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Abstract. Recently, invariant constant mean curvature (CMC) surfaces in real space forms have been
characterized locally by using extremal curves of a Blaschke type energy functional [5]. Here, we use this
characterization to offer a new approach to some global results for CMC rotational surfaces in the 3-sphere.

1. Introduction

In [5] we studied CMC surfaces in Riemannian and Lorentzian 3-space forms, M3
r (ρ), which are invariant

under the flow of a Killing vector field of the ambient space. We described any CMC invariant surface
locally as a binormal evolution surface [4], [10]. As a consequence, they are warped product surfaces whose
warping functions are solutions of an Ermakov-Milne-Pinney equation with constant coefficients.

On the other hand, although catenaries are known to be solutions of a classical variational problem (they
have the shape of a rope when fixing the extremes of it and letting gravity acts on the other part) in 1930 Blaschke
proved that they are also solutions of another variational problem ([6], pp. 38-39). To be more precise,
Blaschke studied smooth immersed curves in R3 which are extremal for the curvature energy functional
Θ(γ) =

∫
γ

√
κ ds, κ being the curvature of the curve, and he showed that catenaries are critical for Θ when

acting on planar curves. Then, an extension of Blaschke’s variational problem was considered in [5]. Namely,
we introduced the functionalΘµ(γ) =

∫
γ

√
κ − µ ds, for a fixed µ ∈ R, and consider the associated variational

problem when Θµ is acting on a certain space of smooth curves immersed in a Riemannian or Lorentzian
3-space form. The corresponding Euler-Lagrange equations, which are expressed in terms of the curvature
and the torsion of the critical curves, were integrated. Furthermore, we also proved that extremals of Θµ
evolving under an associated Killing field, ξ, produce invariant CMC surfaces in M3

r (ρ). And conversely,
a CMC surface of M3

r (ρ) which is invariant by a one-parameter group of rigid motions was shown to be,
locally, spanned by an extremal curve ofΘµ(γ) =

∫
γ

√
κ − µ ds while evolving by ξ. In particular, we showed

that CMC surfaces of revolution in Riemannian 3-space forms are locally spanned by an extremal curve of
Θµ with zero torsion (planar extremals).

CMC surfaces immersed in the 3-sphere, S3(ρ), have played a major role in Mathematics in last decades.
In 1966, Almgren [1] proved that any immersed minimal 2-sphere in S3(ρ) must be totally geodesic and, therefore,
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congruent to the equator. Moreover, in 1970, Lawson [13] proved that, given any positive integer m, there exist
at least one compact embedded minimal surface in S3(ρ) with genus m. In fact, if the genus of the CMC surface
is 1, he conjectured that the only embedded minimal tori, up to rigid motions in S3(ρ), is the Clifford torus, [14].
Lawson’s conjecture was recently proved by Brendle in [7]. Furthermore, adapting the technique of this
proof, Andrews and Li [2] proved the Pinkall-Sterling conjecture: any CMC tori embedded in S3(ρ) must be
rotationally symmetric, [18]. In fact, these rotational CMC surfaces were completely classified by Perdomo,
[16] and [17], and Andrews and Li [2].

In this note, we use the variational characterization of profile curves of invariant CMC surfaces to
study global properties of these surfaces. More precisely, after describing the local characterization of
CMC rotational surfaces of the 3-sphere in terms of the extremals of the Blaschke type energy, we study
the existence of compact and embedded CMC rotational tori in S3(ρ), by analyzing the simplicity and
closedness of such critical curves. Then, some consequences are derived what provides a new approach to
some of the results mentioned in the previous paragraph.

2. Extremals of a Blaschke’s Type Energy and Delaunay Surfaces in S3(ρ)

Given a curve γ in a Riemannian 3-space form with sectional curvature ρ, M3(ρ), and a fixed constant
µ ∈ R we consider the following curvature energy functional

Θµ(γ) :=
∫
γ

√
κ − µ =

∫ L

0

√
κ(s) − µ ds , (1)

where, as usual, the arc-length or natural parameter is represented by s ∈ [0,L], L being the length of γ,
and the curvature of γ, κ(s), is assumed to be greater than µ. This problem in the Euclidean 3-space R3

with µ = 0 was studied by Blaschke in [6]. In [5], this variational problem was studied in any Riemannian
and Lorentzian 3-space form. For the sake of simplicity, from now on we are just going to consider planar
critical curves with non-constant curvature verifying κ > µ. By ”planar” we mean curves with constant
zero torsion in the 3-sphere S3(ρ), i.e., τ = 0, which implies that they lie in a totally geodesic S2(ρ) ⊂ S3(ρ).
We define the following vector fields along γ

