
polynomials. In [34], we introduced a modified q-differential operator and obtained relations between a spe-
cial form of q-Laguerre polynomials and q-differential equations. In this paper, we define q-Laguerre type
polynomials Un(x, y, z; q) and then the q-Laguerre, little q-Laguerre, q-Hahn (or Al-Salam-Carlitz) polyno-
mials become special cases of Un(x, y, z; q). By introducing a generalized q-differential operator, using Liu’s
method, we find that when a analytic function satisfies certain q-partial differential equation with general-
ized q-differential operator, then it can be expressed in terms of q-Laguerre type polynomials Un(x, y, z; q).
Finally, we obtain generating functions for Un(x, y, z; q) and generalized Andrews-Askey integral formulas
as applications.

The q-differential operators Dx and θx ([9]) are defined by

Dx{ f (x)} =
f (x) − f (qx)

x
and θx{ f (x)} =

f (xq−1) − f (x)
xq−1 . (13)

When f (x) is differentiable at x, we have

lim
q→1

Dx{ f (x)}
1 − q

= f ′(x).

We give a more general q-differential operator including both Dx and θx as special cases as follows.

Definition 1.1. Let a > 0 and r be real number, for any function f (x) of one variable, the Generalized
q-derivative of f (x) with respect to x is defined as

(r,a)Dx{ f (x)} =

 f (xqr)−a f (xqr+1)
xqr , f (x) is not a constant function,

0, f (x) is a constant function.
(14)

We define (r,a)D
0
x{ f (x)} = f (x) and (r,a)D

n
x{ f } = (r,a)Dx{(r,a)D

n−1
x { f }}.
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Remark 1.2. It’s obvious that (0,1)Dx{ f (x)} = Dx{ f (x)} and (−1,1)Dx{ f (x)} = θx{ f (x)}.
For the sake of simplicity, we use δx{ f (x)} , (0,1)Dx{ f (x)}, ∂x{ f (x)} , (r,1)Dx{ f (x)}, τr,x{ f (x)} , (r,a)Dx{ f (x)}

for a > 0 in the following of this paper.

The q-shift operator ηr
xi

for a function f (x1, x2, · · · , xk) is defined by

ηr
xi
{ f (x1, x2, · · · , xk)} = f (x1, x2, · · · , xi−1, qrxi, xi+1, · · · , xk) i = 1, 2, · · · , k, r ∈ R.

We now give the q-Leibniz formula for (r,a)Dx.

Theorem 1.3. For positive integer n and 1(x) not a constant, we have

(r,a)D
n
x{ f (x)1(x)} =

n∑
k=0

[
n
k

]
q

akq(1+r)k(k−n)∂k
x{ f (xqrn−rk)} · (r,a)D

n−k
x {1(xqrk+k)} (15)

Remark 1.4. Taking r = 0 in (15) yields the q-Leibniz formula obtained in [34]. Setting a = 1, r = 0 in (15),
we get the ordinary q-Leibniz formula ([19], p. 27). Choosing a = 1, r = −1 in (15) leads to the q-Leibniz
formula for θx in [13].

The following lemma 1.5 is useful in the proof of Theorem 1.3.

Lemma 1.5. ([16, 21]) Let A and B be two linear operators such that BA = qAB, then we have

(A + B)n =

n∑
k=0

[
n
k

]
q

AkBn−k.

Proof. [Proof of Theorem 1.3] For convenience, the q-shift operator ηx acting on function f (x) is denoted by
η f . The operator (r,a)Dx acting on f (x) is denoted by (r,a)D f , the operator ∂x acting on f (x) is denoted by ∂ f .

Let A = (r,a)D1ηr
f and B = aηr+1

1 ∂ f , it is easy to verify qrηr
f∂ f = ∂ fηr

f and qr+1ηr+1
1 · (r,a)D1 = (r,a)D1ηr+1

1 . Then
we have

BA{ f (x)1(x)} =aηr+1
1 ∂ fη

r
f { f (x)} · (r,a)D1{1(x)} = aηr+1

1 qrηr
f∂ f { f (x)} · (r,a)D1{1(x)}

=aqrηr
f∂ f { f (x)}q−r−1

· (r,a)D1η
r+1
1 {1(x)} = q−1AB{ f (x)1(x)}.

