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Abstract. In this paper, we consider a second–order impulsive matrix difference operators. Using the
asymptotic and analytical properties of the Jost function, we investigate eigenvalues, spectral singularities,
resolvent operator, spectrum and scattering function of this problem. Finally, we study spectrum and
scattering function of an unperturbated impulsive matrix difference equation.

This paper is dedicated to the 80th birthday of Professor A. M. Samoilenko

1. Introduction

In this study, we handle an impulsive discrete matrix Sturm–Liouville boundary value problem on the
set of non-negative integers. For clarity, we shortly review some facts from the existing literature about
these problems with scalar coefficients without such discontinuities called impulse.

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈N (1)

is a well known second–order difference equation which is the discrete analogue of the Sturm–Liouville
equation given by

−y
′′

+ q(x)y = λ2y, 0 ≤ x < ∞. (2)

Here, q is a real (or complex) function, {an} and {bn} are real (or complex) sequences satisfying certain
conditions, λ is a spectral parameter.

Investigation of spectral analysis of boundary value problems (BVP) was first started with the continuous
case [24]. Numerous works are devoted to spectral and scattering problems of (2) [8, 11, 12, 16, 19, 21, 25, 29].
Over the years, as a result of developing technology on engineering, physics, control theory, economy and
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other areas, difference equations have taken a prominent attention owing to the necessity of modeling
linear and nonlinear problems to discrete equations. For the studies on the spectral and scattering theory
of difference equations, we refer to papers [1, 2, 4, 9, 10, 15, 17]. In particular, in the case where {an}n∈N
and {bn}n∈N are real sequences and an > 0, inverse problems of scattering theory for (1) was intensively
investigated in [15] under the condition∑

n∈N

n (|1 − an| + |bn|) < ∞.

Besides, in the case, where n is allowed to take all integer numbers and {an}n∈Z, {bn}n∈Z are complex
sequences, [2] and [1] are concerned the spectral properties of BVP associated with (1) under the following
condition

∑
n∈Z

|n| (|1 − an| + |bn|) < ∞.

Observe that, the operator corresponds (1) is selfadjoint in [15], while it is nonselfadjoint in [2] and [1]. In
the nonselfadjoint case, spectral singularities appear in the continuous spectrum which correspond to the
resonance states having a real energy. This physical interpretation of spectral singularities is very essential
for quantum mechanics. Consequently, as mentioned above, the spectral theory of difference equations
with scalar coefficients is well developed and most of the results have already been obtained. Even though
there are some studies about the spectral theory of difference equations with matrix coefficients [3, 6], there
is still lack of literature on spectral analysis of such problems. For instance, the spectral and scattering
theory of matrix impulsive difference equations have not been treated elsewhere yet.

Impulsive equations have attracted great attention of many researchers as they appear naturally in
several real world problems. They are a basic tool to study dynamics that are related to sudden changes
in their states. One can encounter some discontinuities or abrupt changes at certain moments during the
process of mathematical modeling and simulations including population dynamics, infectious diseases,
physiological and pharmaceutical kinetics, chemical kinetics, navigational control of ships, mathematical
economy and general control problems. These impulsive actions may cause some important results for
mathematical theory. Samoilenko and Peretsyuk have great contribution to this area [26–28]. Rudiments
of the general theory of impulsive differential equations can be found in [5, 18, 28] but for recent works on
this topic in spectral theory, we can refer to [7, 22, 23, 30, 31]. In the present paper, we propose to discuss
some scattering and spectral problems of a matrix difference operator under certain impulsive conditions.
Outline of the paper is as follows:

• We first determine the Jost solution, Jost function of the impulsive BVP, then obtain the asymptotic of
the Jost function.

• Later, we define the scattering function and obtain the classical results of scattering function for our
problem.

• Next, we find the resolvent operator of the difference operator generated by related impulsive BVP,
by the poles of the resolvent operator’s kernel, we introduce the sets of eigenvalues and spectral
singularities of the operator.

• Using the asymptotic equations and uniqueness theorems of analytic functions, we get some results
about spectral singularities and eigenvalues.

