
Filomat 33:5 (2019), 1369–1379
https://doi.org/10.2298/FIL1905369A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Solvability of Optimization Problem for the Oscillation
Processes with Optimal Vector Controls

Elmira Abdyldaevaa, Akylbek Kerimbekova

aKyrgyz-Turkish Manas University, Bishkek, 720044 Bishkek, Kyrgyzstan

Abstract. The optimal control problem is investigated for oscillation processes, described by integro-
differential equations with the Fredholm operator when functions of external and boundary sources non-
linearly depend on components of optimal vector controls. Optimality conditions having specific properties
in the case of vector controls were found. A sufficient condition is established for unique solvability of the
nonlinear optimization problem and its complete solution is constructed in the form of optimal control, an
optimal process, and a minimum value of the functional.

1. Introduction

The fundamentals of optimal control theory for systems were laid in the works of A.G. Butkovskii [1],
A.I. Egorov [2], T.K. Sirazetdtnov [10], and of other scientists in the 60s of the last century. This theory
was widely developed and its methods began to penetrate into various fields of science and production,
attracting new researchers. Development of optimal control theory is closely connected to the solution of
applied problems described by functional equations. Control Problems for processes described by integro-
differential equations with the Fredholm or Volterra integral operator are often used in practice [3, 9, 11, 12].
But methods for solving them are not sufficiently developed, particularly, when function of external or
boundary source is nonlinear with respect to the control parameters. A number of studies were researched
by authors in this scientific direction and interesting new results were obtained. For example, in [4], it was
established that system of nonlinear integral equations, where solution is the optimal vector control, have
the property of equal relations. It is a novelty in the optimal control theory for systems with distributed
parameters.

In this paper, we investigate the solvability of the control problem for oscillation process described by
integro-differential equation with the Fredholm operator when both function of the external source and
function of the boundary source are vector controls of general form. In the process of investigation it is
established that the system of nonlinear integral optimal control equations preserves the properties of equal
relations for components of the external control vector as well as for components of the boundary control
vector. Thus, it is established that the properties of equal relations in the case of vector control of general
form is natural and it is noteworthy that the procedure for determining the components of optimal control
is substantially simplified.

2010 Mathematics Subject Classification. Primary 49J20; Secondary 35K20, 45B05
Keywords. Uniformly distributed and boundary vector control, generalized solution, functional, optimality conditions, system of

linear integral equations
Received: 27 July 2018; Revised: 16 November 2018; Accepted: 20 November 2018
Communicated by Ljubiša D.R. Kočinac
Email addresses: efa_69@mail.ru (Elmira Abdyldaeva), akl7@rambler.ru (Akylbek Kerimbekov)



E. Abdyldaeva, A. Kerimbekov / Filomat 33:5 (2019), 1369–1379 1370

2. Formulation of the Optimal Control Problem

Consider the optimal control problem for oscillation process described by following boundary value
problem

Vtt − AV = λ

∫ T

0
K(t, τ)V(τ, x)dτ + 1(t, x) f [t,u(t)], x ∈ Q, 0 < t ≤ T, (1)

V(0, x) = ψ1(x), Vt(0, x) = ψ2(x), x ∈ Q, (2)

ΓV(t, x) ≡
n∑
i, j

ai j(x)Vx j cos(ν, xi) + a(x)V = b(t, x)p[t, υ(t)], x ∈ γ, 0 < t < T. (3)

Here A is the elliptic operator defined by the formula

AV(t, x) =

n∑
i, j=1

(ai j(x)Vx j (t, x))xi − c(x)V(t, x), ai, j(x) = a j,i(x),
n∑

i, j=1

ai j(x)αiα j ≥ c0 ×

n∑
i=1

α2
i , c0 > 0,

υ is a normal vector, outgoing from the point x ∈ γ ; K(t, τ) is defined in domain D = {0 ≤ t ≤ T, 0 ≤ τ ≤ T}
and satisfies the condition∫ T