If f (x)1(x) is not a constant, by Definition 14, we have

(r,a)Dx{ f (x)1(x)} =
f (xqr)1(xqr) − a f (xqr+1)1(xqr+1)

xqr

= f (xqr)
1(xqr) − a1(q1+rx)

x
+ a1(qr+1x)

f (xqr) − f (qr+1x)
xqr

=((r,a)D1η
r
f + aηr+1

1 ∂ f ){ f (x)1(x)}

=(A + B){ f (x)1(x)}.

(16)

If f (x)1(x) is a constant, equation (r,a)Dx{ f (x)1(x)} = 0 = (A + B){ f (x)1(x)} is valid too.
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Using Lemma 1.5 and the fact of ηr(n−k)
f ∂k

f = qkr(n−k)∂k
fη

r(n−k)
f , we have

(r,a)D
n
x{ f (x)1(x)} =(A + B)n

{ f (x)1(x)} =
n∑

k=0

[
n
k

]
q−1

An−kBk
{ f (x)1(x)}

=

n∑
k=0

[
n
k

]
q−1

ηr(n−k)
f · (r,a)D

n−k
1 akηk(r+1)

1 ∂k
f { f (x)1(x)}

=

n∑
k=0

[
n
k

]
q−1

(r,a)D
n−k
1 {1(xqk(r+1))}akqkr(k−n)∂k

f { f (xqr(n−k))}

=

n∑
k=0

[
n
k

]
q

akq(1+r)k(k−n)∂k
x{ f (xqrn−rk)} · (r,a)D

n−k
x {1(xqrk+k)}.

The proof of Theorem 1.3 is completed.

The next equality (17) ([1]) and two Propositions 1.6 and 1.7 will be used in this paper:[
α
k

]
q

(1 − qk) =

[
α

k − 1

]
q

(1 − qα−k+1), α ∈ R, (17)

Proposition 1.6. [Hartogs’ theorem [20, p. 15]] If a complex-valued function is holomorphic (analytic) in each
variable separately in an open domain D ⊆ Cn, then it is holomorphic (analytic) in D.

Proposition 1.7. ([31, p. 5]) If function f (x1, x2, · · · , xk) is analytic at origin (0, 0, · · · , 0) ∈ Ck, then f can be
expanded in an absolutely convergent power series

f (x1, x2, · · · , xk) =

∞∑
n1,n2,··· ,nk=0

λn1,n2,··· ,nk x
n1
1 xn2

2 · · · x
nk
k .

We have the main theorem based on Proposition 1.7:

Theorem 1.8. Let f (x, z) be a 2-variable analytic function at (0, 0) ∈ C2 , then function f (xy, z) can be expanded in
terms of Un(x, y, z; q) with ck defined by (8) if and only if f (xy, z) satisfies the q-partial differential equation

δz{ f (xy, z) − γh−1 f (xy, zh)} = −ωδxτr,y{ f (xy, λz) − (β + η) f (xy, λdz) + βη f (xy, λd2z)}, h , 0, (18)

or

δz{ f (xy, z)} = −ωδxτr,y{ f (xy, λz) − (β + η) f (xy, λdz) + βη f (xy, λd2z)}, h = 0. (19)

By taking r = 0, ck = q(k
2) and ck = (−1)k(b; q)k in Theorem 1.8 respectively, we obtain the next two

corollaries.

Corollary 1.9. Let f (x, z) be a 2-variable analytic function at (0, 0) ∈ C2, then f (xy, z) can be expended in terms of
Pn(x, y, z; q) if and only if f (xy, z) satisfies the q-partial differential equation

δz f (xy, z) = −δxτ0,y f (xy, qz). (20)

Corollary 1.10. Let f (x, z) be a 2-variable analytic function at (0, 0) ∈ C2, then f (xy, z) can be expended in terms of
Φ(a,b)

n (x, y, z; q) if and only if f (xy, z) satisfies the q-partial differential equation

δz f (xy, z) = δxτ0,y{ f (xy, z) − b f (xy, qz)}. (21)
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Setting r = −1 and ck = (−1)kq(k
2)(aq1−k; q)k = ak(a−1; q)k in (18) implies

