Singularly Perturbed Parabolic Problem with Oscillating Initial Condition

Asan Omuraliev ${ }^{\text {a }}$, Ella Abylaeva ${ }^{\text {a }}$
${ }^{a}$ Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic

Abstract

The aim of this paper is to construct regularized asymptotics of the solution of a singularly perturbed parabolic problem with an oscillating initial condition. The presence of a rapidly oscillating function in the initial condition has led to the appearance of a boundary layer function in the solution, which has the rapidly oscillating character of the change. In addition, it is shown that the asymptotics of the solution contains exponential, parabolic boundary layer functions and their products describing the angular boundary layers. Continuing the ideas of works $[1,3]$ a complete regularized asymptotics of the solution of the problem is constructed.

1. Statement of the Problem

In this paper the first boundary value problem for a parabolic equation with a small parameter on the derivatives is studied:

$$
\begin{align*}
& L_{\varepsilon} u \equiv \varepsilon \partial_{t} u-\varepsilon^{2} a(x) \partial_{x}^{2} u-b(x, t) u=f(x, t), \\
& \left.u\right|_{t=0}=u^{0}(x) \exp \left(\frac{i S^{0}(x)}{\varepsilon}\right),\left.\quad u\right|_{x=0}=\left.u\right|_{x=1}=0, u^{0}(0)=u^{0}(1)=0 \tag{1}
\end{align*}
$$

where $(x, t) \in \Omega, \Omega=(0,1) x(0, T], \varepsilon>0$ is small parameter, $u=u(x, t, \varepsilon)$. The problem is solved under the following conditions:

1. the given functions are sufficiently smooth,
2. $\forall x \in[0,1]$, function $a(x)>0, \forall t \in[0, T]$, function $b(x, t)<0$,
3. function $S_{k}(x, t), k=2,3$ are solutions of Cauchy problem:

$$
\begin{aligned}
& i \partial_{t} S_{2}(x, t)+a(x)\left(\partial_{x} S_{2}(x, t)\right)^{2}=b(x, t),\left.S_{2}(x, t)\right|_{t=0}=S^{0}(x), \\
& \partial_{t} S_{3}(x, t)-a(x)\left(\partial_{x} S_{3}(x, t)\right)^{2}=b(x, t),\left.S_{3}(x, t)\right|_{t=0}=0,
\end{aligned}
$$

where the function $S_{3}(x, t)$ satisfies condition $\operatorname{Re} S_{3}(x, t) \leq 0, \forall x, t \in \bar{\Omega}$.

[^0]
2. Regularization of the Problem

For the regularization of the problem (1) regularizing variables are introduced:

$$
\begin{equation*}
\tau_{1}=\frac{t}{\varepsilon^{2}}, \tau_{k}=\frac{S_{k}(x, t)}{\varepsilon}, k=2,3, \xi_{l}=\frac{\varphi_{l}(x)}{\sqrt{\varepsilon}}, \eta_{l}=\frac{\varphi_{l}(x)}{\sqrt{\varepsilon^{3}}}, \varphi_{l}(x)=(-1)^{l-1} \int_{l-1}^{x} \frac{d s}{\sqrt{a(s)}}, l=1,2 \tag{2}
\end{equation*}
$$

and an extended function $\widetilde{u}(M, \varepsilon), M=(x, t, \xi, \eta, \tau)$ such as:

$$
\begin{gather*}
\left.\widetilde{u}(M, \varepsilon)\right|_{\chi=\psi(x, t, \varepsilon)} \equiv u(x, t, \varepsilon), \chi=(\tau, \xi, \eta), \tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right), \xi=\left(\xi_{1}, \xi_{2}\right), \\
\eta=\left(\eta_{1}, \eta_{2}\right), \psi(x, t, \varepsilon)=\left(\frac{t}{\varepsilon^{2}}, \frac{S_{2}(x, t)}{\varepsilon}, \frac{S_{3}(x, t)}{\varepsilon}, \frac{\varphi(x)}{\sqrt{\varepsilon}}, \frac{\varphi(x)}{\sqrt{\varepsilon^{3}}}\right) . \tag{3}
\end{gather*}
$$