0

∫ T

0
K2(t, τ)dτdt = K0 < ∞, K(t, τ) ∈ H(D); (4)

1(t, x) ∈ H(QT), QT = Q × (0,T), ψ1(x) ∈ H1(Q), ψ2(x) ∈ H(Q) are given functions; Q is the domain
of space Rn bounded by piecewise smooth curve γ; f [t,u(t)] is an external source function, non linearly
depending on control function u(t) = (u1(t), ...,um(t)) ∈ Hm(0,T), ui(t) ∈ H(0,T), i = 1, ...,m; p[t, υ(t)] is a
boundary source function depending on control function υ(t) = (υ1(t), ..., υr(t)) ∈ Hr(0,T), υ j(t) ∈ H(0,T),
j = 1, ..., r; Hk(0,T) = H(0,T) × ... ×H(0,T) is a Cartesian product of k Hilbert spaces. Functions of external
and boundary sources satisfy following monotonicity conditions:

fui [t,ui(t)] , 0, i = 1, ...,m, pυ j [t, υ j(t)] , 0, j = 1, ..., r, ∀t ∈ [0,T]; (5)

H1(Q) is a first order Sobolev space; λ is a parameter, T is a fixed moment of time.
The criterion of quality control is minimization of integral functional:

J[u(t), υ(t)] =

∫ T

0

∫
Q

{
[V(T, x) − ξ1(x)]2 + [Vt(T, x) − ξ2(x)]2

}
dx + β

∫ T

0

(
M2[t,u(t)] + N2[t, υ(t)]

)
dt, (6)

where V(t, x) is a solution of boundary value problem (1)-(3); ξ1(x) ∈ H(Q), ξ2(x) ∈ H(Q) are known
functions, given functions M[t,u(t)] and N[t, υ(t)] are nonlinearly dependent on the functional variables and
they are elements of the Hilbert space H(0,T) ; β is a positive constant. The optimal control problem for the
process V(t, x) consists of transferring it from the initial state (ψ1(x), ψ2(x)) to the desired state (ξ1(x), ξ2(x))
in the given time T.

3. Generalized Solution of Boundary Value Problem

During investigating optimal control problem it is purposeful to use the concept of a generalized solution
of the boundary value problem.
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Definition 3.1. A generalized solution of boundary value problem (1) - (3) is a function V(t, x) ∈ H(QT),
which satisfies the integral identity∫

Q

[
(VtΦ)

]t2

t1
dx ≡

∫ t2

t1

∫
Q

[
Vt(t, x)Φt(t, x) −

n∑
i, j=1

ai j(x)Vx j (t, x)Φxi (t, x) − c(x)V(t, x)Φ(t, x)
]
dxdt +

+

∫ t2

t1

∫
γ
[b(t, x)p(t, υ(t)) − a(x)V(t, x)]Φ(t, x)dxdt +

∫ t2

t1

∫
Q

[
λ

∫ T

0
K(t, τ)V(τ, x)dτ + 1(t, x) f [t,u(t)]

]
Φ(t, x)dxdt,

for any t1, t2 (0 < t1 ≤ t ≤ t2 ≤ T), Φ(t, x) ∈ H1(QT) and it satisfies the initial conditions in the weak sense,
i.e. for any functions φ0(x) ∈ H(Q), φ1(x) ∈ H(Q) we have equalities

lim
t→+0

∫
Q

V(t, x)φ0(x)dx =

∫
Q
ψ1(x)φ0(x)dx, lim

t→+0

∫
Q

Vt(t, x)φ1(x)dx =

∫
Q
ψ2(x)φ1(x)dx. (7)

The solution of problem (1) - (3) will be searched in the form:

V(t, x) =

∞∑
n=1

Vn(t)zn(x), (8)

where Vn(t) = 〈V(t, x), zn(x)〉 =
∫

Q V(t, x)zn(x)dx are Fourier coefficients, zn(x) are generalized eigenfunctions
of following boundary value problem [8] and they form a complete orthonormal system in the Hilbert space
H(Q),

Dn(Φ, zn) ≡
∫

Q

( n∑
i, j=1

ai, j(x)Φx j znxi + c(x)zn(x)Φ(t, x)
)
dx +

∫
γ

a(x)zn(x)Φ(t, x)dx = λ2
n

∫
Q

zn(x)Φ(t, x)dx;

Γzn(x) = 0, x ∈ γ, 0 < t < T, n = 1, 2, ..., (9)

corresponding eigenvalues λn satisfy the following conditions λn ≤ λn+1,∀n = 1, 2, 3, ..., limn→∞λn = ∞.
Fourier coefficients Vn(t) are defined as the solution of the linear Fredholm integral equation of the

second kind:

