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Asymptotics of Solution to the Nonstationary Schrödinger Equation

Asan Omuralieva, Peil Esengul Kyzya

aKyrgyz-Turkish Manas University, 720044 Bishkek, Kyrgyzstan

Abstract. The Cauchy problem with a rapidly oscillating initial condition for the homogeneous Schrödinger
equation was studied in [5]. Continuing the research ideas of this work and [3], in this paper we construct
the asymptotic solution to the following mixed problem for the nonstationary Schrödinger equation:

Lhu ≡ ih∂tu + h2∂2
xu − b(x, t)u = f (x, t), (x, t) ∈ Ω = (0, 1) × (0,T],

u|t=0 = 1(x), u|x=0 = u|x=1 = 0, (1)

where h > 0 is a Planck constant, u = u(x, t, h). b(x, t), f (x, t) ∈ C∞(Ω̄), 1(x) ∈ C∞[0, 1] are given functions.
The similar problem was studied in [7, 8] when the Plank constant is absent in the first term of the

equation and asymptotics of solution of any order with respect to a parameter was constructed. In this
paper, we use a generalization of the method used in [7].

1. Regularization of the Problem

For regularizations of the problem (1), we will introduce the following regulating variables

τ1 =
t

h2 , τ2 =
is(x, t)

h
, ξ1 =

x
√

h
, ξ2 =

1 − x
√

h
, η1 =

x
√

h3
, η2 =

1 − x
√

h3
,

where the existence of a smooth solution of the problem is assumed:

∂ts(x, t) − (∂xs(x, t))2
− b(x, t) = 0, s(x, t)|t=0 = 0. (2)

Instead of the desired function u(x, t, h) we study the extended function ũ(M, h), M = (x, t, ξ, η, τ), ξ =
(ξ1, ξ2), η = (η1, η2), τ = (τ1, τ2) such that its constriction by regularizing variables coincides with the desired
solution:

ũ(M, h)|χ=ψ(x,t,h) ≡ u(x, t, h), (3)

where χ = (ξ, η, τ), ψ(x, t, η) = ( x
√

h
, 1−x
√

h
, x
√

h3
, 1−x
√

h3
, t

h2 ,
is(x,t)

h ).
Using (2), from (3) we find

∂tu ≡ (∂tũ +
1
h2 ∂τ1 ũ +

i∂ts(x, t)
h

∂τ2 ũ)|χ=ψ(x,t,η),
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∂xu ≡ (∂xũ +
1
√

h

2∑
l=1

[(−1)l−1[∂ξl ũ +
1
h
∂ηl ũ] +

i∂xs
h
∂τ2 ũ])|χ=ψ(x,t,η),

∂2
xu ≡ [∂xũ +

1
h

2∑
l=1

[∂2
ξl

ũ +
1
h2 ∂

2
ηl

ũ] +
1
√

h
Lξũ +

1
√

h3
Lηũ+

+ (
i∂xs(x, t)

h
)2∂2

τ2
ũ +

i
h

(2∂xs∂2
xτ2

ũ + ∂2
xs∂τ2 ũ)]|χ=ψ(x,t,η), (4)

Lξ ≡ 2
2∑

l=1

(−1)l−1∂2
xξl
, Lη ≡ 2

2∑
l=1

(−1)l−1∂2
xηl
.

On the basis of (1), (3), (4) for the extended function ũ(M, h), we set the problem as:

L̃hũ ≡
1
h

T1ũ + Dũ +
√

hLηũ + hT2ũ + h
√

hLξũ + h2∂2
xũ = f (x, t), M ∈ Q, (5)

ũ|t=τ1=τ2=0 = 1(x), ũ|x=η1=ξ1=0 = ũ|x=1,η2=ξ2=0 = 0,

where T1 ≡ i∂τ1 +
∑2

l=1 ∂
2
ηl
, T2 ≡ i∂t +

∑2
l=1 ∂

2
ξl
, D ≡ −∂ts∂τ2 + (∂xs)2∂2

τ2
+ b(x, t). The following identity holds:

(L̃hũ(M, h))χ=ψ(x,t,η) ≡ u(x, t, h). (6)

The solution of problem (5) is determined in the form of the following series

ũ(M, h) =

∞∑
k=0

hk/2uk(M). (7)

For the coefficients of this series, we obtain the following iterative problems:

T1uν(M) = 0, ν = 0, 1,T1u2(M) = f (x, t) −Du0(M),

T1uk(M) = −Duk−2 − Lτuk−3 − T2uk−4 − Lξuk−5 − ∂
2
xuk−6, k ≥ 3, (8)

u0(M)|t=τ1=τ2=0 = 1(x),uk(M)|t=τ1=τ2=0 = 0,uk|x=0,ξ1=η1=0 = uk|x=1,ξ2=η2=0 = 0.