I =
1

2
√
κ − µ

B , J =
2µ − κ

2
√
κ − µ

T +
1
2

d
ds

(
1

√
κ − µ

)N , (2)

where {T,N,B} represents the Frenet frame onγ. Now, a vector field W along a curveγ, which infinitesimally
preserves unit speed parametrization is said to be a Killing vector field along γ (in the sense of [12]) if it evolves
in the direction of W without changing shape, only position. In other words, the following equations must
hold

W(v)(s, 0) = W(κ)(s, 0) = W(τ)(s, 0) = 0 ,

(v = |γ̇| and τ being the speed and torsion of γ, respectively) for any variation γ(s, t) of γ having W as
variation field. Then, it can be proved (for details, see [5]) that if γ is an extremal of (1) with zero torsion,
then the vector fields I,J given in (2) are Killing vector fields along γ and that the equation

〈J ,J〉 + ρ〈I,I〉 = d , (3)

for d a real constant, represents a first integral of the Euler-Lagrange equations of (1) for planar curves.
It is easy to check that 〈I,J〉 = 0 (since γ is planar, τ = 0) and, in addition, an argument similar to
that of [12] can be used to see that I and J can be uniquely extended to commuting Killing vector
fields on the whole S3(ρ), denoted again by I and J , respectively. Hence, using spherical coordinates,
x(θ, σ, ψ) = 1

√
ρ

(
cosθ cos σ, cosθ sin σ, sinθ sinψ, sinθ cosψ

)
in S3(ρ) and denoting by ∂σ = xσ and ∂ψ = xψ,

it can be assumed that [15]

I =
√

d ∂σ , J =
√
ρ d ∂ψ . (4)
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We parametrize γ using these spherical coordinates as γ(s) = x(θ(s), σ(s), ψ(s)). Then, computing the tangent
vector of γ and combining with (2), we have that without loss of generality σ(s) = 0 and

ψ(s) = −2
√
ρ d

∫ (
κ(s) − 2µ

) √
κ(s) − µ

4d
(
κ(s) − µ

)
− ρ

ds . (5)

Therefore, taking into account that γ is arc-length parametrized we have that the planar critical curve of
Θµ, (1), in S3(ρ) can be parametrized as,

γ(s) =
1

2
√
ρ d

√
κ(s) − µ

(
√
ρ , 0 ,

√
4d

(
κ(s) − µ

)
− ρ sinψ(s) ,

√
4d

(
κ(s) − µ

)
− ρ cosψ(s)

)
, (6)

where ψ(s) is given by (5) and κ(s) is the curvature of γ. Observe that the critical curve γ(s) crosses the pole
of the parametrization,

(
1/
√
ρ, 0, 0, 0

)
, if and only if, 4d

(
κ − µ

)
= ρ.

Furthermore, equation (3) was completely solved in [5], and the curvatures of the profile curves of CMC
rotational surfaces were explicitly determined. Indeed, we have

Proposition 2.1. Let γ be a critical curve of (1) in S2(ρ) with κ(s) > µ. If γ has constant curvature, κo, then
κo = µ +

√
µ2 + ρ , with µ2 + ρ > 0. If κ(s) is not constant, then, κ(s) = κd(s), d ∈ R where

κd(s) =
ρ + µ2

2d + µ −
√

4d2 + 4µd − ρ sin
(
2
√
ρ + µ2 s

) + µ . (7)

We recall that the constant case in the above proposition gives rise to flat isoparametric surfaces, wich
are well-known. On the other hand, if the curvature is not constant, the constant of integration of (7), d, is

not entirely arbitrary since d >
−µ+
√
µ2+ρ

2 .
In [5] we have shown that invariant surfaces in Riemannian 3-space forms with constant mean curvature

can be described locally as binormal evolution surfaces with velocity G(s) = 1
2
√
κ(s)−µ

whose initial vortex

filament is critical for (1) and conversely (for details see [5]). In particular, in the case of the 3-sphere we
have

Theorem 2.2. Locally, a rotational surface of CMC H in S3(ρ) can be described as a rotational surface Sγ shaped on
a planar profile curve γ with curvature κ(s) and is locally congruent to a piece of one of the following

