On One Problem of Connections in the Space of Non-symmetric Affine Connection and its Subspace

Svetislav M. Minčića ${ }^{\text {a }}$
${ }^{a}$ University of Niš, Faculty of Science and Mathematics, 18000 Niš, Serbia

Abstract

Let X_{M} be a submanifold of a differentiable manifold $X_{N}\left(X_{M} \subset X_{N}\right)$. If on X_{N} a non-symmetric affine connection L is defined by coefficients $L_{j k}^{i} \neq L_{k j}^{i}$ and on X_{M} a non-symmetric basical tensor $g\left(g_{\alpha \beta} \neq g_{\beta \alpha}\right)$ is given, in the present paper we investigate the problem: Find a relation between induced connection \bar{L} from L_{N} into X_{M} end the connection $\bar{\Gamma}$, defined by the tensor g in X_{M}. The solutions is given in the Theorem 3.1., that is by the equation (3.9). Some examples are constructed.

1. Introduction

Let $L_{N}=\left(X_{N}, L\right)$ be a space of non-symmetric affine connection, where X_{N} is a differentiable manifold, and $L_{j k}^{i}$ nonsymmetric connection. Suppose that X_{M} is a differentiable submanifold of X_{N} ($X_{M} \subset X_{N}$) and on X_{M} is given a non-symmetric basic tensor $g\left(g_{\alpha \beta} \neq g_{\beta \alpha}\right)$. Then $G R_{M}=\left(X_{M}, g_{\alpha \beta}\right)$ is so called generalized Riemannian space $G R_{M}$ [1], defined on the submanifold $X_{M} \subset X_{N}$.

Let $X_{M} \subset X_{N}$ be defined in local coordinates by equations

$$
\begin{equation*}
x^{i}=x^{i}\left(u^{1}, \cdots, u^{M}\right) \equiv x^{i}\left(u^{\alpha}\right), \quad i=1, \cdots, N, \quad \alpha=1, \cdots, M . \tag{1.1}
\end{equation*}
$$

The partial derivatives

$$
\begin{equation*}
B_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}} \quad\left(\operatorname{rank}\left(B_{\alpha}^{i}\right)=M\right) \tag{1.2}
\end{equation*}
$$

define tangent vectors on X_{M}.
Consider $N-M$ contravariant vectors $C_{A}^{i}(A, B, \cdots \in\{M+1, \cdots, N\})$, which are defined on X_{M} and are linearly independent mutually and with B_{α}^{i}. If the matrix $\binom{\bar{B}_{i}^{\alpha}}{\bar{C}_{i}^{A}}$ is inverse for $\left(B_{\alpha}^{i}, C_{A}^{i}\right)$, the following conditions are satisfied
a) $B_{\alpha}^{i} \bar{B}_{i}^{\beta}=\delta_{\alpha}^{\beta}$,
b) $\quad B_{\alpha}^{i} \bar{C}_{i}^{A}=0$,
c) $\bar{B}_{i}^{\alpha} C_{A}^{i}=0$,
d) $C_{A}^{i} \bar{C}_{i}^{B}=\delta_{A}^{B}$,
e) $B_{\alpha}^{i} \bar{B}_{j}^{\alpha}+C_{A}^{i} \bar{C}_{j}^{A}=\delta_{j}^{i}$.

The quantities $B_{\alpha}^{i}, \bar{B}_{i}^{\alpha}$ are projection factors, and $C_{A^{\prime}}^{i} \bar{C}_{i}^{A}$ are affine pseudonormals of the submanifold X_{M}.

[^0]
2. Determination of GR_{N} on X_{N}

Our task is to obtain a relation between induced connection \bar{L} from L_{N} into $X_{M} \subset X_{N}$ and connection $\bar{\Gamma}$, defined by Christoffel symbols expressed by help of non-symmetric tensor $g_{\alpha \beta}\left(u^{1}, \cdots, u^{M}\right)$, which is given on X_{M}, i.e. when we have $G R_{M}=\left(X_{M}, g_{\alpha \beta}\right)$.