Considering (2) from (3) the following derivatives are found:

$$
\begin{gather*}
\left.\partial_{t} u \equiv\left(\partial_{t} \widetilde{u}+\frac{1}{\varepsilon} \partial_{t} S_{2}(x, t) \partial_{\tau_{2}} \widetilde{u}+\frac{1}{\varepsilon^{2}} \partial_{\tau_{1}} \widetilde{u}+\frac{1}{\varepsilon} \partial_{t} S_{3}(x, t) \partial_{\tau_{3}} \widetilde{u}\right)\right|_{\chi=\psi(x, t, \varepsilon)}, \\
\left.\partial_{x} u \equiv\left(\partial_{x} \widetilde{u}+\frac{\partial_{x} S_{2}}{\varepsilon} \partial_{\tau_{2}} \widetilde{u}+\frac{\partial_{x} S_{3}}{\varepsilon} \partial_{\tau_{3}} \widetilde{u}+\sum_{l=1}^{2}\left[\frac{\varphi_{l}^{\prime}(x)}{\sqrt{\varepsilon}} \partial_{\xi_{l}} \widetilde{u}+\frac{\varphi_{l}^{\prime}(x)}{\sqrt{\varepsilon^{3}}} \partial_{\eta_{l}} \widetilde{u}\right]\right)\right|_{\chi=\psi(x, t, \varepsilon)}, \\
\partial_{x}^{2} u \equiv\left(\partial_{x}^{2} \widetilde{u}+\sum_{k=1}^{2}\left[\left(\frac{\partial_{x} S_{k+1}}{\varepsilon}\right)^{2} \partial_{\tau_{k+1}}^{2} \widetilde{u}+\frac{1}{\varepsilon}\left(2 \partial_{x} S_{k+1} \partial_{x \tau_{k+1}}^{2} \widetilde{u}+\partial_{x}^{2} S_{k+1} \partial_{\tau_{k+1}} \widetilde{u}\right)\right]+\right. \\
+\left.\frac{1}{\sqrt{\varepsilon}}\left[2 \varphi_{l=1}^{\prime}\left(\left[(x) \partial_{x \xi_{l}}^{2} \widetilde{u} \varphi_{l}^{\prime 2}(x) \varphi_{\xi_{l}}^{2 \prime} \widetilde{u}+\frac{1}{\varepsilon^{3}} \varphi_{l}^{\prime 2}(x) \partial_{\xi_{l}}^{2} \widetilde{u}\right]+\frac{1}{\sqrt{\varepsilon^{3}}}\left[2 \varphi_{l}^{\prime}(x) \partial_{x \eta_{l}}^{2} \widetilde{u}+\varphi_{l}^{\prime \prime}(x) \partial_{\eta_{l}} \widetilde{u}\right]\right)\right)\right|_{\chi=\psi(x, t, \varepsilon)} .
\end{gather*}
$$

By virtue of (1), (3), (4) we can put the extended problem:

$$
\begin{gather*}
\widetilde{L}_{\varepsilon} \widetilde{u} \equiv \varepsilon \partial_{t} \widetilde{u}+\sum_{k=1}^{2}\left[\partial_{t} S_{k+1} \partial_{\tau_{k+1}} \widetilde{u}+a(x)\left(\partial_{x} S_{k+1}\right)^{2} \partial_{\tau_{k+1}}^{2} \widetilde{u}\right]-b(x, t) \widetilde{u}+\frac{1}{\varepsilon}\left[\partial_{\tau_{1}} \widetilde{u}-\Delta_{\eta} \widetilde{u}\right]- \\
\quad-\varepsilon \Delta_{\xi} \widetilde{u}-\varepsilon \sum_{k=1}^{2} L_{S_{k}} \tilde{u}-\varepsilon \sqrt{\varepsilon} L_{\xi} \widetilde{u}-\sqrt{\varepsilon} L_{\eta} \tilde{u}-\varepsilon^{2} L_{x} \widetilde{u}=f(x, t), \\
\left.\widetilde{u}\right|_{t=0, \tau_{3}=0, \tau_{1}=0, \tau_{2}=\frac{i 5^{0}(x)}{\varepsilon}}=u^{0}(x) \exp \left(\frac{i S^{0}(x)}{\varepsilon}\right),\left.\widetilde{u}\right|_{x=0, \xi_{1}=\eta_{1}=0}=\left.\widetilde{u}\right|_{x=1, \xi_{2}=\eta_{2}=0}=0, \tag{5}
\end{gather*}
$$

where the following notations are introduced:

$$
\begin{gathered}
L_{S_{k}} \equiv\left(2 \partial_{x} S_{k+1}(x, t) \partial_{x \tau_{k+1}}^{2}+\partial_{x}^{2} S_{k}(x, t) \partial_{\tau_{k+1}}\right) a(x), \\
L_{\xi} \equiv a(x) \sum_{l=1}^{2}\left[2 \varphi_{l}^{\prime}(x) \partial_{x \xi_{l}}^{2}+\varphi_{l}^{\prime \prime}(x) \partial_{\xi_{l}}\right], \\
L_{\eta} \equiv a(x) \sum_{l=1}^{2}\left[2 \varphi_{l}^{\prime}(x) \partial_{x \eta_{l}}^{2}+\varphi_{l}^{\prime \prime}(x) \partial_{\eta_{l}}\right], \\
L_{x} \equiv a(x) \partial_{x}^{2}, \Delta_{\xi} \equiv \sum_{l=1}^{2} \partial_{\xi_{l}}^{2}, \Delta_{\eta} \equiv \sum_{l=1}^{2} \partial_{\eta_{l}}^{2} .
\end{gathered}
$$

Problem (5) is regular with respect to ε :

$$
\left(\widetilde{L_{\varepsilon}} \widetilde{u}\right)_{\chi=\psi(x, t, \varepsilon)} \equiv L_{\varepsilon} u(x, t, \varepsilon)
$$

so the solution of the problem (5) is searched in the form of a series:

$$
\begin{equation*}
\widetilde{u}(M, \varepsilon)=\sum_{i=0}^{\infty} \varepsilon^{i / 2} u_{i}(M) \tag{6}
\end{equation*}
$$

For the coefficients of this series we get the following equations:

$$
\begin{gather*}
T_{0} u_{v} \equiv \partial_{\tau_{1}} u_{v}-\Delta_{\eta} u_{v}=0, v=0,1, \\
T_{0} u_{2}=-T_{1} u_{0}+f(x, t), \\
T_{0} u_{3}=-T_{1} u_{1}+L_{\eta} u_{0}, \\
T_{0} u_{4}=-T_{1} u_{2}+L_{\eta} u_{1}-T_{3} u_{0}-\sum_{k=1}^{2} L_{S_{k}} u_{0}+L_{\xi} u_{0}, \\
T_{0} u_{i}=-T_{1} u_{i-2}+L_{\eta} u_{i-3}-T_{3} u_{i-4}-\sum_{k=1}^{2} L_{S_{k}} u_{i-4}+L_{\xi} u_{i-4}+L_{x} u_{i-6,}, \\
\left.u_{0}(M)\right|_{t=0}=u^{0}(x) \exp \left(\frac{i S^{0}(x)}{\varepsilon}\right),\left.\quad u_{i}\right|_{t=0}=\left.u_{i}\right|_{x=0}=\left.u_{i}\right|_{x=1}=0, \tag{7}
\end{gather*}
$$

where $T_{1} \equiv \sum_{k=1}^{2}\left[\partial_{t} S_{k+1} \partial_{\tau_{k+1}}-a(x)\left(\partial_{x} S_{k+1}\right)^{2} \partial_{\tau_{k+1}}^{2}\right]+b(x, t), T_{3} \equiv \partial_{t}-\Delta_{\xi}$.