1. The equator S2(ρ); if κ(s) = H = 0.
2. A totally umbilical sphere; if κ(s) = |H| , 0.
3. A Hopf Torus

S1
(√

ρ + κ2
)
× S1

( √
ρ

κ

√
ρ + κ2

)
,

if κ(s) = −|H| +
√

H2 + ρ.
4. A binormal evolution surface parametrized by

x(s, t) =
1

2
√
ρ d

√
κ(s) − µ

(
√
ρ cos t,

√
ρ sin t,

√
4d

(
κ(s) − µ

)
− ρ sinψ(s),

√
4d

(
κ(s) − µ

)
− ρ cosψ(s)

)
, (8)

where the profile curve γ is critical for (1) with curvature (7), and where |µ| = |H|.
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3. Embedded CMC Tori in the Round 3-Sphere

Now, we want to understand which among the rotational CMC surfaces of S3(ρ) given in (iv) of Theorem
2.2, are closed. There are two possibilities to be considered. The first one corresponds to planar critical
curves that meet the axis of rotation, while the second one comes from planar closed critical curves not
touching that axis. However, it can be checked that the Euclidean radius of curvature of the orbits is
positive 4d

(
κ − µ

)
> 0 [15] what means that planar critical curves of the extended Blaschke’s energy (1)

never cut the axis of rotation. By this reason, we study closure conditions for profile curves of Θµ (1),
when acting on curves immersed in S2(ρ), since closed planar critical curves with curvature given by (7)
will generate CMC rotational tori, and these are the only possible non-isoparametric closed CMC rotational
surfaces in S3(ρ). Moreover, by the recently proved Pinkall-Sterling’s conjecture, these are the only possible
non-isoparametric CMC tori embedded in S3(ρ). Now, planar critical curves of Θµ (1), are completely

Figure 1: Closed planar extremal curves in S2(1) passing through the pole (4µ d = 1) for µ ' 0.312 (Left) and µ ' 0.634 (Right).

determined by the curvature κ(s), (7) which is periodic of period % = π√
ρ+µ2

. Then, using (7), it is easy

to check that whenever 4µ d , ρ, at points of γ where the curvature attains maxima and minima the
vector field J , (2), has only component in T, which means that the critical curve is bounded between the
two parallels of S2(ρ) corresponding to the integral curves of J at the maximum and minimum of κ(s),
respectively. What is more, the length of J vanishes, if and only if, κ(s) reaches its minimum and 4µ d = ρ
(observe that since d > 0, this equality can only occur for positive values of µ). In this particular case, the
critical curve crosses the pole of the parametrization (see the parametrization given in (8) and Figure 1).
However, notice that it is possible to find a reparametrization of the critical curve in order to avoid this
singularity. For instance, in Lemma 3.1 of [17] it has been done when ρ = 1.

In Figure 1 and 2, we have plot a few instances of closed critical curves ofΘµ, (1) in S2(1). These curves
have periodic curvature, κ(s), given by (7). The yellow part of these pictures corresponds with that piece
of the curve covered in one period of the curvature. Notice that, as the curvature is the same for each
period of it, our critical curve is nothing but congruent copies of the yellow part, that is, the whole curve
can be constructed by gluing smoothly as many copies of the trace covered in one period of the curvature
as needed to close up the curve.

However, not every critical curve with periodic curvature (7) is closed and a closure condition needs to
be satisfied. In S3(ρ), equation (3) implies that the constant of integration d must be positive and from (5)
we obtain that the condition for a critical γ(s) to close up is

I := −
1
2

√
ρ d Λ(d) :=

√
ρ d

∫ %

0

(
κ(s) − 2µ

) √
κ(s) − µ

4d
(
κ(s) − µ

)
− ρ

ds =
nπ
m
, (9)

for some integers n and m. Observe that n denotes the number of times the critical curve goes around the
pole of the parametrization in order to close up, and that m is the number of lobes the critical curve has.
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Figure 2: Closed planar extremal curves in S2(1) for: µ = −0.1 and d ' 1.27 (Left); and, µ = 1 and d ' 1.81 (Right). They close up for
the values m = 5 and n = 3 (resp., m = 6 and n = 1).

Then, we can prove the existence of closed planar critical curves with non-constant curvature for any value
of µ in the following way.