Vn(t) = λ

∫ T

0
Kn(t, s)Vn(s)ds + an(t),n = 1, 2, 3..., (10)

where

Kn(t, s) =
1
λn

∫ t

0
sinλn(t − τ)K(τ, s)dτ; Kn(0, s) = 0, n = 1, 2, 3, ...; (11)

an(t) = ψ1n cosλnt +
ψ2n

λn
sinλnt +

1
λn

∫ t

0
sinλn(t − τ)

[
qn(τ) f [τ,u(τ)] + bn(τ)p[τ, υ(τ)]

]
dτ. (12)

The solution of integral equation (11) is found [6] by the formula

Vn(t) = λ

∫ T

0
Rn(t, s, λ)an(s)ds + an(t); (13)

where

Rn(t, s, λ) =

∞∑
i=1

λi−1Kn,i(t, s), n = 1, 2, 3, ..., (14)
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is a resolvent of kernel Kn(t, s) , and iterated kernels Kn,i(t, s) are defined by the formulas:

Kn,i+1(t, s) =

∫ T

0
Kn(t, η)Kn,i(η, s)dη, i = 1, 2, 3, ..., (15)

for each fixed n = 1, 2, 3, ..., .
Note that Neumann series absolutely converges for values of the parameter λ satisfying

|λ| <
λn

T
√

K0
−→ ∞, (16)

for each n = 1, 2, 3, .... It is easy to see that the radius of convergence of Neumann series increases with
increasing n and it converges for any n = 1, 2, 3, ..., only on the interval

|λ| <
λ1

T
√

K0
. (17)

By direct calculations it can be established that there is following estimate∫ T

0
R2

n(t, s, λ)ds =
K0T(

λn − |λ|
√

K0T2
)2 (18)

which will be repeatedly used in proving the convergence of series.
Thus, formal solution of the boundary value problem (1)-(3) has the form of

V(t, x) =

∞∑
n=1

Vn(t)zn(x) =

∞∑
n=1

(
λ

∫ T

0
Rn(t, s, λ)an(s)ds + an(t)

)
zn(x).

This solution will be rewritten in the form of

V(t, x) =

∫ T

0

∞∑
n=1

{
ψn(t, λ) +

1
λn

∫ T

0
εn(t, η, λ)

(
qn(η) f [η,u(η)] + bn(η)p(η, υ(η))

)
dη

}
zn(x), (19)

where

ψn(t, λ) = ψ1n

[
cosλnt + λ

∫ T

0
Rn(t, s, λ) cosλnsds

]
+
ψ2n

λn

[
sinλnt + λ

∫ T

0
Rn(t, s, λ) sinλnsds

]
,

εn(t, η, λ) =

sinλn(t − η) + λ
∫ T

η
Rn(t, s, λ) sinλn(s − η)ds, 0 ≤ η ≤ t,

λ
∫ T

η
Rn(t, s, λ) sinλn(s − η)ds, t ≤ η ≤ T.

Lemma 3.2. The solution of boundary value problem (1) - (3) defined by the formula (19) is an element of the Hilbert
space H(QT) .

Proof. The assertion of the lemma follows from the following inequality, established by direct calculations:∫ T

0

∫
Q

V2(t, x)dxdt =

∫ T

0

∫
Q

( ∞∑
n=1

Vn(t)zn(x)
)2

dxdt =

∫ T

0

∞∑
n=1

V2
n(t)dt ≤

∫ T

0

∞∑
n=1

(
λ

∫ T

0
Rn(t, s, λ)an(s)ds +

+an(t)
)2

dt ≤ 2
∫ T

0

∞∑
n=1

[
λ2TK0(

λn − |λ|
√

K0T2
)2

∫ T

0
a2

n(s)ds + a2
n(t)

]
dt ≤ 6T

[
λ2K0T(

λn − |λ|
√

K0T2
)2

]{
‖ψ1(x)‖2H1(Q) +

+
1
λ2

1

‖ψ2(x)‖2H(Q) +
2
λ2

1

(
‖1(t, x)‖2H(QT)‖ f (t,u(t))‖2H(0,T) + ‖b(t, x)‖2H(γT) · ‖p(t, υ(η))‖2H(0,T)

)}
≤ ∞, γT = γ × (0,T).
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By differentiating the formal solution (19) with respect to t, we obtain a generalized derivative of a
function V(t, x).