3. Solution of Iteration Problems

The iterative problems are solved (5) in the class of functions $U=U_{1} \otimes U_{2}$:

$$
\begin{gathered}
U_{1}=\left\{u_{k}(N): u_{k}(N)=\sum_{l=1}^{2} Y_{k}^{l}\left(N_{l}\right),\left|Y_{k}^{l}\left(N_{l}\right)\right|<c \exp \left(-\frac{\eta_{l}^{2}}{8 \tau_{1}}\right)\right\}, \\
U_{2}=\left\{u_{k}(M): u_{k}(M)=v_{k}(x, t)+c_{k}^{1}(x, t) \exp \left(i \tau_{2}\right)+c_{k}^{2}(x, t) \exp \left(\tau_{3}\right)+\right. \\
\left.+\sum_{l=1}^{2}\left[p^{2, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right) \exp \left(i \tau_{2}\right)+p^{3, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right) \exp \left(\tau_{3}\right)\right]\right\}, \\
v_{k}(x, t), c^{l}(x, t), d^{l}(x, t), p^{l}(x, t), q^{l}(x, t) \in C^{\infty}(\bar{\Omega}), \operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp ^{-s^{2}} d s .
\end{gathered}
$$

Theorem 3.1. Let be $\left|H^{l}(N)\right|<c \exp \left(-\frac{\eta_{l}^{2}}{4 \tau_{1}}\right)$, then the problem $\partial_{\eta} Y_{k}^{l}(N)=\partial_{\eta_{l}}^{2} Y_{k}^{l}(N)+H^{l}(N),\left.Y_{k}^{l}\right|_{\tau_{1}=0}=$ $0, Y_{k}^{l} \mid \eta_{l}=0=d_{k}^{l}(x, t)$ has a solution satisfying $\left|Y_{k}^{l}(N)\right|<c \exp \left(-\frac{\eta_{l}^{2}}{4 \tau_{1}}\right)$.

The proof of this theorem was carried out in [[4], Theorem 2].
Satisfying the function $u_{i}(M) \in U$ and considering that the $t=\tau_{3}=0$ function $\operatorname{erfc}(\infty)=0$ the value of the function $\left.p_{i}^{k, l}(x, t)\right|_{t=0}$ is chosen arbitrarily and we get:

$$
\begin{gather*}
\left.c_{0}^{1}(x, t)\right|_{t=0}=u^{0}(x),\left.c_{i}^{2}(x, t)\right|_{t=0}=-v(x, 0),\left.p_{i}^{k, l}(x, t)\right|_{t=0}=\widetilde{p}_{i}^{k, l}(x), k=2,3, l=1,2 \\
\left.Y_{i}^{l}\left(N_{l}\right)\right|_{\eta_{l}=0}=d_{i}^{l}(x, t),\left.d_{i}^{l}(x, t)\right|_{x=l-1}=-v_{i}(l-1, t),\left.p^{2, l}(x, t)\right|_{x=l-1}=-c^{1}(l-1, t),\left.p^{3, l}(x, t)\right|_{x=l-1}=-c^{2}(l-1, t), \\
\left.Y_{i}^{l}\left(N_{l}\right)\right|_{t=\tau_{1}=0}=0 \tag{8}
\end{gather*}
$$

$\tilde{p}^{k, l}(x)$-are arbitrary functions.
Theorem 3.2. Suppose that conditions 1)-3) are satisfied and $h(M) \in U_{2}$ then the problem:

$$
\begin{equation*}
T_{0} u_{k}=h(M),\left.u_{k}(M)\right|_{t=0}=u_{k}^{0}(x) \exp \left(\frac{i S^{0}(x)}{\varepsilon}\right),\left.u_{k}\right|_{x=l-1, \xi_{l}=0, \eta_{l}=0}=0, l=1,2 \tag{9}
\end{equation*}
$$

under additional conditions:
a) $L_{\xi} u_{k}=0, L_{\eta} u_{k}=0$,
b) $T_{1} u_{k-1}-T_{3} u_{k-4}-\sum_{l=1}^{2} L_{s_{l}} u_{k-4}+L_{x} u_{k-6} \in U_{1}$ has a unique solution in U.