Let γ be a planar (τ = 0) critical curve of Θµ (1), completely determined by the curvature, κ(s), given
by (7). As these curvatures are periodic functions with period % = π√

ρ+µ2
, if we call α to the maximum

curvature of κ(s) and β to the minimum curvature, we obtain

α = κ

 π

4
√
ρ + µ2

 ≥ κ − π

4
√
ρ + µ2

 = β .

And the function on the left hand side of (9) can be rewritten as

I = 2
√
ρ d

∫ π

4
√
ρ+µ2

−
π

4
√
ρ+µ2

(
κ(s) − 2µ

) √
κ(s) − µ

4d
(
κ(s) − µ

)
− ρ

ds . (10)

Now, differentiating equation (7), we get that κs = 2(κ− µ)
√

4d(κ − µ) − (κ − 2µ)2 − ρ, which can be written
in terms of the maximum and minimum values of the curvature, α and β, as

κs = 2(κ − µ)
√

(α − κ)(κ − β) . (11)

Using (11) to make a change of variable in (10), we get

I =
√
ρ d

∫ α

β

κ − 2µ(
4d

(
κ − µ

)
− ρ

) √(
κ − µ

)
(α − κ)

(
κ − β

) dκ .

This integral can be written as a linear combination of complete elliptic integrals of first, second and
third kind (for details see [11]). In fact, since d > 0, we have the following relation, 4d(κ− 2µ) = (4d(κ−µ)−
ρ) + ρ − 4µd, and, therefore, we conclude that

I =

√
ρ

4
√

d

∫ α

β

dκ√(
κ − µ

)
(α − κ)

(
κ − β

)
+

(
ρ − 4µd

) ∫ α

β

dκ(
4d

(
κ − µ

)
− ρ

) √(
κ − µ

)
(α − κ)

(
κ − β

)  . (12)

Take into account that ρ = 4µd is a special case where the second integral does not appear because if ρ = 4µd
then the critical curve passes through the pole, as we have explained in the beginning of the section.
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Now, following the notation of [11], we define

p =

√
α − β

α − µ
, q =

√
1 − p2 , ν =

(
α − β

) (
α + β − 4µ

)(
α − µ

) (
α + β − 4µ

)
− ρ

. (13)

Then, from (11), we know that 4d(κ − µ) − (κ − 2µ)2
− ρ = (α − κ)(κ − β) which gives us α + β = 4(d + µ) and

αβ = 4µ2 + 4µd + ρ. Thus, finally, we obtain that

α =

√
ρ + µ2

q
+ µ , β = q

√
ρ + µ2 + µ . (14)

Therefore, using relations (14) we see that (12) can be reduced

I =
2
√
ρ√

α + β − 4µ
√
α − µ

(
K(p) +

ρ − µ
(
α + β − 4µ

)(
α − µ

) (
α + β − 4µ

)
− ρ

Π
(
ν, p

))
, (15)

where K(p) and Π(ν, p) denote the complete elliptic integrals of first and third kind with modulo p and
argument ν, respectively. Thus, we obtain

Theorem 3.1. For any value of µ, there exist closed planar critical curves in S2(ρ) of the energy Θµ defined in (1)
with non-constant curvature, κ(s), given by (7).

Proof. Consider a planar critical curve γ of Θµ (1), with non-constant periodic curvature κ(s), (7). We need
to check that the clousure condition (9) is verified. Remember that we have written the function I in terms
of elliptic integrals, (15). We first begin by translating the different values of the parameter d into the new

parameter q introduced in (13). The value d =
−µ+
√
ρ+µ2

2 corresponds to q = 1, while, the limit d→ ∞, now
reads q → 0. Moreover, d =

ρ
4µ , that is, when the critical curve passes through the pole, is represented by

q =
µ
√
ρ+µ2

. Then, with the notation introduced in (13), it can be checked that p2 < ν < 1. Hence,

Π
(
ν, p

)
=
π
2

√
ν

(1 − ν)(ν − p2)
Λo

arcsin

√
ν − p2

ν(1 − p2)
, p

 , (16)

where Λo represents the Heuman’s lambda, (for instance, see Appendix B of [3]). Moreover, d >
−µ+
√
ρ+µ2