• At last, we provide an example to illustrate the validity of methods and theory we proposed.
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2. Statement of the Problem

Let us introduce a matrix difference operator T in the Hilbert space `2(N,Cµ) such that

`2(N,Cµ) :=

Y = {Yn}n∈N ,Yn ∈ C
µ, ||Y||2 =

∑
n∈N

||Yn||
2 < ∞

 ,
where Cµ is a µ− dimensional (µ < ∞) Euclidian space, ||.|| denotes the matrix norm in Cµ. Consider that
the operator T is created by the following difference expression

Yn−1 + BnYn + Yn+1 = λYn, n ∈N\{m0 − 1,m0,m0 + 1} (3)

with the boundary condition

Y0 = 0 (4)

and the impulsive conditions Ym0+1 = KYm0−1

Ym0+2 = MYm0−2,
(5)

where λ = 2 cos z is a spectral parameter, {Bn}n∈N := B is a selfadjoint matrix acting in Cµ satisfying∑
n∈N

n ||Bn|| < ∞ (6)

and m0 is an arbitrary natural number. Throughout the paper, we will assume that K and M are selfadjoint
diagonal matrices in Cµ such that all eigenvalues of K and M are different and nonzero. Now, we give some
preliminaries to help us for further results.

At first, we should remind that if Yn(z) is the solution of (3), then YT
n (z) will be a solution for (3) since

B is selfadjoint, where ”T” denotes the transpose operator. Thus, in the case that Yn(z) and Zn(z) are any
solutions of (3), then we have the following Wronskian

W[Y,ZT](n) := ZT
n−1Yn − ZT

nYn−1 (7)

independently of n. Next, we define the two semi–strips as follows:

D :=
{
z ∈ C : z = x + iy, y > 0,−

π
2
≤ x ≤

3π
2

}
, D∗ := D ∪

[
−
π
2
,

3π
2

]
.

Then, we shall denote by Pn(z) and Qn(z) the fundamental solutions of (3) for z ∈ D∗ and n = 0, 1, 2, ...,m0−1.
They are entire functions of z satisfying the initial conditions

P0(z) = 0, P1(z) = I
Q0(z) = I, Q1(z) = 0.

Equation (3) has another solution E(z) := {En(z)} represented by

En(z) = einz

I +

∞∑
m=1

Knmeimz

 , n ∈ {m0 + 1,m0 + 2, ...}
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for z ∈ C+ := {z ∈ C, Im z ≥ 0}, where Knm is expressed in terms of {Bn}. We remark that, E(z) is called Jost
solution of (3) satisfying following asymptotic equalities for z ∈ C+

En(z) = einz [I + o(1)] , n→∞ (8)

En(z) = einz [I + o(1)] , Im z→∞.

Additionally, it is analytic inC+ := {z ∈ C, Im z > 0}, continuous inC+ and 2πperiodic, i.e., En(z) = En(z+2π).
It is a fact that En(z) is a bounded solution of (3), but there exists an unbounded solution of (3) denoted by
Ên(z) satisfying

Ên(z) = e−inz [I + o(1)] , z ∈ C+, n→∞. (9)

3. Jost Solution and Scattering Matrix

In this section, we present some new definitions and results which are slightly different from the
continuous case. Using the previous functions P, Q and E, let us consider any solution of (3)-(5) and write
as

Jn(z) =

Pn(z)C1(z) + Qn(z)C2(z), n ∈ {0, 1, ...m0 − 1}
En(z), n ∈ {m0 + 1,m0 + 2, ...} ,

(10)

for z ∈ D∗, where C1 and C2 are z- dependent coefficients. The impulsive conditions (5) imply

K−1Em0+1(z) = Pm0−1(z)C1(z) + Qm0−1(z)C2(z) (11)

and

M−1Em0+2(z) = Pm0−2(z)C1(z) + Qm0−2(z)C2(z). (12)