Vt(t, x) =

∞∑
n=1

(
λ

∫ T

0
R′nt(t, s, λ)an(s)ds + a′n(t)

)
zn(x). (20)

Lemma 3.3. The function Vt(t, x) defined by the formula (20) is an element of the Hilbert space H(QT).

Proof. Taking into account inequality∫ T

0
|R′n(t, s, λ)|2ds ≤

λ2
nTK0(

λn − |λ|
√

K0T2
)2 ,

by direct calculation we can show that∫ T

0

∫
Q

V2
t (t, x)dxdt =

∫ T

0

∫
Q

( ∞∑
n=1

(
λ

∫ T

0
R′nt(t, s, λ)an(s)ds + a′n(t)

)
zn(x)

)2
dxdt ≤ 2

∫ T

0

∞∑
n=1

[(
λ

∫ T

0
R′nt(t, s, λ) ×

×an(s)ds
)2

+
(
a′n(t)

)2]
dt ≤ 6T

[
1 +

λ2K0T2(
λ1 − |λ|

√
K0T2

)2

]{
‖ψ1(x)‖2H1(Q) + ‖ψ2(x)‖2H(Q) + ‖1(t, x)‖2H(QT)‖ f (t,u(t))‖2H(0,T) +

+‖b(t, x)‖2H(γT)‖p(t, υ(u(t))‖2H(0,T)

}
< ∞.

4. Optimality Conditions for Vector Control and their Specifics

By monotonicity conditions (5), each set of controls (u(t), υ(t)) uniquely determines the solution V(t, x) of
boundary value problem (1) - (3). When the set of controls receives an admissible increment

(
∆u(t),∆υ(t)

)
,

the solution V(t, x) of boundary value problem (1) - (3) will receive the corresponding increment ∆V(t, x).
Taking this circumstance into account, we calculate the increments of the functional

∆J(u(t), ϑ(t)) = −

∫ T

0
∆Π(t,V(t, x), ω(t, x),u(t), ϑ(t))dt +

∫
Q

[
∆V2(T, x) + ∆V2

t (T, x)
]
dx,

where

∆Π[t, x,V(t, x), ω(t, x),u(t), υ(t)] = Π[t, x,V(t, x), ω(t, x),u(t) + ∆u(t), υ(t) + ∆υ(t)] −
−Π[t, x,V(t, x), ω(t, x),u(t), υ(t)],

Π[t, x,V(t, x), ω(t, x),u(t), υ(t)] =

∫
Q
1(t, x)ω(t, x)dx · f (t,u(t)) +

∫
γ

b(t, x)ω(t, x)dx · p(t, υ(t)), (21)

here function ω(t, x) is a solution of the following adjoint boundary value problem

ωtt − Aω = λ

∫ T

0
K(τ, t)ω(τ, x)dτ, x ∈ Q, 0 ≤ t < T,

ω(T, x) + 2[Vt(T, x) − ξ2(x)] = 0, ωt(T, x) − 2[V(T, x) − ξ1(x)] = 0, x ∈ Q,
Γω(t, x) = 0, x ∈ γ, 0 < t < T. (22)

This problem is solved similarly to the basic boundary-value problem. Its solution has the form of

ω(t, x) = −2
∞∑

n=1

{
− E∗n(T − t)hn +

∫ T

0
E∗n(T − t)Gn(T − τ){1n(τ) f [τ,u(τ)] + bn(τ)p[τ, υ(τ)]

}
dτ

}
zn(x), (23)
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where the symbol (*) is a sign of transposition;

hn = (h1n, h2n), h1n = ξ2n − ψ1n

[
− λn sinλnT + λ

∫ T

0
R′nt(T, s, λ) cosλnsds

]
−

−ψ2n

[
cosλnT +

λ
λn

∫ T

0
R′nt(T, s, λ) sinλnsds

]
;

h2n = ξ1n − ψ2n

[
cosλnT + λ

∫ T

0
Rn(T, s, λ) cosλnsds

]
−

−
ψ2n

λn

[
sinλnT + λ

∫ T

0
Rn(T, s, λ) sinλnsds

]
; (24)

Gn[T − t] = (Gn1[T − t],Gn2[T − t]),

Gn1[T − t] = cosλn(T − t) +
λ
λn

∫ T

t
R′nt(T, s, λ) sinλn(s − t)ds,

Gn2[T − t] =
1
λn

(
sinλn(T − t) + λ

∫ T

t
Rn(T, s, λ) sinλn(s − t)ds

)
; (25)