Corollary 1.11. Let f (x, z) be a 2-variable analytic function at (0, 0) ∈ C2, then f (xy, z) can be expended in terms of
Ψ (a,b)

n (x, y, z; q) if and only if f (xy, z) satisfies the q-partial differential equation

δz f (xy, z) = δxτ−1,y{ f (xy, qz) − a f (xy, z)}. (22)

Similarly, taking r = −2 and ck = (bq)−k in (18), we have

Corollary 1.12. Let f (x, z) be a 2-variable analytic function at (0, 0) ∈ C2, then f (xy, z) can be expended in terms of
L

(a,b)
n (x, y, z; q) if and only if f (xy, z) satisfies the q-partial differential equation

bqδz f (xy, z) = −δxτ−2,y{ f (xy, z)}. (23)

Taking a = r = 0, y = 1, ck = (−1)k(β; q)k(η; q)k/(γ; q)k and a = 0, r = −1, y = 1, ck = (β; q)k(η; q)k/(γ; q)k in
Theorem 1.8, respectively, we have

Corollary 1.13. Let f (x, z) be a 2-variable analytic function at (0, 0) ∈ C2, then f (xy, z) can be expended in terms of
φ

(β,η,γ)
n (z, xy; q) and ψ(β,η,γ)

n (z, xy; q) (q , 0), (q , 0) defined by (5) and (6) if and only if f (xy, z) satisfies the q-partial
differential equations

δz{ f (xy, z) − γq−1 f (xy, zq)} = δxδy{ f (xy, z) − (β + η) f (xy, qz) + βη f (xy, q2z)}

and

δz{ f (xy, z) − γq−1 f (xy, zq)} = −δxτ−1,y{ f (xy, z) − (β + η) f (xy, qz) + βη f (xy, q2z)},

respectively.

Remark 1.14. Corollary 1.13 is equivalent to the main theorem in [7] (Theorem 2) by using Definition 14. T
hus Theorem 1.8 generalizes Theorem 2 of the paper[7].

2. The Proof of Theorem 1.8

Proof. Since f (x, z) is analytic function at (0, 0) ∈ C2, according to Proposition 1.7, f (x, z) can be expanded in
an absolutely convergent series in a neighbourhood of (0, 0), that is, there be series µn,k such that

f (x, z) =

∞∑
n,k=0

µn,kxnzk,

then function f (xy, z) will be expanded as

f (xy, z) =

∞∑
n,k=0

µn,kxnynzk =

∞∑
k=0

zk
∞∑

n=0

µn,kxnyn. (24)

If h , 0 in ck, substituting (24) into equation (18) results in

δz

{ ∞∑
n,k=0

(1 − γhk−1)µn,kxnynzk
}

= −ωδxτr,y

{ ∞∑
n,k=0

λk
[
1 − (β + η)dk + βηd2k

]
µn,kxnynzk

}
.

That is
∞∑

k=1

(1 − γhk−1)(1 − qk)zk−1
∞∑

n=0

µn,kxnyn = −δxτr,y

∞∑
k=1

ωλk−1(1 − βdk−1)(1 − ηdk−1)zk−1
∞∑

n=0

µn,k−1xnyn. (25)
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If h = 0 in ck, substituting (24) into equation (19) yields

δz

{ ∞∑
n,k=0

µn,kxnynzk
}

= −ωδxτr,y

{ ∞∑
n,k=0

λk
[
1 − (β + η)dk + βηd2k

]
µn,kxnynzk

}
.

That is
∞∑

k=1

(1 − qk)zk−1
∞∑

n=0

µn,kxnyn = −δxτr,y

∞∑
k=1

ωλk−1(1 − βdk−1)(1 − ηdk−1)zk−1
∞∑

n=0

µn,k−1xnyn. (26)

Comparing the coefficients of zk−1 in (25) or (26), we always have
∞∑

n=0

µn,kxnyn = −
ck

(1 − qk)ck−1
δxτr,y

∞∑
n=0

µn,k−1xnyn.

Iterating this relation k − 1 times, we obtain
∞∑

n=0

µn,kxnyn = (−1)k ck

(q; q)k
δk

xτ
k
r,y

∞∑
n=0

µn,0xnyn.