2 > 0
and using (15) we get

I = qφK(p) +
π
2
εΛo

(
arcsin φ , p

)
, (17)

where ε represents the sign of ρ − 4µd and φ is given by

φ =

√
ν − p2

ν
(
1 − p2) =

1
q

√
ρ

4d
(
α − µ

) .
If µ ≤ 0, then necessarily ε = 1 and then I defined in (9) is a monotonically decreasing function of d, when

d ∈
(
−µ+
√
ρ+µ2

2 ,∞

)
, bounded by (see Appendix A of [15])

arcsin
√

ρ

ρ + µ2 < I <
π(

ρ + µ2) 1
4

√
ρ

2
(
−µ +

√
ρ + µ2

) . (18)
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On the other hand, ifµ > 0, we need to take out the case d =
ρ

4µ and consider d moving in d ∈
(
−µ+
√
ρ+µ2

2 ,
ρ

4µ

)
∪(

ρ
4µ ,∞

)
. Then, taking into account the sign of ε, we obtain that I is a monotonically decreasing function of

d which is bounded by (see Appendix A of [15])

− arcsin
√

ρ

ρ + µ2 < I <
µ√
ρ + µ2

K
(√

ρ

ρ + µ2

)
−
π
2
, (19)

if ε = −1, or, in the case ε = 1 we have the following upper and lower bounds

µ√
ρ + µ2

K
(√

ρ

ρ + µ2

)
+
π
2
< I <

π(
ρ + µ2) 1

4

√
ρ

2
(
−µ +

√
ρ + µ2

) . (20)

Thus, in all the three cases (18)-(20), we can always find some integers m and n, such that, m I = nπ, that is,
there are closed critical curves. To finish the proof, we are going to consider now the case where the critical
curve passes through the pole. That is, when ρ = 4µd. As mentioned before, for this case we only have the
first integral in (12). Moreover, in this case, q =

µ
√
ρ+µ2

and µ can take values in (0,∞), since ρ > 0. In this

case, from (15) we have

I =
µ√
ρ + µ2

K
(√

ρ

ρ + µ2

)
. (21)

Then, I is increasing in µ and 0 < I < π/2 (see Appendix A of [15]). Therefore, there are also closed critical
curves passing through the pole. �

Notice that planar critical curves of Θµ (1) are all immersed in the totally geodesic sphere S2(ρ) (see
Figures 1 and 2). However, in order to study embeddedness of the associated rotational CMC surfaces, we
need to determine under what conditions planar critical curves are embedded in S2(ρ), that is, when these
critical curves are simple.

Theorem 3.2. Assume that γ is a planar critical curve of Θµ (1) with non-constant curvature, κ(s), (7), immersed
in S2(ρ). Then, if µ > 0, γ is not simple. Moreover, if µ ≤ 0, γ will be simple, if and only if, it is closed and it closes
up after one trip around the pole.

Proof. Let γ be a planar critical curve of (1), with curvature, κ(s) (which is given by (7)). Then, the function

Ĩ(s) =

(
κ(s) − 2µ

) √
κ(s) − µ

4 d
(
κ(s) − µ

)
− ρ

, (22)

verifies that;

1. If µ ≤ 0 or, µ > 0 and 4µ d ≤ ρ, then it never changes sign.
2. If µ > 0 and 4µ d > ρ, it changes sign.

Recall that 2d > −µ +
√
ρ + µ2. Moreover, notice that if µ ≤ 0, then Ĩ(s), (22), does not change sign and,

therefore, the function ψ(s), (5), is monotone. Furthermore, the planar critical curve γwill be simple, unless
it closes up in more than one round. Thus, γ ⊂ S2(ρ) is simple, if and only if, it closes up in one round, that
is, by checking the image of I, (18), if there exists an integer m, such that,

arcsin
√

ρ

ρ + µ2 <
π
m
<

π(
ρ + µ2) 1

4

√
ρ

2
(
−µ +

√
ρ + µ2

) ,
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and verifying m I = π. Now, if µ > 0 and 4µ d < ρ, the function Ĩ(s), (22), has always the same sign. That
is, by monotonicity of ψ(s), (5), γ will be simple, if and only if, it closes up in one round. Using Appendix
A of [15], the absolute value of the total angular variation, |2 I|, of γ in S2(ρ), (20), is always bigger than π,
but smaller than 2π. Thus, γ cannot close up in one period, and it travels more than one round from the
second period, so it cuts itself. That is, γ is not simple.