En[T − t] = (En1[T − t],En2[T − t]),

En1[T − t] = cosλn(T − t) + λ

∫ T

0
Pn(s, t, λ) cosλn(T − s)ds,

En2[T − t] =
1
λn

(
sinλn(T − t) + λ

∫ T

0
Pn(s, t, λ) sinλn(T − s)ds

)
. (26)

By direct calculation we prove that ω(t, x) ∈ H(QT).
Maximum principle. In order to the vector-valued functions {u1(t), ...,um(t)} and {υ1(t), ..., υr(t)} were

optimal, it is necessary and sufficient that following relation is satisfied almost everywhere on [0,T]

Π(·,u0
1(t), ...,u0

m(t), υ0
1(t), ..., υ0

r (t))⇐⇒
⇐⇒ Sup(ui∈Ui,i=1,..,m,υ j∈S j, j=1,...,r)Π(·,u1, ...,um, υ1, ..., υr),

where Ui,S j are sets of admissible values to controls ui and υ j respectively.
As a consequence of maximum principle, we obtain following system of equalities

∫
Q
1(t, x)ω(t, x)dx =

2βM[t,u]Mu1 (t,u)
fu1 (t,u)

= ... =
2βM[t,u]Mum (t,u)

fum (t,u)
,∫

γ
b(t, x)ω(t, x)dx =

2βN[t, υ]Nυ1 (t, υ)
pυ1 (t, υ)

= ... =
2βN[t, υ]Nυr (t, υ)

pυr (t, υ)
(27)

and according to the Sylvester criterion, we obtain the system of determinant inequalities∣∣∣∣ fui

(MMui

fui

)
uk

∣∣∣∣ > 0, i, k = 1, 2, ..,m,
∣∣∣∣ fυ j

(MMυ j

fυ j

)
υk

∣∣∣∣ > 0, j, k = 1, 2, .., r, (28)

which should hold simultaneously. The set of relations (27) and (28) are called the optimality conditions.
The obtained optimality conditions in form of equalities have the property of equal relations. It is a

specific property that hold only in the case of vector control of general form.
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We introduce the following notation

βM[t,u]Mui (t,u)
fui (t,u)

= q(t), i = 1, ...,m, (29)

βN[t, υ]Nυ j (t, υ)

pυ j (t, υ)
= s(t), j = 1, ..., r. (30)

Hence, according to the theorem about implicit function [7], taking into account the optimality condition
in form of inequalities, we have the following equalities

ui(t) = ϕi(t, q(t), β), i = 1, ...,m, (31)

υ j(t) = δ j(t, s(t), β), j = 1, ..., r, (32)

where functions ϕi(t, q(t)) and δ j(t, s(t)) are uniquely determined. By force of these relations, in order to
determine the optimal vector controls, it is necessary to construct a solution of the following system of two
equations

2q(t) =

∫
Q
1(t, x)ω(t, x)dx, x ∈ Q, (33)

2s(t) =

∫
γ

b(t, x)ω(t, x)dx, x ∈ γ. (34)

This circumstance essentially simplifies the procedure for constructing optimal vector controls,when
functions q(t) and s(t) are known, their components can be found by formulas (31) and (32).

Note that second optimality condition in the form of inequalities essentially restricts the class of external
{ f (t,u(t))} and boundary {p(t, υ(t))} sources functions. As shown by other studies [5], these properties of the
optimal vector control problem are natural and only optimal vector control problems of general form have
such properties.

5. Construction of Optimal Vector Controls

Taking into account equality (31), (32) and equality (23), we rewrite system (33), (34) in the form of
q(t) = −

∑
∞

n=1 1n(t)
{
− E∗n(T − t)hn +

∫ T

0 E∗n(T − t)Gn(T − τ)(1n(τ) f [τ, ϕ1(τ, q(τ), β), ..., ϕm(τ, q(τ), β)]

+bn(τ)p[τ, δ1(τ, s(τ), β), ..., δr(τ, s(τ), β)])dτ
}
,

s(t) = −
∑
∞

n=1 bn(t)
{
− E∗n(T − t)hn +

∫ T

0 E∗n(T − t)Gn(T − τ)(1n(τ) f [τ, ϕ1(τ, q(τ), β), ..., ϕm(τ, q(τ), β)]

+bn(τ)p[τ, δ1(τ, s(τ), β), ..., δr(τ, s(τ), β)])dτ
}
.

