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Abstract. Main goal of this paper is to have the new exact solutions of some fractional partial differential
equation systems (FPDES) in conformable sense. The definition of conformable fractional derivative (CFD)
is similar to the limit based definition of known derivative. This derivative obeys both rules which other
popular derivatives do not satisfy such as derivative of the quotient of two functions, the derivative product
of two functions, chain rule and etc. By using conformable derivative it is seen that the solution procedure
for (PDES) is simpler and more efficient.

1. Introduction

The application of differential equations which arise in the field of medicine, engineering, social sciences,
physics, and different branches of applied sciences is one of the interesting and most important area.
Although there are many problems including differential equations, there are not any prevalent techniques
for the solution of such problems. Huge amount of researchers use the integral transforms which is one of
the greatest known scheme used for the solution of ordinary and partial differential equations. After the
use of integral transform methods the differential, partial differential, integral, integro differential equations
turn into an algebraic equation. So the solution procedure becomes simpler.

Fractional calculus, which has been aroused great interest with respect to its extensive area of appli-
cations in nearly all disciplines of applied sciences and engineering became a favorite subject in the last
decades [11–13, 16]. Fractional derivatives were not used in physics, engineering and other disciplines
although they have a long mathematical history. One of the reason of this event could be that there are mul-
tiple nonequivalent definitions of fractional derivatives and integrals. Another difficulty is that fractional
derivatives have no evident geometrical interpretation because of their nonlocal character [17]. Any other
reason is that Riemann-Liouville and Caputo fractional derivative include integral forms in their definitions
and these integral forms make calculations complicated. In addition to this scientists determined many
deficiencies of these definitions. For instance [10]

1. The Riemann-Liouville derivative of a constant do not equal to zero (Caputo derivative satisfies).
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2. The formula of the derivative of the product of two functions do not satisfied by both Riemann-
Liouville and Caputo definitions.

Dα
a ( f1) = 1Dα

a ( f ) + f Dα
a (1).

3. the known formula of the derivative of the quotient of two functions do not satisfied by both Riemann-
Liouville and Caputo definitions.

Dα
a

(
f
1

)
=

f Dα
a ( f ) − 1Dα

a (1)
12 .

4. The chain rule do not satisfied by both Riemann-Liouville and Caputo definitions.

Dα
a ( f o1)(t) = f α(1(t))1α(t).

5. All fractional derivatives do not satisfy DαDβ = Dα+β in general.

6. In the Caputo definition it is assumed that the function f is differentiable.

For these reasons scientists decided to express efficient, applicable, limpid and simple definition of
arbitrary order derivation and integration. In 2014, a new, well behaved arbitrary order derivative and
integral definition that satisfies basic properties of Newtonian concept derivative and integral are expressed
by Khalil et. al. [10].

Definition 1.1. f : [0,∞)→ R be a function. The αth order ”CFD” of f is stated by,

Dα( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

for all t > 0, α ∈ (0, 1).

Definition 1.2. If f is α-differentiable in some (0, a), a > 0 and lim
t→0+

f (α)(t) exists then define f (α)(0) =

lim
t→0+

f (α)(t). The ”conformable fractional integral” of a function f starting from a ≥ 0 is stated as:

Ia
α( f )(t) =

t∫
a

f (x)dαx =

t∫
a

f (x)
x1−α dx

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

Neither Riemann-Liouville definition nor Caputo definition have physical and geometrical descriptions.
But CFD has the physical and geometrical explanations [25] and satisfies the following basic properties and
theorems referred in [1, 10]

1. Dα(c f + d1) = cDα( f ) + cDα(1) for all a, b ∈ R.

2. Dα(tp) = ptp−α for all p ∈ R.

3. Dα(λ) = 0 for all constant functions f (t) = λ.

4. Dα( f1) = f Dα(1) + 1Dα( f ).

5. Dα

( f
1

)
=
1Dα( f )− f Dα(1)

12 .