By formula (24) we get

f (xy, z) =

∞∑
k=0

zk
∞∑

n=0

µn,kxnyn =

∞∑
k=0

(−1)k ck

(q; q)k
zk
∞∑

n=k

µn,0qrnk−r(k+1
2 ) (q; q)n(aq; q)n

(q; q)n−k(aq; q)n−k
xn−kyn−k

=

∞∑
n=0

µn,0

∞∑
k=0

(−1)kck

[
n
k

]
q

qrnk−r(k+1
2 ) (aq; q)n

(aq; q)n−k
xn−kyn−kzk =

∞∑
n=0

µn,0Un(x, y, z; q).

On the other hand, we prove that if f (xy, z) can be expanded in terms of Un(x, y, z; q), then f (xy, z)
satisfies Equation (18), the proof of case k = 0 is omitted since it is similar to that of k , 0.

Assume that

f (xy, z) =

∞∑
n=0

µnUn(x, y, z; q)

=

∞∑
n=0

µn

n∑
k=0

(−1)kck

[
n
k

]
q

qrnk−r(k+1
2 ) (aq; q)n

(aq; q)n−k
xn−kyn−kzk.

The right hand side of (18)

−ωδxτr,y{ f (xy, λz) − (η + β) f (xy, λdz) + ηβ f (xy, λd2z)}

= −ωδxτr,y

{ ∞∑
n=0

µn

n∑
k=0

λk
[
1 − (η + β)dk + ηβd2k

]
(−1)kck

[
n
k

]
q

qrnk−r(k+1
2 ) (aq; q)n

(aq; q)n−k
xn−kyn−kzk

}
=

∞∑
n=0

µn

n−1∑
k=0

(−1)k+1ck+1(1 − γdk)
[
n
k

]
q

(1 − qn−k)qrn(k+1)−r(k+1
2 )−rk (aq; q)n

(aq; q)n−k−1
xn−k−1yn−k−1zk

=

∞∑
n=0

µn

n−1∑
k=0

(−1)k+1(1 − qk+1)(1 − γdk)ck+1

[
n

k + 1

]
q

qrn(k+1)−r(k+2
2 ) (aq; q)n

(aq; q)n−k−1
xn−k−1yn−k−1zk

=

∞∑
n=0

µn

n∑
k=1

(−1)k(1 − qk)(1 − γdk−1)ck

[
n
k

]
q

qrnk−r(k+1
2 ) (aq; q)n

(aq; q)n−k
xn−kyn−kzk−1

= δz{ f (xy, z) − γd−1 f (xy, dz)}

where Equation (17) is used in the third equality. We deduced that f (xy, z) satisfies Equation (18), therefore
we complete the proof of Theorem 1.8.
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3. Generating Functions for Some Polynomials

As application of Theorem 1.8, we give the generating function for Un(x, y, z; q), which includes the
generating functions for several polynomials mentioned above as special cases.

Theorem 3.1. For max{|z| ,
∣∣∣xy

∣∣∣ , 1 + r} ≤ 1, limn→∞ |cn+1t/cn| < 1, we have

∞∑
n=0

(−1)nq−r(n
2)Un(x, y, z; q)tn

(q; q)n(aq; q)n
=

∞∑
n=0

cn(tz)n

(q; q)n

∞∑
k=0

(−1)kq−r(k
2)(xyt)k

(q; q)k(aq; q)k
, |t| < 1 when r = 0, (27)

where Un(x, y, z; q) is defined by (7).

Proof. We use Theorem 1.8 to prove Equation (27). Let

f (x, z) =

∞∑
n=0

cn(tz)n

(q; q)n

∞∑
k=0

(−1)kq−r(k
2)(xt)k

(q; q)k(aq; q)k
, (28)

we first verify f (x, z) is analytic at (0, 0).
Use |z| < 1 to get ∣∣∣∣∣cn(tz)n

(q; q)n

∣∣∣∣∣ ≤ ∣∣∣∣∣ cntn

(q; q)n

∣∣∣∣∣ .
By ratio test,

∑
∞

n=0 cntn/(q; q)n is converging since limn→∞ |cn+1t| /cn < 1, thus
∑
∞

n=0

∣∣∣cn(tz)n/(q; q)n

∣∣∣ converges
uniformly respect to z and then is analytic.