2. Solution of Iteration Problems

We introduce classes of functions in which the iterative problems are solved:

U1 =

u1
1(M) : u1 = v(x, t) + c(x, t)exp(τ2) +

2∑
l=1

ωl(x, t)er f c(
ξl

2
√

it
)exp(τ2)

 ,
U2 =

u2
1(M) : u2 =

2∑
l=1

Yl(Nl), Nl = (x, t, τ1, η), Yl(Nl) ∼ exp(−
η2

l

4iτ1
), ∀ηl, τ1 ∈ (0,∞)

 .
From these spaces we construct a new space:

U = U1 ⊕U2;

then the function uk(M) ∈ U has the form

uk(M) = vk(x, t) +

2∑
l=1

Yl
k(Nl) + [c(x, t) +

2∑
l=1

ωl
k(x, t)er f c(

ξl

2
√

it
)]exp(τ2), k ≥ 0. (9)
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Theorem 2.1. If the given functions are smooth, the problem (2) has a smooth solution and the right-hand side of the
equation

T1uk(M) = Hk(M) (10)

belongs to U2, then the equation (10) is solvable in U.

Proof. We substitute the function uk(M) ∈ U from (9) into (10); then, with respect to Yl
k(Nl), we obtain the

equation
T1lYl

k(Nl) = Hk(M), T1l ≡ i∂τ1 − ∂
2
ηl
.

Since the right-hand side of Hk(M) ∈ U2, this equation, with the appropriate boundary conditions, has a
solution of the form

Yl
k(Nl) = dl

k(x, t)er f c(
ηl

2
√

iτ1
) +

2
√

iπ

∫ t

0

∫
∞

0

Hl
k(·)

√
τ1 − τ

[exp(−
(ηl − s)2

4i(τ1 − τ)
) − exp(−

(ηl + s)2

4i(τ1 − τ)
)]dsdτ

The theorem is proved.

Theorem 2.2. Let the conditions of Theorem 2.1 hold. Then equation (10) under additional conditions

1) uk(M)|t=τ1=τ2=0 = 1(x), uk(M)|x=l−1,ξl=ηl=0 = 0, l = 1, 2,

2) H(M) ≡ −Duk−2 − Lηuk−3 − T2uk−4 − Lξuk−5 − ∂
2
xuk−6 ∈ U2,

3) Lηuk = 0, Lξuk = 0

has a unique solution.

Proof. By Theorem 2.1, equation (10) has solutions uk(M) ∈ U. Since the function uk(M) satisfies conditions
1), we obtain

Yl
k(Nl)|t=τ1=0 = 0, Yl

k(Nl)|ηl=0 = dl
k(x, t),

dl
k(x, t)|x=l−1 = −vk(l − 1, t), dl

k(x, t)|t=0 = dl,0
k (x)

ωl
k(x, t)|t=0 = ωl,0

k (x), ωl
k(x, t)|x=l−1,ξl=0 = −ck(l − 1, t), l = 1, 2. (11)

There dl,0
k (x), ωl,0

k (x) are arbitrary functions.
We calculate the actions of the operators D,Lη,T2,Lξ, ∂2

x on the function uk(M) ∈ U with allowance for
(2), and we obtain

Duk−2(M) = b(x, t)Yl
k−2 + b(x, t)vk−2(x, t),

Lηuk−3(M) = 2
2∑

l=1

(−1)l−1∂2
xηl

Yl
k−3,

T2uk−4(M) = i∂tvk−4 + i∂tYl
k−4 + [

2∑
l=1

i∂tω
l
k−4er f c(

ξl

2
√

it
) + i∂tck−4(x, t)]exp(τ2), (12)

Lξuk−5(M) = 2
2∑

l=1

(−1)l−1∂xω
l
k−5(x, t)∂ξl (er f c(

ξl

2
√

it
)),

Lxuk−6(M) = ∂2
xvk−6(x, t) +

2∑
l=1

∂xYl
k−6 + [∂2

xck +

2∑
l=1

∂2
xω

l
k−6(x, t)er f c(

ξl

2
√

it
)]exp(τ2).