(35)

We introduce the notations

W(t) = (q(t), s(t)),Yn(t) = (1n(t), bn(t)),

F[t,W(τ), β] = ( f [t, ϕ(t, q(t), β)], p[t, δ(t, s(t), β)]),

ϕ(t, q(t), β) =
{
ϕ1(t, q(t), β), ..., ϕm(t, q(t), β)

}
;

δ(t, s(t), β) =
{
δ1(t, s(t), β), ..., δr(t, s(t), β)

}
. (36)

We rewrite system (35) in vector form

W(t) =

∞∑
n=1

Yn(t)E∗n(T − t)hn −

∞∑
n=1

Yn(t)E∗n(T − t)
∫ T

0
Gn(T − τ)Y∗n(τ)F[τ,W(τ), β]dτ. (37)
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Next, we introduce vector function

σ(t) =

∞∑
n=1

Yn(t)E∗n(T − t)hn ⇒

(
σ1(t)
σ2(t)

)
=

∞∑
n=1

(
1n(t)
bn(t)

)
〈En(T − t), hn〉R2

, (38)

where symbol 〈R2〉 is the scalar product in R2, and the operator

L[W(t)] = −

∞∑
n=1

Yn(t)E∗n(T − t)
∫ T

0
Gn(T − τ)Y∗n(τ)F[τ,W(τ), β]dτ. (39)

Equation (37) can be rewritten in the operator form of

W(t) = L[W(t)] + σ(t). (40)

Lemma 5.1. Function σ(t) determined by (38) is an element of space H2(0,T) = H(0,T) ×H(0,T).

Proof. By force of inequalities∫ T

0
σ2

1(t)dt =

∫ T

0

( ∞∑
n=1

1n(t)〈En(T − t), hn〉R2

)2
dt ≤

∫ T

0

( ∞∑
n=1

1n(t)‖En(T − t)‖R2‖hn‖R2

)2
dt ≤

≤

∫ T

0

( ∞∑
n=1

12
n(t)‖En(T − t)‖2R2

∞∑
n=1

‖hn‖
2
R2

dt ≤ E0‖1(t, x)‖2H(QT)

∞∑
n=1

‖hn‖
2
R2
< ∞,

∫ T

0
σ2

2(t)dt =

∫ T

0

( ∞∑
n=1

bn(t)〈En(T − t), hn〉R2

)2
dt ≤

∫ T

0

( ∞∑
n=1

bn(t)‖En(T − t)‖R2‖hn‖R2

)2
dt ≤

≤

∫ T

0

( ∞∑
n=1

b2
n(t)‖En(T − t)‖2R2

∞∑
n=1

‖hn‖
2
R2

dt ≤ E0‖b(t, x)‖2H(γT)

∞∑
n=1

‖hn‖
2
R2
< ∞,

where E0 is a smallest of the numbers satisfying the estimate

‖En(T − t)‖2R2
< E0, E0 > 0.

We obtain inequality

‖σ(t)‖2H2(0,T) =

∫ T

0
‖σ(t)‖2R2

dt =

∫ T

0

(
σ2

1(t) + σ2
2(t)

)
dt ≤ ∞,

from which it follows that
σ(t) ∈ H2(0,T) = H(0,T) ×H(0,T).

Lemma 5.2. Operator L maps the space H2(0,T) into itself, i.e. L[W(t)] is an element of space H2(0,T) for each
W(t) ∈ H2(0,T).

Proof. Suppose that W(t) ∈ H2(0,T), i.e.
{
q(t) ∈ H(0,T), s(t) ∈ H(0,T)

}
. Then following equality is hold

‖L[W(t)]‖2H2(0,T) =

∫ T

0

{( ∞∑
n=1

1n(t)E∗n(T − t)
∫ T

0
Gn(T − τ)

(
1n(τ) f [τ, ϕ̄(τ, q(τ), β)] + bn(τ) ×

×p[τ, δ̄(τ, s(τ), β)]
)
dτ

)2
+

∞∑
n=1

bn(t)E∗n(T − t)
∫ T

0
Gn(T − τ)

(
1n(τ) f [τ, ϕ̄(τ, q(τ), β)] +

+bn(τ)p[τ, δ̄(τ, s(τ), β)]dτ
)2}

dt. (41)
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From this equality, by force of following inequalities the assertion of Lemma 5.2 is proved.