On the other hand, we have ∣∣∣∣∣∣∣ (−1)kq−r(k
2)(xyt)k

(q; q)k(aq; q)k

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ q−r(k

2)tk

(q; q)k(aq; q)k

∣∣∣∣∣∣∣ ,
when r < 0, by ratio test

∞∑
n=0

∣∣∣∣∣∣∣ q−r(k
2)tk

(q; q)k(aq; q)k

∣∣∣∣∣∣∣
is always converging.
When r = 0,

∞∑
n=0

∣∣∣∣∣∣ tk

(q; q)k(aq; q)k

∣∣∣∣∣∣
is converging since |t| < 1.

We conclude that
∞∑

n=0

∣∣∣∣∣∣∣ (−1)kq−r(k
2)(xyt)k

(q; q)k(aq; q)k

∣∣∣∣∣∣∣
converges uniformly respect to x when r = 0 and |t| < 1 or r = 0 and thus is analytic. By Hartogs’ theorem
1.6, function f (x, z) is analytic at (0, 0).
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Next we check that f (xy, z) satisfies Equation (18), we just proof the case of h , 0 and omit the proof of
case h = 0 since it’s easy to verify (19).

−ωδxτr,y{ f (xy, λz) − (β + η) f (xy, λdz) + βη f (xy, λd2z)}

= −ωδxτr,y

 ∞∑
n=0

cn(tz)nλn[1 − (β + η)dn + βηd2n]
(q; q)n

∞∑
k=0

(−1)kq−r(k
2)(xyt)k

(aq; q)n(q; q)n)


= −

∞∑
n=0

ωn+1λ(n
2)+n(β; d)n+1(η; d)n+1(tz)n

(q; q)n

∞∑
k=1

(−1)kq−r(k
2)+rk−r(xy)k−1tk

(aq; q)k−1(q; q)k−1

=

∞∑
n=0

cn+1(1 − γhn)zntn+1

(q; q)n

∞∑
k=0

(−1)kq−r(k
2)(xyt)k

(aq; q)k(q; q)k
= δz{ f (xy, z) − γh−1 f (xy, hz)}.

By Theorem 1.8, there exists a µn such that

f (xy, z) =

∞∑
n=0

µnUn(x, y, z; q). (29)

Taking z = 0 on both sides of (29) and noticing U(x, y, 0; q) = xnyn yield

∞∑
k=0

(−1)kq−r(k
2)(xyt)k

(aq; q)k(q; q)k
=

∞∑
k=0

µnxnyn.

Equating the coefficients of xnyn, we obtain

µn =
(−1)nq−r(n

2)tn

(aq; q)n(q; q)n
.

Substitute µn into Equation (29) to end the proof of Theorem 3.1.

By letting cn = q(n
2), cn = (−1)n(b; q)n, cn = an(a−1; q)n, cn = (bq)−n in Equation (3.1) respectively, we get

Corollary 3.2. Let max{|z| ,
∣∣∣xy

∣∣∣} ≤ 1, we have

∞∑
n=0

Pn(x, y, z; q)tn

(q; q)n(aq; q)n
= (zt; q)∞2φ1

( 0, 0
aq ; q, xyt

)
, |t| < 1. (30)

∞∑
n=0

Φ(a,b)
n (x, y, z; q)tn

(q; q)n(aq; q)n
=

(bzt; q)∞
(zt; q)∞

2φ1

( 0, 0
aq ; q, xyt

)
, |t| < 1. (31)

∞∑
n=0

(−1)nq(n
2)Ψ

(a,b)
n (x, y, z; q)tn

(q; q)n(aq; q)n
=

(zt; q)∞
(azt; q)∞

1φ1

( 0
aq ; q, xyt

)
, |at| < 1. (32)

∞∑
n=0

(−1)nq2(n
2)L(a,b)

n (x, y, z; q)tn

(q; q)n(aq; q)n
=

1
(zt/(bq); q)∞

0φ1

(
−

aq ; q,−xyt
)
,

∣∣∣tb−1q−1
∣∣∣ < 1. (33)