6. If f is differentiable, then Dα( f )(t) = t1−α d f
dt .
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In addition to these advantages CFD is type of local fractional derivatives are important in themselves being
used, due to their well-behaved, in generalizing and describing certain models depending on ordinary or
partial differential equations [6, 7, 14, 18–24]. Exact solutions can be obtained. Besides that CFD can be
used to generalize certain inequalities to arbitrary order [2, 4]. Moreover, CFD and their modified Laplace
are defined in [1] and investigated in [8] below are so important in generating and dealing with generalized
types of nonlocal fractional derivatives [3, 4, 9]. Also Al-Refai and Abdeljawad [5] suggested a fractional
generalization of the well-known Sturm-Liouville eigenvalue problems in conformable sense.

The rest of the article is organized as follows. In Section 2 the definition of newly defined conformable
double Laplace transform (CDLT) and some theorems over basic properties of this definition are given.In
Section 3 the exact solutions for system of fractional partial differential equations are expressed as imple-
mentation of conformable double Laplace transform.

2. Basics of Double Laplace Transform of Conformable Type

Definition 2.1. Let u(x, t) be an exponential order and continuous on the interval [0,∞) and for some a, b ∈ R
supx>0,t>0

|u(x,t)|

e
axβ
β + btα

α

< ∞ satisfied. The CDLT can be stated as [15]

L α
t L

β
x [u(x, t)] = U(p, s) =

∫
∞

0

∫
∞

0
e−p xβ

β −s tα
α u(x, t)dαtdβx, (1)

where p, s ∈ C, 0 < α, β ≤ 1 and the integrals are in the sense of conformable fractional integral.

Definition 2.2. The conformable Laplace transform (CLT) with respect to x is denoted as [15]

L
β

x [u(x, t)] = U(p, t) =

∫
∞

0
e−p xβ

β u(x, t)dβx, (2)

where the the considered integral is in conformable sense with respect to x.
The symbol L

β
x [u(x, t)] indicates the conformable integral of (2), we consider the variable which the single

CLT applied by the help of the subscript x on L . Alike the CLT with respect to variable t is stated as

L α
t [u(x, t)] = U(x, s) =

∫
∞

0
e−s tα

α u(x, t)dαt. (3)

Definition 2.3. Let L α
t L

β
x [u(x, t)] = U(p, s). Then the double inverse conformable Laplace transform can

be defined as

L −1
β L −1

α [U(p, s)] = u(x, t) =
1

4π2 lim
%,ω→∞

∫ (α(c+i%))
1
α

(α(c−i%))
1
α

∫ (β(d+iω))
1
β

(β(d−iω))
1
β

e
(st)α

α +
(px)β

β Uβ,α(p, s)dβpdαs,

where Uβ,α(p, s) = U
(

pβ

β ,
sα
α

)
.

One can easily see that the double inverse CLT satisfies the following properties .

1. Double inverse CLT is linear. Namely let a, b ∈ R, LβLα[u(x, t)] = U(p, s), LβLα[v(x, t)] = V(p, s) then

L −1
β L −1

α [aUβ,α(p, s) + bVβ,α(p, s)] = aL −1
β L −1

α [Uβ,α(p, s)] + bL −1
β L −1

α [Vβ,α(p, s)].

2. Let LβLα[u f (x, t)] = U(p, s) and c, d ∈ R then

L −1
β L −1

α [Uβ,α(p + d, s + c)] = e
−ctα
α −

dxβ
β L −1

β L −1
α [Uβ,α(p, s)].

3. Let LβLα[u(x, t)] = U(p, s) and σ, γ ∈ R afterwards

L −1
β L −1

α

[
Uβ,α

(
p
γβ
,

s
σα

)]
= γβσαu(γx, σt).
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2.1. Properties of Conformable Double Laplace Transform
In this part we expressed some properties of CDLT.

Theorem 2.4. ([15]) Let u(x, t), w(x, t) have the CDLT. Thus,

i. L α
t L

β
x [c1u(x, t) + c2w(x, t)] = c1L α

t L
β

x [u(x, t)] + c2L α
t L

β
x [w(x, t)] where c1 and c2 are real constants.

ii. L α
t L

β
x [e−d xβ

β −c tα
α u(x, t)] = U(p + d, s + c).

iii. L α
t L

β
x [ f (γx, σt)] = 1

r U
( p
γβ ,

s
σα

)
, where r = γβσα.

iv. (−1)m+nL α
t L

β
x

[
xmβ

βm
tnα

αn u(x, t)
]

=
∂m+nU(p,s)
∂pm∂sn .