Let’s study now the case µ > 0 and 4µ d = ρ. In this case, γ passes through the pole exactly once in each
period of its curvature, therefore the only option for γ to be simple is that it closes up in just one period.
But, if we look at the absolute value of the total angular variation, |2 I|, for this case, (0, π), we realize that
γ ⊂ S2(ρ) does not travel one whole round in each period, since |2 I| is always smaller than π.

Finally, if µ > 0 and 4µ d > ρ, we have that Ĩ(s), (22), has changes of sign, what it means that γ goes back
and it is clear that γ is not simple. �

Notice that what Theorem 3.2 tells us is that there exist closed critical curves embedded in S2(ρ). In
fact, the condition in this case reduces to γ closing up in one round and not having self-intersections in one
period of its curvature.

Figure 3: Closed and simple planar extremal curves in S2(1) for: µ = −1 and d ' 2.48 (Left); and, µ = −2 and d ' 16.19 (Right).

The condition ”closing up in just one round” means that the angular variation, I, must be equal π/m,
for an integer m. This function has been proved to be bijective in Appendix A of [15], where the analysis
made with elliptic integrals lead to the monoticity of I. A different proof when ρ = 1 can be found in [2].
This bijection means that for each m, there exists just one d such that m I = π. However, the choice of the
integer m is not totally free, since it is constrained by µ. Indeed, if we combine Theorem 3.1 and Theorem
3.2 to obtain closed and simple planar critical curves we get that µ < 0 and that for any m > 1

µ ∈

(
−
√
ρ

m2
− 2

2
√

m2 − 1
,−
√
ρ cot

π
m

)
. (23)

Finally, we sum up all this information in the following corollary,

Corollary 3.3. Let γ be a planar closed critical curve ofΘµ (1), with non-constant curvature, κ(s), (7), embedded in

S2(ρ). Then, µ , −
√

ρ
3 is negative.

Proof. From Theorem 3.2, we know that necessarily µ ≤ 0. Moreover, as explained above, it must verify

(23), for any m > 1. Then, we can check that for any strictly negative µ , −
√

ρ
3 , there exists such m > 1. �

Of course, if the profile curve γ is closed, then the corresponding rotational surface Sγ would also be
closed (see Figure 4), and, what is more, if the planar critical curve is simple and closed, then γ sweeps out
a closed surface Sγ embedded in S3(ρ). Hence, Theorem 2.2 and the bijection of I imply that once we fix the
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Figure 4: Stereographic projections of two closed CMC rotational surfaces in S3(ρ) showing the binormal evolution (in blue) of the
filaments (in yellow).

CMC H, for each m > 1, there exist at most one compact embedded non-isoparametric rotational surface of
CMC H in S3(ρ).

Observe that since critical curves with non-constant curvature do not meet the axis of rotation, the
binormal evolution surfaces of point (iv) of Theorem 2.2 are all local descriptions of topological torus,
therefore, both the Hopf tori and the binormal evolution surfaces have genus one. Moreover, notice that
the interval (23), is precisely the interval given by Perdomo in [16]. In fact, for each possible value H and
any m > 1 such that

|H| ∈
(
√
ρ cot

π
m
,
√
ρ

m2
− 2

2
√

m2 − 1

)
,

there exists a compact embedded non-isoparametric surface of genus one given by point (iv) of Theorem
2.2 (see some of them in Figures 4 and 5). Moreover, our construction here gives a way of proving Ripoll’s

Theorem [19], which states that for any H , 0, ±
√

ρ
3 , there exists a non-isoparametric torus of CMC H. In Figure

5, we can see the stereographic projection of three of these surfaces for m = 3, 4 and 5, respectively.

Figure 5: Stereographic projections of embedded CMC rotational surfaces in S3(ρ).

Furthermore, the Pinkall-Sterling’s conjecture [18] (recently proved in [2]) asserts that any CMC tori
embedded in S3(ρ) must be rotationally symmetric. Therefore, points (iii) and (iv) in Theorem 2.2 (together
with the restriction from Corollary 3.3) give rise to a complete classification of CMC tori embedded in
S3(ρ). In particular, the Lawson’s conjecture (see [7] and [14]) is verified. Indeed, if a rotational torus is
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minimal, then µ must be zero and there are no closed simple planar critical curves of Θµ (1) (see Corollary
3.3), therefore, the only minimal torus embedded in S3(ρ) is locally given in point (iii) of Theorem 2.2, i.e,
S1

(√
2ρ

)
× S1

(√
2ρ

)
, which is a Hopf torus, usually called the Clifford torus.
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