Use (30) and (31) in Corollary 3.1 to get
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Corollary 3.3. For max{|z| ,
∣∣∣xy

∣∣∣} ≤ 1,

1
(bzt; q)∞

∞∑
n=0

Pn(x, y, z; q)tn

(q; q)n(aq; q)n

∞∑
m=0

Φ(a,b)
m (x, y, z; q)tm

(q; q)m(aq; q)m
=

[
2φ1

( 0, 0
aq ; q, xyt

)]2

, |t| < 1. (34)

Another generating function for L(a,b)
n (x, y, z; q) is

Theorem 3.4. Let max
{∣∣∣xytbq

∣∣∣ , |zt|
}
< 1, we have

∞∑
n=0

(−1)nqn2 bn(s; q)nL
(a,b)
n (x, y, z; q)tn

(q; q)n(aq; q)n
=

(szt; q)∞
(zt; q)∞

1φ2

( s
aq, szt ; q,−xytbq

)
. (35)

Proof. Let

f (x, z) =
(szt; q)∞
(zt; q)∞

1φ2

( s
aq, szt ; q,−xtbq

)
. (36)

It is easy to verify that f (x, z) is analytic at (0, 0). We check that f (xy, z) satisfies Equation (23):

bqδz f (xy, z) =aqδz

{
(szt; q)∞
(zt; q)∞

} ∞∑
k=0

(−1)kq2(n
2)(s; q)k(xytbq)k

(aq; q)k(q; q)k(sztq; q)k

+ bq
(szt; q)∞
(zt; q)∞

∞∑
k=0

(−1)kq2(n
2)(s; q)kst(1 − qk)(xytbq)k

(aq; q)k(q; q)k(szt; q)k+1

=
(szt; q)∞
(zt; q)∞

∞∑
k=0

(−1)kq2(n
2)(s; q)k(xyt)k(bq)k+1t(1 − sqk)
(aq; q)k(q; q)k(szt; q)k+1

=
(szt; q)∞
(zt; q)∞

∞∑
k=0

(−1)kq2(n
2)(s; q)k+1(xy)k(tbq)k+1

(aq; q)k(q; q)k(szt; q)k+1

= − δxτ−2,y{ f (xy, z)},

where the formula
δx{u(x)v(x)} = δx{u(x)}v(qx) + u(x)δx{v(x)}

for functions u(x) and v(x) is used in the first equation. By Theorem 1.12, there must be a µn such that

f (xy, z) =

∞∑
n=0

µnL
(a,b)
n (x, y, z; q). (37)

Setting z = 0 in Equation (37), notice that

f (xy, 0) =

∞∑
k=0

(−1)kq2(k
2)(s; q)k(xytbq)k

(aq; q)k(q; q)k
,

by (36) and L(a,b)
n (x, y, 0; q) = xnyn, we have

µn =

∞∑
n=0

(−1)nq2(n
2)(s; q)n(tbq)n

(aq; q)n(q; q)n(szt; q)n

by equating the coefficients of xnyn on both sides of (37). Substituting µn into (37) yields (35).

Remark 3.5. Taking s = 0, t→ t/(qb) in (35) yields (33).
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4. A Generalized Andrews–Askey Integral Formula

Recall the definition of Jackson q-integral ([19], p. 23)∫ b

a
f (x)dqx = (1 − q)

∞∑
n=0

[b f (bqn) − a f (aqn)]qn. (38)

The Andrews-Askey integral formula states ([3], Theorem 1)∫ v

u

(qx/u, qx/v; q)∞
(cx, dx; q)∞

dqx =
(1 − q)v(q,u/v, qv/u, cduv; q)∞

(cu, cv, du, dv; q)∞
, (39)

based on which, the following integral formula was obtained in [35] by using the q-Leibniz rule.

Proposition 4.1. If there are no zero factors in the denominator of the q-integral, then we have∫ v

u

xn(qx/u, qx/v; q)∞
(cx, dx; q)∞

dqx =
(1 − q)v(q,u/v, qv/u, cduv; q)∞

(cu, cv, du, dv; q)∞
φ

(ζ,ξ,ρ)
n (u, v; q)

where

φ
(ζ,ξ,ρ)
n (u, v; q) =

n∑
i=0

[
n
i

]
q

(ζ, ξ; q)i

(ρ; q)i
uivn−i

is defined by (5) and ζ = cv, ξ = dv, ρ = cduv.