Proof. i. By using the definition of CDLT the proof of (i) can be shown easily.

ii.

L α
t L

β
x

[
e−d xβ

β −c tα
α u(x, t)

]
=

∫
∞

0

∫
∞

0
e−p xβ

β −s tα
α e−d xβ

β −c tα
α u(x, t)dαtdβx

=

∫
∞

0
e−p xβ

β −d xβ
β

(∫
∞

0
e−s tα

α −c tα
α u(x, t)dαt

)
dβx. (4)

With the aid of CLT definition∫
∞

0
e−(s+c) tα

α u(x, t)dαt = U(x, s + c). (5)

Now subrogating the Eqn. 5 into Eqn. 4 yields∫
∞

0
e−(p+d) xβ

β U(x, s + c)dβx = U(p + d, s + c).

iii. Let τ = γx and χ = σt, so the proof can be expressed as follows

L α
t L

β
x [u(γx, σt)] =

∫
∞

0

∫
∞

0
e−p xβ

β −s tα
α u(γx, σt)dαtdβx

=

∫
∞

0
e−p xβ

β

(∫
∞

0
e−s tα

α u(γx, σt)dαt
)

dβx

=
1
σα

∫
∞

0
e−p xβ

β

(∫
∞

0
e−s χα

σαα u(γx, χ)dαχ
)

dβx

=
1
σα

∫
∞

0
e−p xβ

β U
(
γx,

s
σα

)
dβx

=
1

σαγβ

∫
∞

0
e
−p τβ

γββ U
(
τ,

s
σα

)
dβτ

=
1

γβσα
U

(
p
γβ
,

s
σα

)
.

iv. The order of differentiation and integration can be changed, with respect to convergence properties of
the improper integral involved. So we can differentiate with respect to p, s under the integral sign.
Hence,

∂m+nU(p, s)
∂pm∂sn =

∫
∞

0

∂m

∂pm e−p xβ
β

[∫
∞

0

∂n

∂sn

(
e−s tα

α u(x, t)
)

dαt
]

dβx.
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If differentiation is iterated with respect to p and s, led to the following equation

∂m+nU(p, s)
∂pm∂sn = (−1)m+nL α

t L
β

x

[
xmβ

βm
tnα

αn u(x, t)
]
.

Lemma 2.5. ([15]) β-th and α-th order CDLT of conformable fractional partial derivatives can be expressed

L α
t L

β
x [xDβu(x, t)] = pU(p, s) −U(0, s), (6)

L α
t L

β
x [tDαu(x, t)] = sU(p, s) −U(p, 0). (7)

Now considering the mixed fractional partial derivatives with CDLT of

L α
t L

β
x [xDβtDα(u(x, t))] = psU(p, s) − pU(p, 0) − sU(0, s) + U(0, 0). (8)

Proof. The proof can be obtained with the aid of the definition of conformable fractional integral and the
Theorem 2.2 in [10].

Theorem 2.6. ([15]) Let u(x, t) ∈ Cl(R+
×R+) with l = max(m,n), where 0 < α, β ≤ 1 and m,n ∈N. Also regard

the CLT of u(x, t), xD(i)
β u(x, t) and tD

( j)
α u(x, t) i = 1, ...,m, j = 1, ...,n can be obtained. Then

L α
t L

β
x [xD(m)

β u(x, t)] = pmU(p, s) − pm−1U(0, s) −
m−1∑
i=1

pm−1−iL α
t [xD(i)

β U(0, t)], (9)

L α
t L

β
x [tD

(n)
α u(x, t)] = snU(p, s) − sn−1U(p, 0) −

n−1∑
j=1

sn−1− jL
β

x [tD
( j)
α U(x, 0)]. (10)

