Filomat 33:4 (2019), 1185–1189 https://doi.org/10.2298/FIL1904185M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On One Problem of Connections in the Space of Non-symmetric Affine Connection and its Subspace

Svetislav M. Minčić^a

^aUniversity of Niš, Faculty of Science and Mathematics, 18000 Niš, Serbia

Abstract. Let X_M be a submanifold of a differentiable manifold X_N ($X_M \subset X_N$). If on X_N a non-symmetric affine connection L is defined by coefficients $L_{jk}^i \neq L_{kj}^i$ and on X_M a non-symmetric basical tensor $g(g_{\alpha\beta} \neq g_{\beta\alpha})$ is given, in the present paper we investigate the problem: Find a relation between induced connection \overline{L} from L_N into X_M end the connection $\overline{\Gamma}$, defined by the tensor g in X_M . The solutions is given in the Theorem 3.1., that is by the equation (3.9). Some examples are constructed.

1. Introduction

Let $L_N = (X_N, L)$ be a space of non-symmetric affine connection, where X_N is a differentiable manifold, and L^i_{jk} nonsymmetric connection. Suppose that X_M is a differentiable submanifold of X_N ($X_M \subset X_N$) and on X_M is given a non-symmetric basic tensor $g(g_{\alpha\beta} \neq g_{\beta\alpha})$. Then $GR_M = (X_M, g_{\alpha\beta})$ is so called generalized Riemannian space GR_M [1], defined on the submanifold $X_M \subset X_N$.

Let $X_M \subset X_N$ be defined in local coordinates by equations

$$x^{i} = x^{i}(u^{1}, \cdots, u^{M}) \equiv x^{i}(u^{\alpha}), \quad i = 1, \cdots, N, \quad \alpha = 1, \cdots, M.$$

$$(1.1)$$

The partial derivatives

$$B^{i}_{\alpha} = \frac{\partial x^{i}}{\partial u^{\alpha}} \quad (\operatorname{rank} (B^{i}_{\alpha}) = M), \tag{1.2}$$

define tangent vectors on X_M .

Consider N - M contravariant vectors C_A^i $(A, B, \dots \in \{M + 1, \dots, N\})$, which are defined on X_M and are linearly independent mutually and with B_{α}^i . If the matrix $\begin{pmatrix} \overline{B}_i^{\alpha} \\ \overline{C}_i^{A} \end{pmatrix}$ is inverse for (B_{α}^i, C_A^i) , the following conditions are satisfied

a) $P^i \overline{P}^{\beta} - \delta^{\beta}$ b) $P^i \overline{C}^A - 0$ c) $\overline{P}^{\alpha} C^i$

a)
$$B^i_{\alpha}B^i_i = \delta^{\beta}_{\alpha}$$
, b) $B^i_{\alpha}C^i_i = 0$, c) $B^i_i C^i_A = 0$,
d) $C^i_A\overline{C}^B_i = \delta^B_A$, e) $B^i_{\alpha}\overline{B}^{\alpha}_j + C^i_A\overline{C}^A_j = \delta^i_j$. (1.3)

The quantities B_{α}^{i} , $\overline{B}_{i}^{\alpha}$ are projection factors, and C_{A}^{i} , \overline{C}_{i}^{A} are affine pseudonormals of the submanifold X_{M} .

²⁰¹⁰ Mathematics Subject Classification. Primary 53B05, Secondary 53B20, 53C15.

Keywords. non-symmetric affine connexion space, generalized Riemannian space, subspace

Received: 01 October 2018; Accepted: 05 November 2018

Communicated by Mića S. Stanković

Email address: mincic.svetislav@gmail.com (Svetislav M. Minčić)

2. Determination of GR_N on X_N

Our task is to obtain a relation between induced connection \overline{L} from L_N into $X_M \subset X_N$ and connection $\overline{\Gamma}$, defined by Christoffel symbols expressed by help of non-symmetric tensor $g_{\alpha\beta}(u^1, \dots, u^M)$, which is given on X_M , i.e. when we have $GR_M = (X_M, g_{\alpha\beta})$.