Using (7), we obtain that W[P(z),PT(z)] = 0 and W[Q(z),QT(z)] = −I for all z ∈ C+, therefore from (11) and
(12), we get the coefficients C1(z) and C2(z) uniquely

C1(z) = K−1M−1
{
MQT

m0−2(z)Em0+1(z) − KQT
m0−1(z)Em0+2(z)

}
,

C2(z) = K−1M−1
{
KPT

m0−1(z)Em0+2(z) −MPT
m0−2(z)Em0+1(z)

}
for z ∈ D∗. Substituting the last equations in (10), we see that Jn(z) is the Jost solution of the impulsive BVP
(3)-(5). Therefore,

J0(z) = C2(z) := J(z)

is called the Jost function of (3)-(5). Note that, the function J is analytic in C+ and continuous up to the real
axis.

Next, we consider another solution of (3)-(5) by

Fn(z) =

Pn(z), n ∈ {0, 1, ...m0 − 1}
En(z)C3(z) + En(−z)C4(z), n ∈ {m0 + 1,m0 + 2, ...} ,

(13)

for z ∈
[
−
π
2
,

3π
2

]
\{0, π}. By (5), it is easy to obtain

Em0+1(z)C3(z) + Em0+1(−z)C4(z) = KPm0−1(z) (14)
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and

Em0+2(z)C3(z) + Em0+2(−z)C4(z) = MPm0−2(z). (15)

Similarly, due to the fact that W[E(z),ET(z)] = 0 and W[E(−z),ET(z)] = −2i sin z for all z ∈
[
−
π
2
,

3π
2

]
\{0, π},

the coefficients C3(z) and C4(z) can be directly obtained from (14) and (15) as

C3(z) = −
1

2i sin z

{
KET

m0+2(−z)Pm0−1(z) −MET
m0+1(−z)Pm0−2(z)

}
,

C4(z) =
1

2i sin z

{
KET

m0+2(z)Pm0−1(z) −MET
m0+1(−z)Pm0−2(z)

}
for z ∈

[
−
π
2
,

3π
2

]
\{0, π}.

Corollary 3.1. The coefficients C2, C3 and C4 have the following relationship for all z ∈
[
−
π
2
,

3π
2

]
\{0, π}

CT
4 (z) = CT

3 (−z) =
1

2i sin z
KMC2(z). (16)

As a consequence of Corollary 3.1 and (7), we can immediately get

W[J,FT](n) =

−C2(z), n ∈ {0, 1, ...m0 − 1}
KMC2(z), n ∈ {m0 + 1,m0 + 2, ...}

for all z ∈
[
−
π
2
,

3π
2

]
\{0, π}.

Theorem 3.2. For all z ∈
[
−
π
2
,

3π
2

]
\{0, π}, det J(z) , 0.

Proof. Assume that, there exists a z0 ∈

[
−
π
2
,

3π
2

]
\{0, π} such that

det J(z0) = det C2(z0) = 0.

By (16), we find

det CT
4 (z0) = det CT

3 (−z0) =
1

4 sin2 z0
det K det M det C2(z0)

and it verifies that det C4(z0) = det C3(z0) = 0. Since then, there exists a non-zero vector u such that
C3(z0)u = 0 and C4(z0)u = 0. From (13), the solution F is equal to zero identically, that is, F is a trivial
solution of (3)-(5). This gives a contradiction with our assumption, i.e., det C2(z) = det J(z) , 0 for all

z ∈
[
−
π
2
,

3π
2

]
\{0, π}. It completes the proof.

By Theorem 3.2, the inverse of the function J exists, so we can give the following definition.

Definition 3.3. The matrix function

S(z) = J−1(z)J(−z), z ∈
[
−
π
2
,

3π
2

]
\{0, π}

is called the scattering matrix of the impulsive BVP (3)-(5).
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Theorem 3.4. The matrix function S(z) satisfies

S(−z) = S−1(z) = S∗(z)

for all z ∈
[
−
π
2
,

3π
2

]
\{0, π} and it is an uniter matrix, where “∗” denotes the adjoint operator.