By the same procedure, CDLT applied version of the conformable mixed partial derivatives can be obtained as

L α
t L

β
x [xD(m)β

tD(n)α(u(x, t))] = pmsn
(
U(p, s) − s−1U(p, 0)

− p−1U(0, s) −
n−1∑
j=1

s− j−1L
β

x [tD( j)αU(x, 0)]

−

m−1∑
i=1

p−i−1L α
t [xD(i)βU(0, t)]

+

n−1∑
j=1

s− j−1p−1
tD( j)αU(0, 0)

+

m−1∑
i=1

s−1p−i−1
xD(i)βU(0, 0)

+

m−1∑
i=1

n−1∑
j=1

s− j−1p−i−1
tD( j)α

xD(i)βU(0, 0)

+ p−1s−1U(0, 0)
)
,

(11)

where xD(m)
β u(x, t), tD

(n)
α u(x, t) indicates m, n times successive CFD of function u(x, t) in r β-th and α-th order

respectively.

Proof. The proof follows from Lemma 2.1.
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Functions f (x, t) Conformable Double Laplace Transform f (p, s)
ab ab

ps

xt β
1
βα

1
α

Γ(1+ 1
β )Γ(1+ 1

α )

p
β+1
β s

α+1
α

xβ
β

tα
α

1
p2s2

xmβ

β
tnα

α , m,n are natural numbers m!n!
pm+1sn+1

e
xβ
β + tα

α 1
(s−1)(p−1)

e
xβ
β + tα

α xmβ

β
tnα

α , m,n are natural numbers m!n!
(p−1)m+1(s−1)n+1

cos
(
ω xβ

β

)
cos

(
ω tα
α

) ps
(w2+s2)(w2+p2)

sin
(
ω xβ

β

)
sin

(
ω tα
α

)
w2

(w2+s2)(w2+p2)

e
xβ
β + tα

α sinh
(

xβ
β

)
sinh

(
tα
α

)
1

(p−2)p(s−2)s

e
xα
α + tβ

β cosh
(

xα
α

)
cosh

(
tβ
β

) (p−1)(s−1)
(p−2)p(s−2)s

Table 1: CDLT of some basic functions.

3. Illustrative Examples

Example 3.1. Regard the following time-space conformable FPDE system

Dα
t u(x, t) −Dβ

xv(x, t) + u(x, t) + v(x, t) = 0,
Dα

t v(x, t) −Dβ
xu(x, t) + u(x, t) + v(x, t) = 0

(12)

with the conditions

u(0, t) = sinh
(
−

tα

α

)
,

u(x, 0) = sinh
(

xβ

β

)
, (13)

v(0, t) = cosh
(
−

tα

α

)
,

v(x, 0) = cosh
(

xβ

β

)
,

where 0 < β ≤ 1, 0 < α ≤ 1, x > 0, t > 0, Dα
t , Dβ

x denotes α-th and β-th order CFD of function u(x, t) and
v(x, t). Firstly employing the the CDLT to Eq. (12)

sU(p, s) −U(p, 0) − (pV(p, s) − V(0, s)) + V(p, s) + U(p, s) = 0
sV(p, s) − V(p, 0) − (pU(p, s) −U(0, s)) + V(p, s) + U(p, s) = 0, (14)



O. Özkan, A. Kurt / Filomat 33:5 (2019), 1313–1322 1319

where U(p, s),V(p, s) show the double conformable Laplace transformed version of the functions u(x, t) and
v(x, t) respectively. When we implement the CLT to the given initial conditions given in (13) arises

L α
t [u(0, t)] = U(0, s) = −

1
s2 − 1

,

L
β

x [u(x, 0)] = U(p, 0) =
1

p2 − 1
, (15)

L α
t [v(0, t)] = V(0, s) =

s
s2 − 1

,

L
β

x [v(x, 0)] = V(p, 0) =
p

p2 − 1
.

Using the equalities given in (15) and after making some algebraic calculations in Eqn. (14) we acquire

U(p, s) =
−p + s

(p2 − 1)(s2 − 1)
,

V(p, s) =
−1 + ps

(p2 − 1)(s2 − 1)
.