A. Omuraliev, P. Esengul Kyzy / Filomat 33:5 (2019), 1361–1368 1364

Using these relations and ensuring condition 2), we set

Lξuk−5(M) = 0, Lηuk−3(M) = 0,

b(x, t)vk−2(x, t) + i∂tvk−4(x, t) + ∂2
xvk−6 = 0, ∂xω

l
k−5(x, t) = 0,

i∂tck−4(x, t) + ∂2
xck−6(x, t) = 0, i∂tω

l
k−4(x, t) + ∂2

xω
l
k−6(x, t) = 0, i∂tYl

k−4 + ∂2
xYl

k−6 = 0.

With such a choice of the functions entering into the function uk(M), equation (10) takes the form

T1lYl
k(Nl) = b(x, t)Yl

k−2(Nl),

of the solution, which, under the boundary conditions from (11), can be written in the form

Yl
k(Nl) = dl

k(x, t)er f c(
ηl

2
√
τ1i

) +
1

2
√

i

∫ τ1

0

∫
∞

0

b(x, t)Yl
k−2(·)

√
τ1 − τ

[exp(−
(ηl − s)2

4i(τ1 − τ)
) − exp(−

(ηl + s)2

4(τ1 − τ)i
)]dτds. (13)

The function dl
k(x, t) stands with the factor of the function er f c( ηl

2
√

iτ1
). Since er f c( ηl

2
√

iτ1
)|τ1=0 = 0 is the

value of the function dl
k(x, t) for t = 0 arbitrarily chosen and this arbitrary function ensures the condition

LηYl
k−3(Nl) = 0. The initial condition for this equation is determined from the relation

Yl
k−3(Nl)|x=l−1,ηl=0 = dl

k(x, t)|x=l−1 = −vk−3(l − 1, t).

Thus the function Yl
k(Nl) is uniquely defined. Solving equations (12) with the corresponding initial condi-

tions from (11). The functionωl
k(x, t) is expressed in terms of an arbitrary functionωl,0

k (x), which ensures the
condition Lξuk(M) = 0. This uniquely determines all functions occurring in uk(M) from (9). The theorem is
proved.

We solve the iterative problems (8) in the class of functions U. By Theorem 2.1, problem (8) for k = 0, 1
has a solution of the form (9) if the function Yl

k(Nl) is a solution of equation

i∂τ1 Yl
ν = ∂2

ηl
Yl
ν, ν = 0, 1 (14)

for initial and boundary conditions in (8):

Yl
ν(Nl)|τ1=0 = Yl

ν(Nl)|ηl=0 = dl
ν(x, t) = −vν(l − 1, t), dl

ν(x, t)|t=0 = dl,0
ν (x),

c0(x, 0) = 1(x) − v0(x, 0), ωl
ν(x, t)|t=0 = ω̃l,0

ν (x), c1(x, 0) = v1(x, 0),

ωl
ν(x, t)|x=l−1,ξl=0 = −cν(l − 1, t). (15)

The solution of equation (13) with boundary conditions (14) has the form

Yl
ν(Nl) = dl

ν(x, t)er f c(
ηl

2
√

iτ1
). (16)

For τ1 = 0, we have er f c( ηl

2
√

iτ1
) = 0; therefore, by its factor we chose an arbitrary function dl

k(x, t) and the

function dl,0
ν (x) is taken as the value for t = 0. Following Theorem 2.2, this function will be used to make

zero Lηuk(M) = 0. We substitute (14) into the equation for Yl
k(Nl) from (12); then, with respect to dl

ν(x, t), we
obtain equation

∂tdl
k−4(x, t) + ∂2

xdl
k−6(x, t) = 0.

Solving it under the initial condition dl
k−4(x, t)|t=0 = dl,0

k−4(x), we define

dl
k−4(x, t) = dl,0

k−4(x) + Pl
k−6(x, t). (17)
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Now substitute in Lηuk(M), then taking into account (17) with respect to dl,0
k−4(x), we obtain a differential

equation. The initial condition for it is determined from the relation with respect to Yl
ν(Nl) is the one

entering into (14)

dl
k−4(x, t)|x=l−1 = (dl,0

k−4(x) + Pl
k−6(x, t))|x=l−1 = −vk−4(l − 1, t). (18)

Thus the function Yl
ν(Nl) is uniquely defined. Consider equation (8) for k = 2. Assuring solvability in U,

according to Theorem 2.1, we require condition

F2(M) = f (x, t) −Du0 ∈ U2; (19)

then equation (8), k = 2 is solvable if Yl
2(Nl) and is a solution of the equation

i∂τ1 Yl
2 = ∂2

ηl
Yl

2 + F2(Nl).