Proof. From the definition of the scattering matrix, we get

S(−z) = J−1(−z)J(z), z ∈
[
−
π
2
,

3π
2

]
\{0, π}

and it concludes

S(z)S(−z) = S(−z)S(z) = I, z ∈
[
−
π
2
,

3π
2

]
\{0, π},

which yields

S(−z) = S−1(z), z ∈
[
−
π
2
,

3π
2

]
\{0, π}.

Next, in order to prove S∗(z) = S(−z), we consider the solutions Fn(z), Jn(z) and Jn(−z), when z belongs to[
−
π
2
,

3π
2

]
\{0, π}. Hence, we write

Fn(z) = Jn(z)α + Jn(−z)β,
Fn+1(z) = Jn+1(z)α + Jn+1(−z)β,

where α, β are matrices not depending on n. Premultiplying the first of these by J∗n+1(z) and the second by
J∗n(z) and then subtracting the results, we have

α = W−1[J(z), J∗(z)]
{
J∗n(z)Fn+1(z) − J∗n+1(z)Fn(z)

}
.

In exactly the same way, we find

β = W−1[J(−z), J∗(−z)]
{
J∗n(−z)Fn+1(z) − J∗n+1(−z)Fn(z)

}
.

Because of the characteristic features of impulsive equations, we obtain that
W−1[J(z), J∗(z)] = −W−1[J(−z), J∗(−z)]. Hence, letting n = 0 in the expressions for α and β, we arrive at

α = W−1[J(z), J∗(z)]J∗(z), β = −W−1[J(z), J∗(z)]J∗(−z).

As a consequence,

Fn(z) = W−1[J(z), J∗(z)]
{
Jn(z)J∗n(z) − Jn(−z)J∗n(−z)

}
and upon setting n = 0 in this equation, we get

J(z)J∗(z) = J(−z)J∗(−z). (17)

By (17), we get

J∗(z) = J−1(z)J(−z)J∗(−z)

and so

J∗(z)[J∗(−z)]−1 = J−1(z)J(−z).

The right hand side of the last equation gives S(z) and it proves that

S
∗(z) = J−1(−z)J(z) = S(−z).

Finally, it is obvious that

SS
∗ = S∗S = I, ‖S‖ = I,

that is, S is uniter.
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4. Eigenvalues, Spectral Singularities and Continuous Spectrum of T

Let us consider a solution of (3)-(5) by

Gn(z) =

Pn(z), n ∈ {0, 1, ...m0 − 1}
En(z)C5(z) + Ên(z)C6(z), n ∈ {m0 + 1,m0 + 2, ...} ,

for z ∈ D∗, where Ên(z) denotes the unbounded solution of (3) satisfying (9). Similar to previous ones, it is
possible to solve C5(z) and C6(z) uniquely. Using (5), we get

Em0+1(z)C5(z) + Êm0+1(z)C6(z) = KPm0−1(z)

and

Em0+2(z)C5(z) + Êm0+2(z)C6(z) = MPm0−2(z).

Since

W[E(z),ET(z)] = 0, W[Ê(z),ET(z)] = −2i sin z

and

W[Ê(z), ÊT(z)] = 0, W[E(z), ÊT(z)] = 2i sin z,

we clearly obtain

C5(z) = −
1

2i sin z

{
KÊT

m0+2(z)Pm0−1(z) −MÊT
m0+1(z)Pm0−2(z)

}
,

C6(z) =
1

2i sin z

{
KET

m0+2(z)Pm0−1(z) −MET
m0+1(z)Pm0−2(z)

}
for z ∈ D∗. Note that,

CT
6 (z) =

1
2i sin z

KMC2(z), z ∈ D∗. (18)

In view of (18), we arrive at the following

H(z) := W[J(z),GT(z)] =

−C2(z), n ∈ {0, 1, ...m0 − 1}
KMC2(z), n ∈ {m0 + 1,m0 + 2, ...} ,

(19)

for z ∈ D∗. Hence, it is clear that the resolvent operator of T is defined by the following