In this section we introduce a generalized Andrews-Askey integral formula with Un(x, y, z; q) involved.
The proof of this formula can be given by using Theorem 18.

Theorem 4.2. If there are no zero factors in the denominator of the q-integral, let maxu≤x≤v{|x|} = M,max{|w| , |st| , 1+
r} ≤ 1, limn→∞ |cn+1M/cn| < 1 and |M| < 1 when r = 0, then we have∫ v

u

(qx/u, qx/v; q)∞G(s,w)
(cx, dx; q)∞

dqx = F(c, d,u, v)
∞∑

n=0

(−1)nq−r(n
2)φ(ζ,ξ,ρ)

n (u, v; q)Un(s, t,w; q)
(q, aq; q)n

, (40)

where Un(s, t,w; q) is defined by (7) and

G(s,w) =

∞∑
n=0

cn(xw)n

(q; q)n

∞∑
k=0

(−1)kq−r(k
2)(stx)k

(q; q)k(aq; q)k
, F(c, d,u, v) =

(1 − q)v(q,u/v, qv/u, cduv; q)∞
(cu, cv, du, dv; q)∞

,

polynomial φ(ζ,ξ,ρ)
n (u, v; q) is defined by (5) and ζ = cv, ξ = dv, ρ = cduv.

Proof. Let

f (s,w) =

∫ v

u

(qx/u, qx/v; q)∞G(s,w)
(cx, dx; q)∞

dqx,

we can verify that f (s,w) is analytic at (0, 0), and f (st,w) satisfies equation

−ωδwτr,t{ f (st, λw) − (β + η) f (st, λdw) + βη f (st, λd2w)

=

∫ v

u

(qx/u, qx/v; q)∞
(cx, dx; q)∞

∞∑
n=0

cnxn+1ωn+1λn

(q; q)n
(1 − βdn)(1 − ηdn)

∞∑
k=0

(−1)kq−γ(
k
2))(stx)k

(q; q)k(aq; q)k
dqx

=

∫ v

u

x(qx/u, qx/v; q)∞
(cx, dx; q)∞

∞∑
n=0

cn+1xnwn(1 − γhn)
(q; q)n

∞∑
k=0

(−1)kq−γ(
k
2)(stx)k

(q; q)k(aq; q)k
dqx

=δw{ f (st,w) − γh−1 f (st, hw)}.
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By Theorem 3.2, there exists a sequence µn such that

f (st,w) =

∞∑
n=0

µnUn(s, t,w; q). (41)

Set w = 0 and use the fact of Un(s, t, 0; q) = sntn to get

∞∑
n=0

∫ v

u

xn(qx/u, qx/v; q)∞
(cx, dx; q)∞

dqx ·
(−1)nq−r(n

2)(st)n

(q; q)n(aq; q)n
=

∞∑
n=0

µnsntn (42)

Equating the coefficients of sntn on both sides of Equation (42) and using the Proposition 4.1, we get

µn = F(c, d,u, v)
(−1)nq−r(n

2)φ(ζ,ξ,ρ)
n (u, v; q)

(q, aq; q)n
.

Substitute µn into (41) to obtain (40). We complete the proof of Theorem 4.2.

Setting cn = q(n
2), cn = (−1)n(b; q)n, cn = an(a−1; q)n, cn = (bq)−n in Theorem 4.2 respectively yields

Corollary 4.3. If there are no zero factors in the denominator of the q-integral, let maxu≤x≤v{|x|} = M, F(c, d,u, v)
and φ(ζ,ξ,ρ)

n (u, v; q) are defined as in Theorem 4.2, If max{|w| , |st|} ≤ 1,then we have∫ v

u

(qx/u, qx/v,wx; q)∞G1(s, t, x)
(cx, dx; q)∞

dqx = F(c, d,u, v)
∞∑

n=0

φ
(ζ,ξ,ρ)
n (u, v; q)Pn(s, t,w; q)