Proof. The free member of iterative problems has the form (7). We substitute the function $u_{i}(M) \in U$ in the free term:

$$
\begin{gathered}
h(M)=T_{1} u_{k-2}+L_{\eta} u_{k-3}-T_{3} u_{k-4}-\sum_{k=1}^{2} L_{s_{k}} u_{k-4}+L_{\xi} u_{k-5}+L_{x} u_{k-6}= \\
\partial_{t} v_{k-4}(x, t)+\partial_{t} c_{k-4}^{1} \exp \left(i \tau_{2}\right)+\partial_{t} c_{k-4}^{2} \exp \left(\tau_{3}\right)+ \\
+\sum_{l=1}^{2}\left[\partial_{t} Y_{k-4}^{l}+\partial_{t} p_{k-4}^{2, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right) \exp \left(i \tau_{2}\right)+\partial_{t} p_{k-4}^{3, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right) \exp \left(\tau_{3}\right)\right]+ \\
+b(x, t)\left[v_{k-2}(x, t)+c_{k-2}^{1}(x, t) \exp \left(i \tau_{2}\right)+c_{k-2}^{2}(x, t) \exp \left(\tau_{3}\right)+\right. \\
\left.+\sum_{l=1}^{2}\left(Y_{k-2}^{l}+p_{k-2}^{2, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right) \exp \left(i \tau_{2}\right)+p_{k-4}^{3, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right) \exp \left(\tau_{3}\right)\right)\right]+ \\
+\sum_{l=1}^{2}\left[i \partial_{t} S_{2}(x, t)+a(x)\left(\partial_{x} S_{2}\right)^{2}\right] p_{k-2}^{2, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right) \exp \left(i \tau_{2}\right)+ \\
+\left[\partial_{t} S_{3}(x, t)+a(x)\left(\partial_{x} S_{3}\right)^{2}\right] \exp \left(\tau_{3}\right) p_{k-2}^{3, l}(x, t) \operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right)+ \\
+\left[i \partial_{t} S_{2}(x, t)+a(x)\left(\partial_{x} S_{2}\right)^{2}\right] c_{k-2}^{1}(x, t) \exp \left(i \tau_{2}\right)+ \\
+\left[\partial_{t} S_{3}(x, t)-a(x)\left(\partial_{x} S_{3}\right)^{2}\right] \exp \left(\tau_{3}\right) c_{k-2}^{2}(x, t)+L_{\eta} u_{k-3}-\sum_{k=1}^{2} L_{s_{k}} u_{k-4}+L_{\xi} u_{k-5}+a(x) L_{x} u_{k-6} .
\end{gathered}
$$

From here ensuring the existence of a solution of equation:

$$
\begin{equation*}
T_{0} u_{k} \equiv \sum_{l-1}^{2} T_{0} Y_{k}^{l}\left(N_{l}\right)=h(M) \tag{A}
\end{equation*}
$$