(
Rλ(T )ϕ

)
n :=

∞∑
k=0

Gn,k(z)ϕ(k), ϕ :=
{
ϕk

}
∈ `2(N,Cµ),

where

Gn,k(z) =

Jn(z)H−1(z)GT
k (z), k < n

Gn(z)[H−1(z)]T JT
k (z), k ≥ n

for z ∈ D∗ and k,n , m0.
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Therefore, due to (19), we will show the sets of eigenvalues and spectral singularities of the operator T
by σd and σss, respectively as

σd(T ) = {λ = 2 cos z : z ∈ D∗,det J(z) = 0} (20)

and

σss(T ) =
{
λ = 2 cos z : z ∈

[
−
π
2
,

3π
2

]
\{0, π},det J(z) = 0

}
. (21)

So, we can deduce the following by Theorem 3.2 :

Corollary 4.1. The operator T has no spectral singularity.

Theorem 4.2. Under the condition (6), the Jost function J satisfies the following asymptotic equation

J(z) = (KM)−1(K −M) [I + o(1)] e4iz, z ∈ D∗, |z| → ∞. (22)

Proof. Since the polynomial function P is of (n − 1). degree according to λ, we can immediately obtain that

PT
n (z)ei(n−1)z = [I + o(1)] , z ∈ D∗, |z| → ∞. (23)

We know that J(z) = C2(z), so we write

J(z) = K−1M−1
{
KPT

m0−1(z)Em0+2(z) −MPT
m0−2(z)Em0+1(z)

}
. (24)

It is clear from that

KPT
m0−1(z)Em0+2(z) = KPT

m0−1(z)ei(m0−2)ze−i(m0−2)zEm0+2ei(m0+2)ze−i(m0+2)z (25)

and

MPT
m0−2(z)Em0+1(z) = MPT

m0−2(z)ei(m0−3)ze−i(m0−3)zEm0+1ei(m0+1)ze−i(m0+1)z. (26)

If we use (8), (23), (25) and (26) in (24), we obtain

J(z)e−4iz = (KM)−1(K −M) [I + o(1)]

for |z| → ∞. This gives the asymptotic equation (22).

Theorem 4.3. If the condition (6) satisfies, then

i) the set of eigenvalues of T is bounded and countable,

ii) each eigenvalue of the operator T is of finite multiplicity,

iii) the limit points of eigenvalues can lie only in [−2, 2].

Proof. The boundedness of eigenvalues of T directly obtained by asymptotic equation (22). Moreover, by
using the definition of J(z), Pn(z), and En(z), we get the following representation of the Jost function J

J(z) = K−1M−1
{
KPT

m0−1(z)Em0+2(z) −MPT
m0−2(z)Em0+1(z)

}
(27)

= Ke2im0(z)[I +A(z)],

whereA(z) = A(z + 2π) andA(z) is a finite dimensional matrix-valued analytic function in C+ with respect
to z. Using (27) and Theorem 5.1 in [14], the rest of the proof of Theorem can be found easily.

Theorem 4.4. Assume (6). Then σc(T ) = [−2, 2], where σc(T ) denotes the continuous spectrum of T .
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Proof. Introduce the difference operators T0 and T1 generated by the following difference expressions in
`2(N,Cµ) together with (4) and (5)

(
T0y

)
n = Yn−1 + Yn+1, n ∈N\{m0 − 1,m0 + 1}(

T1y
)

n = BnYn, n ∈N\{m0},

respectively. It is clear to see the compactness of T1 [20]. We also can write T = T 1
0 + T 2

0 + T1, where T 1
0 is

a selfadjoint operator with σc(T 1
0 ) = [−2, 2] and T 2

0 is a finite dimensional operator in `2(N,Cµ). Hence, by
using Weyl theorem [13] of a compact perturbation, we get the continuous spectrum of the operator T .

5. An Example

In this part, we give a special example as an application to draw attention to the validity of our results.