(q, aq; q)n
, M < 1, (43)

∫ v

u

(qx/u, qx/v, bwx; q)∞G1(s, t, x)
(cx, dx,wx; q)∞

dqx = F(c, d,u, v)
∞∑

n=0

φ
(ζ,ξ,ρ)
n (u, v; q)Φ(a,b)

n (s, t,w; q)
(q, aq; q)n

, M < 1, (44)

∫ v

u

(qx/u, qx/v,wx; q)∞G2(s, t, x)
(cx, dx, awx; q)∞

dqx = F(c, d,u, v)
∞∑

n=0

(−1)nq(n
2)φ(ζ,ξ,ρ)

n (u, v; q)Ψ (a,b)
n (s, t,w; q)

(q, aq; q)n
, |aM| < 1, (45)

∫ v

u

(qx/u, qx/v; q)∞G3(s, t, x)
(cx, dx,wx/(bq); q)∞

dqx = F(c, d,u, v)
∞∑

n=0

(−1)nq2(n
2)φ(ζ,ξ,ρ)

n (u, v; q)L(a,b)
n (s, t,w; q)

(q, aq; q)n
,
∣∣∣b−1q−1M

∣∣∣ < 1, (46)

where

G1(s, t, x) = 2φ1

( 0, 0
aq ; q, stx

)
, G2(s, t, x) = 1φ1

( 0
aq ; q, stx

)
, G3(s, t, x) = 0φ1

(
−

aq ; q,−stx
)
.

Acknowledgements

The author would like to thank Professor G.E. Andrews for his valuable suggestions. This paper was
completed during the author’s visit to the Department of Mathematics, Pennsylvania State University
under the support of ECNU found for International Education.

References

[1] W.A. Al-Salam, Some fractional q-integrals and q-integrals and q-derivatives, Proc. Edin. Math. Soc. 15 (1966) 135–140.
[2] W.A. Al-Salam, L. Carlitz, Some orthogonal q-polynomials, Math. Nachr. 30 (1965) 47–61.
[3] G.E. Andrews, R. Askey, Another q-extension of the beta function, Proc. Amer. Math. Soc. 81 (1981) 97–100.
[4] G.E. Andrews, Carlitz and the general 3Φ2, Ramanujan J. 13 (2007) 13311–13318.
[5] G.E. Andrews, F. Garvan, Analytic Number Theory, Modular Forms and q-Hypergeometric Series, In Honor of Krishna Alladi’s

60th Birthday, University of Florida, Gainesville, March 2016, Springer Proceedings in Mathematics & Statistics 221, Springer
International Publishing, Switzerland, 2017.



Da-Wei Niu / Filomat 33:5 (2019), 1403–1415 1415

[6] M.K. Atakishiyevay, N.M. Atakishiyevzx, q-Laguerre and Wall polynomials are related by the Fourier-Gauss transform, J. Phys.
A: Math. Gen. 30 (1997) 429–432.

[7] J. Cao, A note on q-difference equations for Ramanujan’s integrals, Ramanujan J. (2018) https://doi.org/10.1007/s11139-017-9987-1.
[8] J. Cao, Homogeneous q-partial difference equations and some applications, Adv. Appl. Math. 84 (2017) 47–72.
[9] J. Cao, A note on generalized q-difference equations for q-beta and Andrews-Askey integral, J. Math. Anal. Appl. 412 (2014)

841–851.
[10] J. Cao, Homogeneous q-difference equations and generating functions for q-hypergeometric polynomials, Ramanujan J. 40 (2016)

177–192.
[11] J. Cao, D.-W. Niu, A note on q-difference equations for Cigler’s polynomials, J. Difference Eq. Appl. 22 (2016) 1880–1892.
[12] L. Carlitz, Generating functions for certain q-orthogonal polynomials, Collectanea Math. 23 (1972) 91–104.
[13] W.Y.C. Chen, Z.-G. Liu, In: B.E. Sagan, R.P. Stanley (Eds.), Parameter Augmentation for Basic Hypergeometric Series, I, in:

Mathematical Essays in Honor of Gian-Carlo Rota, Birkäuser, Basel (1998) 111–129.
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