1)

∫ T

0

( ∞∑
n=1

1n(t)E∗n(T − t)
∫ T

0
Gn(T − τ)(1n(τ) f [τ, ϕ(τ, q(τ), β)] + bn(τ)p[τ, δ(τ, s(τ), β)])dτ

)2
dt ≤

≤

∫ T

0

( ∞∑
n=1

1n(t)
〈
E∗n(T − t),

∫ T

0
Gn(T − τ)

(
1n(τ) f [τ, ϕ(τ, q(τ), β)] + bn(τ)p[τ, δ(τ, s(τ), β)])dτ)

〉
R2

)2
dt ≤

≤

∫ T

0

( ∞∑
n=1

12
n(t)‖En(T − t)‖2R2

∞∑
n=1

∥∥∥∥∫ T

0
Gn(T − τ)

(
1n(τ) f [τ, ϕ(τ, q(τ), β)] + bn(τ)p[τ, δ(τ, s(τ), β)])dτ

∥∥∥∥2

R2
dt ≤

≤ E0‖1(t, x)‖2H(QT)

∞∑
n=1

( ∫ T

0
Gn(T − τ)1n(τ) f [τ, ϕ(τ, q(τ), β)]dτ +

∫ T

0
Gn(T − τ)bn(τ)p[τ, δ(τ, s(τ), β)])dτ

)2
dt ≤

≤ 2E0‖1(t, x)‖2H(QT)

(
E0‖1(t, x)‖2H(QT)‖ f [τ, ϕ(τ, q(τ), β)]‖2H(0,T) + E0‖b(t, x)‖2H(γT)‖p[τ, δ(τ, s(τ), β)])‖2H(0,T)

)
≤

≤ 2E2
0‖1(t, x)‖2H(QT)

(
‖1(t, x)‖2H(QT)‖ f [τ, ϕ(τ, q(τ), β)]‖2H(0,T) + ‖b(t, x)‖2H(γT)‖p[τ, ϕ(τ, s(τ), β)]‖2H(0,T)

)
< ∞;

2)

∫ T

0

( ∞∑
n=1

bn(t)E∗n(T − t)
∫ T

0
Gn(T − τ)(1n(τ) f [τ, ϕ(τ, q(τ), β)] + bn(τ)p[τ, δ(τ), s(τ)β)])dτ

)2
dt ≤

≤ 2E2
0‖b(t, x)‖2H(γT)(‖1(t, x)‖2H(QT)‖ f [τ, ϕ(τ, q(τ), β)]‖2H(QT) + ‖(b(t, x)‖2H(γT)‖p[τ, δ(τ, s(τ), β)]‖2H(QT)

)
< ∞.

Lemma 5.3. Suppose that following conditions are satisfied

‖ f [τ, ϕ(τ, q(τ), β)] − f [τ, ϕ(τ, q̃(τ), β)]‖2H(0,T) ≤ f 2
0 ‖ϕ [t, q(t), β] − ϕ [t, q̃(t), β]‖2H(0,T) ≤

≤ f 2
0 mϕ2

0 (β)‖q(t) − q̃(t)‖2H(0,T), f0 > 0,

‖p[t, δ(t, s(t), β)] − p[t, δ(t, s̃(t), β)]‖2H(0,T) ≤ p2
0‖δ(t, s(t), β) − δ(t, s̃(t), β)‖H(0,T) ≤

≤ p2
0rδ2

0(β)‖s(t) − s̃(t)‖H(0,T), p0 > 0. (42)

Then if the conditions

γ = E0α1

(
2
[
‖1(t, x)‖2H(QT) + ‖b(t, x)‖2H(γT)

])1/2
< 1, α1 = max

(
‖1(t, x)‖2H(QT) f 2

0ϕ
2
0(β)m; ‖b(t, x)‖2H(γT)p

2
0q2

0(β)r
)

(43)

are met, the operator L[W(t)] is contractive.
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Proof. By direct calculation we have the inequality