Example 5.1. In the problem (3)-(5), suppose that B is a zero matrix in Cµ, m0 = 3, K := [ai j]nxn and
M := [bi j]nxn. Then let us investigate the difference operator L corresponding to the following impulsive
BVP



Yn−1 + Yn+1 = 2 cos zYn, n ∈N\{2, 3, 4}

Y0 = 0

Y4 = KY2

Y5 = MY1.

. (28)

Then, the solution En(z) turns into einz and the fundamental solutions Pn(z) and Qn(z) of (28) have the
following values for n = 0, 1, 2.

P0(z) = 0, P1(z) = I, P2(z) = λI
Q0(z) = I, Q1(z) = 0, Q1(z) = −I.

Thus, the Jost function of (28) is given as

J0(z) = C2(z) := J(z) = (KM)−1
{
KPT

2 (z)E5(z) −MPT
1 (z)E4(z)

}
. (29)

Equation (29) yields

J(z) = (KM)−1e4iz
{
Ke2iz + K −M

}
.

Since all eigenvalues of K and M are different from zero, det J(z) = 0 if and only if

det



a11e2iz + a11 − b11 0 0 ... 0
0 a22e2iz + a22 − b22 0 ... 0
. . . . .
. . . . .
. . . . .
0 0 0 ... anne2iz + ann − bnn


= 0,

it implies that

n∏
j=1

[
a j je2iz + a j j − b j j

]
= 0.
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Last equation gives det J(z) = 0 whenever

a j je2iz + a j j − b j j = 0 (30)

for any j integer in {1, 2, ...n}. It follows from (30) that

e2iz =
b j j − a j j

a j j
:= R j , 0. (31)

In accordance with (20)-(21), the operator L has eigenvalues and spectral singularities if and only if (31)
holds.

Case 5.2. Let a j j > b j j for all j integers in {1, 2, ...n} . Thus, there appear two special cases:

(i) If a j j > 0, in this case, since R j < 0, we obtain

z = −
i
2

ln(−R j) +
π
2

+ kπ, k = −1, 0, 1, j = 1, 2, ...,n. (32)

Hence, the problem doesn’t have any spectral singularity due to the fact that R j , −1, but it has
eigenvalues whenever ln(−R j) < 0, namely,

−1 < R j < 0, j = 1, 2, ..,n.

Consequently, the necessary condition for the impulsive BVP (28) to have an eigenvalue is that b j j is
positive for all j integers in {1, 2, ...n}.

(ii) If a j j < 0, in this case, since R j > 0, we obtain

z = −
i
2

ln(R j) + kπ, k = 0, 1, j = 1, 2, ...,n. (33)

Then, there appears a spectral singularity whenever R j = 1 and it yields z = 0, π. It is concluded from
(21) that the impulsive BVP (28) doesn’t have any spectral singularity, too. But it has eigenvalues if
and only if ln(R j) > 0, namely,

0 < R j < 1, j = 1, 2, ..,n,

i.e.,

1 <
b j j

a j j
< 2, j = 1, 2, ..,n.

Case 5.3. Let a j j < b j j for all j integers in {1, 2, ...n} . Similarly, there appear two special cases:

(i) Assume a j j < 0. Similar with Case 1(i), we get (32). Thus, the impulsive BVP (28) does not have any
spectral singularity owing to the fact that R j , −1 but it has eigenvalues if and only if b j j < 0.

(ii) Assume a j j > 0. In this case, similar with Case 2(i), we find (33). Likewise the other cases, there is no

spectral singularity. However, there are eigenvalues if and only if 1 <
b j j

a j j
< 2.
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Finally, in order to find the continuous spectrum of L, we consider the Jacobi matrices

(L0)i j = [t]i j =


I, i = 5, j = 6

I, i > 5, j = i − 1, j = i + 1

0, otherwise,

(L1)i j = [t]i j =

 I, ti j = t12, t32, t34, t54

0, otherwise

for i ∈ N\{2, 4}, j ∈ N. Then, it is obvious that L = L0 + L1, L0 is a self-adjoint matrix, L1 is a compact
operator [20] in `2(N,Cµ) as it is finite dimensional. So, we have σc(L) = σc(L0) = [−2, 2] .
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