Hence the unknown functions u(x, t) and v(x, t) can be obtained as

u(x, t) = sinh
(

xβ

β
−

tα

α

)
,

v(x, t) = cosh
(

xβ

β
−

tα

α

)
.

Example 3.2. Let observe the time-space fractional non-homogenous partial differential equation system
given asDα

t u(x, t) −Dβ
xv(x, t) − u(x, t) + v(x, t) = −2,

Dα
t v(x, t) + Dβ

xu(x, t) − u(x, t) + v(x, t) = −2
(16)

via the conditions

u(0, t) = et + 1, v(0, t) = e−t
− 1,

u(x, 0) = ex + 1, v(x, 0) = ex
− 1 (17)

with 0 < β ≤ 1, 0 < α ≤ 1, x > 0, t > 0, Dα
t , Dβ

x symbolizes the α and β order CFD of functions u(x, t) and
v(x, t). Operating the CDLT for Eq. (16) produces

sU(p, s) −U(p, 0) − (pV(p, s) − V(0, s)) −U(p, s) + V(p, s) =
−2
ps
,

sV(p, s) − V(p, 0) − (pU(p, s) −U(0, s)) −U(p, s) + V(p, s) =
−2
ps
. (18)

Thereafter using CLT for the conditions (17)

L α
t [u(0, t)] = U(0, s) =

1
s − 1

+
1
s
,L α

t [V(0, t)] = V(0, s) =
1

s + 1
−

1
s
+,

L
β

x [u(x, 0)] = U(p, 0) =
1

p − 1
+

1
p
,L α

t [V(x, 0)] = V(p, 0) =
1

p − 1
−

1
p
. (19)
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Associating all the obtained results (18),(19) and making some algebraic regulations yield

U(p, s) =
−1 + p + s − 2ps
ps(p − 1)(s − 1)

,

V(p, s) =
−1 + p − s

ps(p − 1)(s + 1)
.

Thus we can get the functions u(x, t) and v(x, t) as

u(x, t) = e
xβ
β + tα

α + 1,

v(x, t) = e
xβ
β −

tα
α − 1.

Example 3.3. Now let us to discuss the following FPDE including higher order and mixed order partial
derivativesD2β

x u(x, t) = Dα
t Dβ

xu(x, t) + D2α
t u(x, t)w(x, t),

D2α
t v(x, t) = Dα

t Dβ
xv(x, t) + D2β

x v(x, t)u(x, t)
(20)

with the initial conditions

u(x, 0) = e−
xβ
β + e

xβ
β + cos

(
xβ

β

)
+ sin

(
xβ

β

)
,

u(0, t) = e−
tα
α + e

tα
α + cos

( tα

α

)
+ sin

( tα

α

)
,

Dα
t u(x, 0) = −e−

xβ
β + e

xβ
β + cos

(
xβ

β

)
− sin

(
xβ

β

)
,

Dβ
xu(0, t) = −e−

tα
α + e

tα
α + cos

( tα

α

)
− sin

( tα

α

)
,

u(0, 0) = 3,

v(x, 0) = −e−
xβ
β − e

xβ
β + cos

(
xβ

β

)
+ sin

(
xβ

β

)
,

v(0, t) = −e−
tα
α − e

tα
α + cos

( tα

α

)
+ sin

( tα

α

)
,

Dα
t v(x, 0) = e−

xβ
β − e

xβ
β + cos

(
xβ

β

)
− sin

(
xβ

β

)
,

Dβ
xv(0, t) = e−

tα
α − e

tα
α + cos

( tα

α

)
− sin

( tα

α

)
,

v(0, 0) = −1,

(21)

where all the derivatives are in conformable sense and D2β
x ,D2α

t means two times conformable derivative of
functions u(x, t) and v(x, t). Utilizing the CDLT definition and Lemma 2.1 and Theorem 2.3 for Eqns. (20)
produces folowing equalities

p2U(p, s) − pU(0, s) −Dβ
xU(0, s) − (psU(p, s) − pU(p, 0) − sU(0, s) + U(0, 0))