‖L[W(t)] − L[W̃(t)‖2H2(0,T) =

∫ T

0

{ ∞∑
n=1

1n(t)E∗n(T − t)
∫ T

0
Gn(T − τ)(1n(τ) f [τ, ϕ(τ, q(τ), β)] + bn(τ) ×

×p[τ, δ(τ, s(τ), β)])dτ +

∞∑
n=1

bn(t)E∗n(T − t)
∫ T

0
Gn(T − τ)(1n(τ) f [τ, ϕ(τ, q(τ), β)] + bn(τ)p[τ, δ(τ, s(τ), β)]dτ) −

−

∞∑
n=1

1n(t)E∗n(T − t)
∫ T

0
Gn(T − τ)(1n(τ) f [τ, ϕ(τ, q̃(τ), β)] + bn(τ)p[τ, δ(τ, s̃(τ), β])dτ +

∞∑
n=1

bn(t)E∗n(T − t) ×

×

∫ T

0
Gn(T − τ)(1n(τ) f [τ, ϕ(τ, q̃(τ), β)] + bn(τ)p[τ, δ(τ, s̃(τ), β)]dτ)

}2
dt ≤ 2E2

0

(
‖1(t, x)‖2H(QT) +

+‖b(t, x)‖2H(γT))
{
‖1(t, x)‖2H(QT)

[
‖ f [τ, ϕ(τ, q(τ), β)] − f [τ, ϕ(τ, q̃(τ), β)]‖2H(QT) + ‖b(t, x)‖2H(γT) ×

×‖p[τ, δ(t, s(t), β)] − p[t, δ(t, s̃(t), β)]‖2H(0,T)

}
≤ 2E2

0

(
‖1(t, x) ‖2H(QT) + ‖b(t, x) ‖2H(γT)

)
α2

1 ‖W(t) − W̃(τ)‖2H(0,T) ,

from which the lemma follows.

Theorem 5.4. Suppose that conditions (5), (23), (42), (43) are satisfied, then operator equation (40) has a unique
solution W(t) = (q(t), s(t)) ∈ H2(0,T).

Proof. According to Lemmas 5.1 and 5.2, operator equation (40) can be considered in the space H2(0,T).
According to Lemma 5.3 operator L is contractive. Since the Hilbert space H2(0,T) is a complete metric
space, by the theorem on contraction mappings [7] the operator L has a unique fixed point.

The solution of operator equation (40) can be found by the method of successive approximations by the
formulas

Wn(t) = L[Wn−1(t)] + σ(t),n = 1, 2, 3, ....

Zero approximation W0(t) can be any vector- function, in particular W0(t) = σ(t). Exact solution W(t) is
defined as the limit of approximate solutions, i.e.

W
0
(t) = limn→∞Wn(t), (44)

and we have the estimate

‖W
0
(t) −Wn(t)‖2H2(0,T) ≤

αn

1 − α
‖L[W0(t)] + σ(t) −W0(t)‖2H2(0,T).

Next, substituting found vector-function W
0
(t) = (q0(t), s0(t)) into (31) and (32) we obtain the components

u0
i (t), υ0

i (t) of the optimal vector controls u0(t), υ0(t)

u0
i (t) = ϕi[t, q

0(t), β], i = 1, ...,m, υ0
i (t) = qi[t, s

0(t), β], j = 1, ..., r. (45)

Next we will find an optimal process by the formula

V0(t, x) =

∞∑
n=1

V0
n(t)zn(x); V0

n(t) = λ

∫ T

0
Rn(t, s, λ)a0

n(s)ds + a0
n(t),

a0
n(t) = ψ1ncosλnt +

ψ2n

λn
sinλnt +

1
λn

∫ t

0
sinλn(t − τ)

{
1n(τ) f [τ,u0

1(τ), ...,u0
m(τ)] + bn(τ)p[τ, υ0

1(τ), ..., ϑ0
r (τ)]

}
dτ;



E. Abdyldaeva, A. Kerimbekov / Filomat 33:5 (2019), 1369–1379 1379

And minimum value of the functional J[u0(t), υ0(t)] defined by the formula (6)

J[u0(t), υ0(t)] =

∫
Q

{[
V0(T, x) − ξ1(x)

]2
+

[
V0

t (T, x) − ξ2(x)
]2
}

dx +

+β

∫ 0

T

{
M2

[
t,u0

1(t), ...,u0
m(t)

]
+ M2

[
t, υ0

1(t), ..., υ0
r (t)

]}
dt (46)

The complete solution of the nonlinear optimization problem is found in the form of a triple((
u0(t), υ0(t)

)
,V0(t, x), J

[
u0(t), υ0(t)

])
.
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