Providing condition (19), following Theorem 2.2, we obtain

b(x, t)v0(x, t) = − f (x, t); (20)

the right-hand side is rewritten as
F2(Nl) = −b(x, t)Yl

0(Nl).

Equation (20) has the solution of the form (13) under the appropriate conditions from (14). In the next step,
the right-hand side of equation (8), with k = 3, has the form

F3(M) = −Du1 − Lηu0.

According to Theorems 2.1 and 2.2, we get

Lηu0 = 2
2∑

l=1

(−1)l−1∂xdl,0
0 (x)∂ηl (er f c(

ηl

2
√

iτ1
)) = 0, or (dl,0

0 (x))
′

= 0

v1(x, t) = 0.

Whence we determine
dl,0

0 (x) = −v0(l − 1, t),

the value of d is determined in the next step from the problem

∂tdl
0(x, t) = 0, dl

0(x, t)|t=0 = dl,0
0 (x).

Notice that the function uk(M) with odd indices vanishes. Indeed, the free term of the next iteration equation
for k = 4 has the form

F4(M) = −Du2 − Lηu1 − T1u0.

By Theorems 2.1 and 2.2, this equation has a solution in U if

−b(x, t)v2(x, t) = ∂tv0(x, t),

∂tdl
0(x, t) = 0, dl

0(x, t)|t=0 = dl,0
0 (x),

(dl
1(x, t))

′

x = 0, dl
1(x, t)|x=l−1 = −v1(l − 1, t), dl

1(x, t)|t=0 = dl,0
1 (x).

∂tω
l
0(x, t) = 0, ωl

0(x, t)|t=0 = ωl,0
0 (x), ∂tc0(x, t) = 0, c0(x, t)|t=0 = 1(x) − v0(x, 0),

ωl
0(x, t)|x=l−1 = −c0(l − 1, t).

Taking into account that v1(x, t) = 0, we find dl
1(x, t) = 0, and from the remaining problems we define

v2(x, t), ωl
0(x, t), c0(x, t). Further, repeating this process, we successively determine all the coefficients of the

partial sum.
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Lemma 2.3. For the function

er f c(
ξ

2
√

it
) =

2
√
π

∫
∞

ξ

2
√

it

exp(−s2)ds

it holds

er f c(
ξ

2
√

it
) < cexp(−

ξ2

4it
).

Proof. We make the change of variables s = y + ξ

2
√

it
, dy = ds, and considering that 1

√
i

= 2
√

2
(1 − i) we get

er f c(
ξ

2
√

it
) =

2
√
π

∫
∞

0
exp(−y2

−
ξ
√

it
y −

ξ2

4it
)dy =

=
2
√
π

exp(−
ξ2

4it
)
∫
∞

0
exp(−y2

−
ξ
√

t

2
√

2
(1 − i)y)dy =

=
2
√
π

exp(−
ξ2

4it
)
∫
∞

0
exp(−y2

−

√
2
t
ξy +

√
2
t

iξy)dy =

=
2
√
π

exp(−
ξ2

4it
)
∫
∞

0
exp(−y2

−

√
2
t
ξy)

cos(

√
2
t
ξy) + isin(

√
2
t
ξy)

 dy.

Using Hölder’s inequality we have

er f c(
ξ

2
√

it
) ≤

2
√
π

exp(−
ξ2

4it
)

∫ ∞

0

∣∣∣∣∣∣∣exp(−y2
−

√
2
t
ξy)

∣∣∣∣∣∣∣ dy


1
2

×

×


∫
∞

0

∣∣∣∣∣∣∣exp(−y2
−

√
2
t
ξy)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣cos(

√
2
t
ξy) + isin(

√
2
t
ξy)

∣∣∣∣∣∣∣
2

dy


1
2

=

=
2
√
π

exp(−
ξ2

4it
)
∫
∞

0
exp(−y2

−

√
2
t
ξy)dy.

Replacing the integral by the formula 7.4.2 of [1], we find

er f c(
ξ

2
√

it
) ≤

2
√
π

exp(−
ξ2

4it
)
√
π

2
exp(

ξ2

2t
)
∫
∞

ξ/
√

2t
e−s2

ds.

Using inequality 4 from §4.8.5 in [4], we obtain

er f c(
ξ

2
√

it
) ≤ exp(−

ξ2

4it
)

1√
(π − 2)2 ξ2

2t + π + 2
√

ξ
√

2t

= cexp(−
ξ2

4it
).