− (s2U(p, s) − sU(p, 0) −Dα
t U(p, 0)) − V(p, s) = 0,

s2V(p, s) − sV(p, 0) −Dα
t V(p, 0) − (psV(p, s) − pV(p, 0) − sV(0, s) + V(0, 0))

− (p2V(p, s) − pV(0, s) −Dβ
xV(0, s)) −U(p, s) = 0,

(22)
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where U(p, s),V(p, s) are the transformed versions of functions u(x, t), v(x, t) respectively. Again performing
CLT for the initial conditions that given in Eqns. (21), we have

U(p, 0) =
−1 + p + p2 + 3p3

p4 − 1
,

U(0, s) =
−1 + s + s2 + 3s3

s4 − 1
,

Dα
t U(p, 0) =

3 − p + p2 + p3

p4 − 1
,

Dβ
xU(0, s) =

3 − s + s2 + s3

s4 − 1
,

U(0, 0) = 3,

V(p, 0) =
1 − 3p + p2

− p3

p4 − 1
,

V(0, s) =
−1 − 3s + s2

− s3

s4 − 1
,

Dα
t V(p, 0) =

−1 − p − 3p2 + p3

p4 − 1
,

Dβ
xV(0, s) =

−1 − s − 3s2 + s3

s4 − 1
,

V(0, 0) = −1.

(23)

Adding up all the obtained data such as Eqns. (23) and (22) results as

U(p, s) =
1

(p − 1)(s − 1)
+

1
ps + p + s + 1

+
ps + p + s − 1(
p2 + 1

)
(s2 + 1)

,

V(p, s) = −
1

(p − 1)(s − 1)
−

1
ps + p + s + 1

+
ps + p + s − 1(
p2 + 1

)
(s2 + 1)

.

(24)

Thus unknown functions can be obtained as

u(x, t) = e
xβ
β + tα

α + e−
xβ
β −

tα
α + sin

(
xβ

β
+

tα

α

)
+ cos

(
xβ

β
+

tα

α

)
,

v(x, t) = −e
xβ
β + tα

α − e−
xβ
β −

tα
α + sin

(
xβ

β
+

tα

α

)
+ cos

(
xβ

β
+

tα

α

)
.

(25)

4. Conclusion

The CDLT provides a powerful method for analyzing fractional partial differential equation systems.
It can be easily seen that the theorems that described here can be further generated for other type of
functions and relations. These relations can be used to calculate new conformable Laplace transform pairs
in fractional calculus.
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O. Özkan, A. Kurt / Filomat 33:5 (2019), 1313–1322 1322

[3] T. Abdeljawad, Q.M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable
derivatives, Chaos, Solitons Fractals 119 (2019) 94–101.

[4] T. Abdeljawad, J. Alzabut, F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivatives, Adv. Diff.
Eqn. 2017:321 (2017).

[5] M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017.
[6] A. Biswas, M.O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, S.P. Moshokoa, M. Belic, Resonant optical solitons

with dual-power law nonlinearity and fractional temporal evolution, Optik 165 (2018) 233–239.
[7] A. Biswas, H. Rezazadeh, M. Mirzazadeh, M. Eslami, M. Ekici, Q. Zhou, S.P. Moshokoa, M. Belic, Optical soliton perturbation

with FokasLenells equation using three exotic and efficient integration schemes, Optik 165 (2018) 288–294.
[8] F. Jarad, T. Abdeljawad, A modified laplace transform for certain generalized fractional operators, Results Nonlinear Anal. 1

(2018) 88–98.
[9] F. Jarad, E. Uurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Diff. Eqn. 2017:247 (2017).

[10] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014)
65–70.

[11] A.Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
[12] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New

York, 1993.
[13] K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order,

Elsevier, 1974.
[14] M.S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, M. Mirzazadeh, Analytical study of solitons to benjamin-bona-mahony-

peregrine equation with power law nonlinearity by using three methods, University of Politehnica of Bucharest Scientific
Bulletin-Series A- Applied Mathematics and Physics 80 (2018) 267–278.
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