Firstly, we will show how on X_N can be defined a metric tensor G_{ij} in the manner $g_{\alpha\beta}$ to be induced one for G_{ij} . In that case we will have a generalized Riemannian space $GR_N = (X_N, G_{ij})$ and its subspace $GR_M = (X_M, g_{\alpha\beta})$. Starting from the known relation

$$G_{ij}B^{i}_{\alpha}B^{j}_{\beta} = g_{\alpha\beta}, \quad i, j = 1, \cdots, N;$$

$$\alpha, \beta = 1, \cdots, M; \quad \operatorname{rank}(B^{i}_{\alpha}) = M,$$

(2.1)

we have (supposing a non of symmetry $g_{\alpha\beta}$ and G_{ij}) M^2 eq-s with N^2 unknowns G_{ij} (B^i_{α} , B^j_{β} are defined by (1.1) and (1.2)). Because M < N, in the system (2.1) $N^2 - M^2$ unknowns G_{ij} can be taken arbitrary, and the rest be ordered, under the condition rank(B^i_{α}) = M. In the general case we have innumerable solutions of the system (2.1) wrt G_{ij} . So, we have proved

Theorem 2.1. Let $L_N = (X_N, L)$ be a space of nonsymmetric affine connection L_{jk}^i , $GR_M = (X_M, g_{\alpha\beta})$ a generalized Riemannian space and X_M a submanifold of $X_N (X_M \subset X_N)$ defined by (1.1). Then by means of (2.1) can be determined in numberless manners a tensor G_{ij} on X_N , so that $g_{\alpha\beta}$ be induced for G_{ij} .

Example 2.1. Find G_{ij} by virtue of (2.1) for N = 3, M = 2, i.e. if $X_2 \subset X_3$ is defined by eq-s

$$x^{i} = x^{i}(u^{1}, u^{2}), \quad i = 1, 2, 3$$
 (2.2)

and with given $g_{\alpha\beta}$.

Solution. With respect of (2.1) we get

$$G_{ij}B_{1}^{i}B_{1}^{j} = g_{11}, \quad G_{ij}B_{1}^{i}B_{2}^{j} = g_{12}, G_{ij}B_{2}^{i}B_{1}^{j} = g_{21}, \quad G_{ij}B_{2}^{i}B_{2}^{j} = g_{22},$$
(2.3)

with given $g_{\alpha\beta}$.

We have here $N^2 = 3^2 = 9$ unknowns G_{ij} and $M^2 = 2^2 = 4$ linear eq-s.

So, we can find four unknowns G_{ij} and the rest take arbitrary. For example, except G_{11} , G_{12} , G_{22} , G_{33} , take the remaining G_{ij} to be zero. Then, from (2.3) we obtain

$$\begin{split} G_{11}(B_1^1)^2 + G_{12}B_1^1B_1^2 + G_{22}(B_1^2)^2 + G_{33}(B_1^3)^2 &= g_{11} \\ G_{11}B_1^1B_2^1 + G_{12}B_1^1B_2^2 + G_{22}B_1^2B_2^2 + G_{33}B_1^3B_2^3 &= g_{12} \\ G_{11}B_2^1B_1^1 + G_{12}B_1^1B_1^2 + G_{22}B_2^2B_1^2 + G_{33}B_2^3B_1^3 &= g_{21} \\ G_{11}(B_2^1)^2 + G_{12}B_2^1B_2^2 + G_{22}(B_2^2)^2 + G_{33}(B_2^3)^2 &= g_{22} \end{split}$$

From this system one obtains G₁₁, G₁₂, G₂₂, G₃₃. As a particular case of the eq-s (2.2), let us take

$$x^{1} = (u^{1})^{2}, \quad x^{2} = u^{1}u^{2}, \quad x^{3} = -(u^{2})^{2},$$
 (2.4)

and for $g_{\alpha\beta}$:

$$g_{11} = (u^2)^2, \quad g_{22} = -g_{21} = u^1 + u^2, \quad g_{22} = u^1 u^2.$$
 (2.5)

Then it is

$$B_{1}^{1} = \partial x^{1} / \partial u^{1} = 2u^{1}, \quad B_{1}^{2} = u^{2}, \quad B_{1}^{3} = 0, B_{2}^{1} = \partial x^{1} / \partial u^{2} = 0, \qquad B_{2}^{2} = u^{1}, \quad B_{2}^{3} = -2u^{2},$$
(2.6)

and from obtained system it follows that

$$G_{11} = \frac{u^1 g_{11} - u^2 g_{12}}{4(u^1)^3}, \quad G_{12} = \frac{g_{12} - g_{21}}{2(u^1)^2},$$

$$G_{22} = \frac{g_{21}}{u^1 u^2}, \quad G_{33} = \frac{u^2 g_{22} - u^1 g_{21}}{4(u^2)^3}$$
(2.7)

(under condition $u^1u^2 \neq 0$), where $g_{\alpha\beta}$ are functions of u^1 , u^2 , for ex. (2.5). We see that in generally is $G_{ij} \neq G_{ji}$, because of $g_{12} \neq g_{21}$. For example, $G_{21} = 0$ by supposition, and from (2.7) it is $G_{12} \neq G_{21}$ generally. Accordingly, we have obtained $GR_2 \subset GR_3$.