We suppose that:

$$
\begin{align*}
& b(x, t) v_{k-2}(x, t)=-\partial_{t} v_{k-4}(x, t), \partial_{t} Y_{k-4}^{l}=L_{x} Y_{k-6^{\prime}}^{l} \\
& \left\{\begin{array}{l}
\partial_{t} c_{k-4}^{1}(x, t)=\left[2 i \partial_{x} S_{2}(x, t) \partial_{x} c_{k-4}^{1}+i \partial_{x}^{2} S_{2}(x, t) c_{k-4}^{1}(x, t)\right] a(x)+a(x) \partial_{x}^{2} c_{k-6}^{1}(x, t), \\
\partial_{t} c_{k-4}^{2}(x, t)=\left[2 \partial_{x} S_{3}(x, t) \partial_{x} c_{k-4}^{2}+\partial_{x}^{2} S_{3}(x, t) c_{k-4}^{2}(x, t)\right]+a(x) \partial_{x}^{2} c_{k-6}^{1}(x, t),
\end{array}\right. \tag{10}\\
& \left\{\begin{array}{l}
\partial_{t} p_{k-4}^{2, l}=i a(x)\left[2 \partial_{x} S_{2}(x, t) \partial_{x} p_{k-4}^{2, l}+\partial_{x}^{2} S_{2}(x, t) p_{k-4}^{2, l}(x, t)\right]+a(x) \partial_{x}^{2} p_{k-6}^{2, l}(x, t), \\
\partial_{t} p_{k-4}^{3, l}=a(x)\left[2 \partial_{x} S_{3}(x, t) \partial_{x} p_{k-4}^{3, l}+\partial_{x}^{2} S_{3}(x, t) p_{k-4}^{3, l}(x, t)\right]+a(x) \partial_{x}^{2} p_{k-6}^{3, l}(x, t),
\end{array}\right. \tag{11}\\
& L_{\xi} u_{k-5}=a(x) \sum_{l=1}^{2}\left[2 \varphi_{l}^{\prime}(x) \partial_{x} p_{k-5}^{j, l}(x, t)+\varphi_{l}^{\prime \prime}(x) p_{k-5}^{j, l}(x, t)\right]\left(\operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{t}}\right)\right)_{\xi_{l}} \exp \left(\tau_{3}\right)=0, \\
& L_{\eta} u_{k-4}=\sum_{l=1}^{2} L_{\eta} Y_{k-3}^{l}\left(N_{l}\right)=0, \tag{12}
\end{align*}
$$

then with condition a) from Theorem 3.2 we obtain the free term $h(M)=\sum_{l=1}^{2} b(x, t) Y_{k-2}^{l} \in U_{1}$. By Theorem 3.1 the equation (A) with a free term $h(M) \in U_{1}$ is solvable and its solution is representable in the form of:

$$
\begin{equation*}
Y_{k}^{l}\left(N_{l}\right)=d_{k}^{l}(x, t) \operatorname{erfc}\left(\frac{\eta_{l}}{2 \sqrt{\tau_{1}}}\right)+I_{k}^{l}\left(N_{l}\right) \tag{13}
\end{equation*}
$$

where $I_{k}^{l}\left(N_{l}\right)=p_{k}^{l} I\left(\eta_{l}, \tau_{1}\right)$ and the estimate $\left|Y_{k}^{l}(N)\right|<c \exp \left(-\frac{\eta_{l}^{2}}{4 \tau_{1}}\right)$ is fair. We substitute (13) into (10) and with noticing $\left|I\left(\eta_{l}, \tau_{1}\right)\right| \leq c \exp \left(-\frac{\eta_{l}^{2}}{8 \tau_{1}}\right),\left|\operatorname{erfc}\left(\frac{\xi_{l}}{2 \sqrt{\tau_{1}}}\right)\right|<c \exp \left(-\frac{\eta_{l}^{2}}{8 \tau_{1}}\right)$ with respect to $d_{k-4}^{l}(x, t)$ we obtain the problem $\partial_{t} d_{k}^{l}(x, t)=-\partial_{t} p_{k}^{l}(x, t)+L_{x} q_{k}^{l}(x, t),\left.d_{k}^{l}(x, t)\right|_{t=0}=\widetilde{d_{k}^{l}}(x)$, where $\widetilde{d_{k}^{l}}(x)$ is arbitrary function. This choice is dictated by the fact that the function $\operatorname{erfc}\left(\frac{\eta_{l}}{2 \sqrt{\tau_{1}}}\right)$ at $t=\tau_{1}=0$ vanishes. So we choose the value of the multiplier $\left.d_{k-4}^{l}(x, t)\right|_{t=0}$ arbitrarily. Arbitrary functions $\widetilde{d_{k}^{l}}(x)$ allow to vanish expression $L_{\eta} Y_{k-4}\left(N_{l}\right)$.