Lemma 2.4. Let

F(ξ, t) ≤ cexp(−
ξ2

4it
). (L − 1)

Then for the integral
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I(ξ, t) = 2
√

iπ

∫ t

0

∫
∞

0
F(s,τ)
√

t−τ
[exp(− (ξ−s)2

4i(t−τ) ) − exp(− (ξ+s)2

4i(t−τ) )]dsdτ (L-2)

we have

I(ξ, t) ≤ cexp(−
ξ2

4it
). (L − 3)

Proof. Consider

I(ξ, t) =
2
√

iπ

∫ t

0

∫
∞

0

F(s, τ)
√

t − τ

[
exp(−

(ξ − s)2

4i(t − τ)
) − exp(−

(ξ + s)2

4i(t − τ)
)
]

dsdτ =

=

 ξ ± s

2
√

i(t − τ)
= z dz = ±

ds

2
√

i(t − τ)
, ± s = −ξ + 2

√
i(t − τ)z

 =

=
4
√
π

∫ t

0


∫
−∞

ξ

2
√

i(t−τ)

F(ξ − 2
√

i(t − τ)z, τ)e−z2
dz −

∫
∞

ξ

2
√

i(t−τ)

F(−ξ + 2
√

i(t − τ)z, τ)e−z2
dz

 dτ.

With regard to (L-3) we rewrite this as

I(ξ, t) ≤
4c
√
π

∫ t

0
[−

∫ ξ

2
√

i(t−τ)

−∞

exp(−z2
−

(ξ − 2
√

i(t − τ)z)2

4it
)dz−

−

∫
∞

ξ

2
√

i(t−τ)

exp(−z2
−

(−ξ + 2
√

i(t − τ)z)2

4it
)dz]dτ ≤

≤
4c
√
π

∫ t

0
[
∫ ξ

2
√

i(t−τ)

−∞

exp(−z2
−
ξ2
− 4

√
i(t − τ)zξ + 4i(t − τ)z2

4iτ
)dz+

+

∫
∞

ξ

2
√

i(t−τ)

exp(−z2
−
ξ2
− 4

√
i(t − τ)zξ + 4i(t − τ)z2

4iτ
)dz] =

=
4c
√
π

∫ t

0

∫
∞

−∞

exp(−
4z2iτ + ξ2

− 4
√

i(t − τ)zξ + 4itz2
− 4iτz2

4iτ
)dzdτ =

=
4c
√
π

∫ t

0
exp(−

ξ2

4iτ
)
∫
∞

−∞

exp(−
t
τ

z2 +

√
t − τ
√

iτ
ξz)dzdτ.

Using the formula 3.323.3 from [2] we obtain

I(ξ, t) ∼
4c
√
π

∫ t

0
exp(−

ξ2

4iτ
)exp(

t−τ
iτ2 ξ2

4 t
τ

)
√
π√
t
τ

dτ =

=
4c
√
π

∫ t

0
exp(−

ξ2

4iτ
)exp(

(t − τ)τξ2

4iτ2t
)

√
τ
t

dτ =

= 4c
∫ t

0
exp(−

ξ2

4iτ
+

(t − τ)ξ2

4iτt
)

√
τ
t

dτ =

= 4c
∫ t

0

√
τ
t

exp(−
ξ2

4iτ
+
ξ2

4iτ
−
ξ2

4it
)dτ =
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= 4c
1
√

t
exp(−

ξ2

4it
)
∫ t

0

√
τdτ = cexp(−

ξ2

4it
).

un,h(M) =

n∑
k=0

hku2k(M) (L − 4)

Producing a restriction by means of the regularizing functions, on the basis of (6), for the remainder term

Rn(x, t, h) = u(x, t, ε) − un(M)|χ=ψ(x,t,h)

we obtain the problem

LεRn = hn+112n(x, t, h), Rn(x, t, h)|t=0 = Rn(x, t, h)|x=0 = Rn(x, t, h)|x=1 = 0,

where
∣∣∣12n(x, t, h)

∣∣∣ < c. Using the maximum principle and following [6]. We get the estimate

|Rn(x, t, h)| < chn+1.

Theorem 2.5. Let the given functions be sufficiently smooth. Then the problem (1) has an asymptotic solution that
is representable in the form (L-4) for χ = ψ(x, t, η) and for all n = 0, 1, 2, ..., 0 < h < h0 holds.
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