3. Relation between the connections \overline{L} and $\overline{\Gamma}$

We can start now to determine a relation between \overline{L} and $\overline{\Gamma}$, as we have said at the beginning of the Section 2. Let $h_{\alpha\beta}$ be the symmetric part of $g_{\alpha\beta}$, i.e.

$$h_{\alpha\beta} = \frac{1}{2}(g_{\alpha\beta} + g_{\beta\alpha}) \tag{3.1}$$

and $h^{\alpha\beta}$ satisfies the condition

$$h_{\alpha\beta}h^{\gamma\beta} = \delta^{\gamma}_{\beta}.$$
(3.2)

It is analogously

$$H_{ij}H^{kj} = \delta_i^k, \tag{3.3}$$

where H_{ij} is symmetric part of G_{ij} . We can introduce a connection Γ_{jk}^i on X_N by G_{ij} as defined above. The connection $\overline{\Gamma}_{\beta\gamma}^{\alpha}$ can be found starting from Christoffel symbols in GR_M :

$$\overline{\Gamma}^{\alpha}_{\beta\gamma} = h^{\pi\alpha}\overline{\Gamma}_{\pi,\beta\gamma} = \frac{1}{2}h^{\pi\alpha}(g_{\beta\pi,\gamma} - g_{\beta\gamma,\pi} + g_{\pi\gamma,\beta}).$$
(3.4)

We find corresponding derivatives in the brackets, for example

$$g_{\beta\pi,\gamma} = \frac{\partial}{\partial u^{\gamma}} g_{\beta\pi} = (G_{ij} B^i_{\beta} B^j_{\pi})_{,\gamma}$$
$$= G_{ijk} B^k_{\gamma} B^i_{\beta} B^j_{\pi} + G_{ij} B^i_{\beta\gamma} B^j_{\pi} + G_{ij} B^i_{\beta} B^j_{\pi\gamma}.$$

In this way, by substituting into (3.4), we get

$$\overline{\Gamma}^{\alpha}_{\beta\gamma} = \widetilde{B}^{\alpha}_{i} (\Gamma^{i}_{jk} B^{j}_{\beta} B^{k}_{\gamma} + B^{i}_{\beta\gamma}), \tag{3.5}$$

where

$$\widetilde{B}_i^{\alpha} = h^{\pi\alpha} H_{pi} B_{\pi}^p. \tag{3.6}$$

1187

On the other hand, the induced connection from L_N into X_M is ([2], [3]):

$$\overline{L}^{\alpha}_{\beta\gamma} = \overline{B}^{\alpha}_{i} (L^{i}_{jk} B^{j}_{\beta} B^{k}_{\gamma} + B^{i}_{\beta\gamma}).$$
(3.7)

We will examine a relation between \overline{B}_i^{α} and \widetilde{B}_i^{α} . By substituting \widetilde{B}_i^{α} into (1.3) instead \overline{B}_i^{α} and normals N_A^i on GR_M in place of pseudonormals C_A^i , we conclude that these equations are satisfied. E.g., using (3.7,3.2), we have

$$B^{i}_{\alpha}\widetilde{B}^{\beta}_{i} = B^{i}_{\alpha}h^{\pi\beta}H_{pi}B^{p}_{\pi} = h^{\pi\beta}h_{\alpha\pi} = \delta^{\beta}_{\alpha}.$$

By the same procedure can be checked the rest eq-s from (1.3). So, the matrix $\begin{pmatrix} B_{\alpha} \\ \tilde{N}_{i}^{A} \end{pmatrix}$ is inverse for $(B_{\alpha}^{i}, N_{A}^{i})$, (in GR_{N} we have $\overline{C}_{i}^{A} = \overline{N}_{i}^{A} = \widetilde{N}_{i}^{A}$) and it follows that

$$\overline{B}_i^{\alpha} = \widetilde{B}_i^{\alpha}.$$
(3.8)

Taking in mind this equation, from (3.5), (3.7) one obtains

$$\overline{L}^{\alpha}_{\beta\gamma} - \overline{\Gamma}^{\alpha}_{\beta\gamma} = (L^{i}_{jk} - \Gamma^{i}_{jk})\overline{B}^{\alpha}_{i}B^{\beta}_{\beta}B^{k}_{\gamma},$$
(3.9)

and that is the relation we look for.