Solutions of equations with respect to $p_{i}^{k, l}(x, t)$ from (11) under the initial conditions from (8) will contain arbitrary functions $\tilde{p}_{i}^{k, l}(x, t)$. This arbitrary functions $\widetilde{p}_{i}^{k, l}(x, t)$ which included in the function $p_{i}^{k, l}(x, t)$ allow to vanish expression $L_{\xi} u_{i}$. In this case, with respect to $\widetilde{p}_{i}^{k, l}$ we obtain the differential equations which are solved under the initial condition from (8). The equation (8) is solved under the initial condition from (8). In this way $u(M) \in U$ is uniquely determined. The theorem is proved.

By using (3.1) sequentially are defined $u_{i}(M), i=0,1, \ldots, 2 n$, functions, i.e partial sum of the $u_{\varepsilon_{n}}(M)$ series (6).
Taking into account (7), we substitute a partial sum into problem (5) and make a narrowing by regularizing functions, then with respect to the remainder term:

$$
R_{\varepsilon n}(x, t, \varepsilon)=u(x, t, \varepsilon)-u_{\varepsilon n}(x, t, \psi(x, t, \varepsilon), \varepsilon),
$$

the problem is obtained:

$$
L_{\varepsilon} R_{\varepsilon n}=\varepsilon^{n+\frac{1}{2}} g_{n}(x, t, \varepsilon),\left.R_{\varepsilon n}\right|_{t=0}=\left.R_{\varepsilon n}\right|_{x=0}=\left.R_{\varepsilon n}\right|_{x=1}=0
$$

Analogously to [2], it can be shown that:

$$
\begin{align*}
& \left\|R_{\varepsilon n}(x, t, \varepsilon)\right\|<c \varepsilon^{n+\frac{1}{2}} \\
& \forall x, t \in \Omega, n=0,1,2, \ldots, \tag{14}
\end{align*}
$$

for sufficiently small $\varepsilon>0$.
Theorem 3.3. Suppose that the conditions 1)-3) are satisfied. Then constructed partial sum (6) is an asymptotic solution of problem (1), i.e the estimate (14) is fair .

References

[1] S. Lomov, Introduction to the General Theory of Singular Perturbations, (AMS Translations of Mathematical Monographs Series, Vol. 112.), AMS, Providence, 1992.
[2] A. Omuraliev, Regularization of a two-dimensional singularly perturbed parabolic problem, Comput. Math. \& Math. Physics 46 (2006) 1349-1358.
[3] A. Omuraliev, Asymptotics of the Solution of Singularly Perturbed Problems, LAMBERT Academic Publishing, Germany, 2017.
[4] A. Omuraliev, M. Imash Kyzy, Singularly perturbed parabolic problems with multidimensional boundary layers, J. Differential Equations 53 (2017) 1616-1630.
[5] A. Vasileva, V. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations, Graduate School, Moscow, 1990.

[^0]: 2010 Mathematics Subject Classification. Primary 39A14 ; Secondary 34E10
 Keywords. Singularly pertubed problems, boundary layer, angular boundary layer, regularized asymptotics
 Received: 13 June 2018; Revised: 25 January 2019; Accepted: 08 February 2019
 Communicated by Fahreddin Abdullaev
 Email addresses: asan.omuraliev@manas.edu.kg (Asan Omuraliev), ella.abylaeva@manas.edu.kg (Ella Abylaeva)