From exposed it follows the next theorem

Theorem 3.1. Let $L_N = (X_N, L)$ be a space of nonsymmetric affine connection, defined by coefficients L_{jk}^i on a differentiable manifold X_N and $GR_M = (X_M, g_{\alpha\beta})$ a generalized Riemannian space defined by means of nonsymmetric basic tensor $g_{\alpha\beta}$ on the submanifold $X_M \subset X_N$, which is defined by (1.1). Then the equation (3.9) gives the relation between induced connection $\overline{L}_{\beta\gamma}^\alpha$ from L_N into X_M and the connection defined in X_M on the base of Christoffel symbols $\overline{\Gamma}_{\beta\gamma}^\alpha$ obtained wrt $g_{\alpha\beta}$, where $B_{\beta}^j = \partial x^j / \partial u^\beta$, and \overline{B}_i^α is defined by eq-s (1.3), (3.6) and (3.8).

Example 3.1. Suppose that, as in the Example 2.1., $X_2 \subset X_3$ be defined by eq-s (2.4), $g_{\alpha\beta}$ by (2.5), L^i_{ik} have values

$$L_{11}^1 = x^1, \quad L_{12}^1 = x^1 x^2, \quad L_{21}^1 = x^1 + x^2, \quad the \ rest \quad L_{jk}^i = 0,$$
 (3.10)

and the values of C_A^i (A = 3) are given as follows

$$C_3^1 \equiv C^1 = u^1, \quad C_3^2 \equiv C^2 = 0, \quad C_3^3 \equiv C^3 = 1.$$
 (3.11)

Find components of induced connection $\overline{L}^{\alpha}_{\beta\gamma}$ from L_3 into X_2 using (3.7).

Solution. In order to apply (3.7), we firstly find \overline{B}_i^{α} , \overline{C}_i^A . In the present case is

$$\mathcal{M} = (B^{i}_{\alpha}, C^{i}_{A}) = \begin{pmatrix} B^{1}_{\alpha} & C^{1}_{A} \\ B^{2}_{\alpha} & C^{2}_{A} \\ B^{3}_{\alpha} & C^{3}_{A} \end{pmatrix} = \begin{pmatrix} B^{1}_{1} & B^{1}_{2} & C^{1} \\ B^{2}_{1} & B^{2}_{1} & C^{2} \\ B^{3}_{1} & B^{3}_{1} & C^{3} \end{pmatrix}$$

$$= \begin{pmatrix} 2u^{1} & 0 & u^{1} \\ u^{2} & u^{1} & 0 \\ 0 & -2u^{2} & 1 \end{pmatrix},$$
(3.12)

$$|\mathcal{M}| = \det \mathcal{M} = 2(u^1)^2 - 2u_1(u^2)^2, \tag{3.13}$$

$$\mathcal{M}^{-1} = \begin{pmatrix} \overline{B}_i^{\alpha} \\ \overline{C}_i^{A} \end{pmatrix} = \begin{pmatrix} \overline{B}_1^{\alpha} & \overline{B}_2^{\alpha} & \overline{B}_3^{\alpha} \\ \overline{C}_1 & \overline{C}_2 & \overline{C}_3 \end{pmatrix} = \begin{pmatrix} \overline{B}_1^{1} & \overline{B}_2^{1} & \overline{B}_1^{3} \\ \overline{B}_1^{2} & \overline{B}_2^{2} & \overline{B}_3^{2} \\ \overline{C}_1 & \overline{C}_2 & \overline{C}_3 \end{pmatrix}.$$
(3.14)

On the other hand wrt (3.12) is

$$\mathcal{M}^{-1} = \frac{1}{|\mathcal{M}|} \begin{pmatrix} u^1 & -2u^1u^2 & -(u^1)^2 \\ u^2 & -2u^1 & -u^1u^2 \\ -2(u^2)^2 & 4u^1u^2 & 2(u^1)^2 \end{pmatrix}$$
(3.15)

By comparing of (3.14) and (3.15), we conclude:

$$\overline{B}_{1}^{1} = \frac{u^{1}}{|\mathcal{M}|}, \quad \overline{B}_{2}^{1} = -\frac{2u^{1}u^{2}}{|\mathcal{M}|}, \quad \cdots \quad \overline{C}_{3} = \frac{2(u^{1})^{2}}{|\mathcal{M}|}.$$
(3.16)

To find $\overline{L}_{\beta\gamma}^{\alpha}$ by virtue of (3.7), remark that B_{α}^{i} are given in (2.6), $\overline{B}_{i}^{\alpha}$ in (3.16), L_{jk}^{i} in (3.10), where x^{i} have the values (2.4).

References

- [1] Einsenhart, L.P., Generalized Riemannian spaces, Proc. Nac. Acad. Sci. USA, Vol. 37, (1951), 311–315.
- [2] Minčić, S. M., Derivational equations of submanifolds in an asymmetric affine connection space, Krag. Journal of Math., Vol. 35, No 2 (2011), 265–276.
- [3] Yano, K., Sur la théorie des deformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo, 6 (1949), 1–75.