Firstly, we will show how on X_{N} can be defined a metric tensor $G_{i j}$ in the manner $g_{\alpha \beta}$ to be induced one for $G_{i j}$. In that case we will have a generalized Riemannian space $G R_{N}=\left(X_{N}, G_{i j}\right)$ and its subspace $G R_{M}=\left(X_{M}, g_{\alpha \beta}\right)$. Starting from the known relation

$$
\begin{align*}
& G_{i j} B_{\alpha}^{i} B_{\beta}^{j}=g_{\alpha \beta}, \quad i, j=1, \cdots, N ; \tag{2.1}\\
& \quad \alpha, \beta=1, \cdots, M ; \quad \operatorname{rank}\left(B_{\alpha}^{i}\right)=M
\end{align*}
$$

we have (supposing a non of symmetry $g_{\alpha \beta}$ and $\left.G_{i j}\right) M^{2}$ eq-s with N^{2} unknowns $G_{i j}\left(B_{\alpha}^{i}, B_{\beta}^{j}\right.$ are defined by (1.1) and (1.2)). Because $M<N$, in the system (2.1) $N^{2}-M^{2}$ unknowns $G_{i j}$ can be taken arbitrary, and the rest be ordered, under the condition $\operatorname{rank}\left(B_{\alpha}^{i}\right)=M$. In the general case we have innumerable solutions of the system (2.1) wrt $G_{i j}$. So, we have proved

Theorem 2.1. Let $L_{N}=\left(X_{N}, L\right)$ be a space of nonsymmetric affine connection $L_{j k^{\prime}}^{i} G R_{M}=\left(X_{M}, g_{\alpha \beta}\right)$ a generalized Riemannian space and X_{M} a submanifold of $X_{N}\left(X_{M} \subset X_{N}\right)$ defined by (1.1). Then by means of (2.1) can be determined in numberless manners a tensor $G_{i j}$ on X_{N}, so that $g_{\alpha \beta}$ be induced for $G_{i j}$.

Example 2.1. Find $G_{i j}$ by virtue of (2.1) for $N=3, M=2$, i.e. if $X_{2} \subset X_{3}$ is defined by eq-s

$$
\begin{equation*}
x^{i}=x^{i}\left(u^{1}, u^{2}\right), \quad i=1,2,3 \tag{2.2}
\end{equation*}
$$

and with given $g_{\alpha \beta}$.
Solution. With respect of (2.1) we get

$$
\begin{array}{ll}
G_{i j} B_{1}^{i} B_{1}^{j}=g_{11}, \quad & G_{i j} B_{1}^{i} B_{2}^{j}=g_{12} \tag{2.3}\\
G_{i j} B_{2}^{i} B_{1}^{j}=g_{21}, & G_{i j} B_{2}^{i} B_{2}^{j}=g_{22}
\end{array}
$$

with given $g_{\alpha \beta}$.
We have here $N^{2}=3^{2}=9$ unknowns $G_{i j}$ and $M^{2}=2^{2}=4$ linear eq-s.
So, we can find four unknowns $G_{i j}$ and the rest take arbitrary. For example, except $G_{11}, G_{12}, G_{22}, G_{33}$, take the remaining $G_{i j}$ to be zero. Then, from (2.3) we obtain

$$
\begin{aligned}
& G_{11}\left(B_{1}^{1}\right)^{2}+G_{12} B_{1}^{1} B_{1}^{2}+G_{22}\left(B_{1}^{2}\right)^{2}+G_{33}\left(B_{1}^{3}\right)^{2}=g_{11} \\
& G_{11} B_{1}^{1} B_{2}^{1}+G_{12} B_{1}^{1} B_{2}^{2}+G_{22} B_{1}^{2} B_{2}^{2}+G_{33} B_{1}^{3} B_{2}^{3}=g_{12} \\
& G_{11} B_{2}^{1} B_{1}^{1}+G_{12} B_{1}^{1} B_{1}^{2}+G_{22} B_{2}^{2} B_{1}^{2}+G_{33} B_{2}^{3} B_{1}^{3}=g_{21} \\
& G_{11}\left(B_{2}^{1}\right)^{2}+G_{12} B_{2}^{1} B_{2}^{2}+G_{22}\left(B_{2}^{2}\right)^{2}+G_{33}\left(B_{2}^{3}\right)^{2}=g_{22}
\end{aligned}
$$

From this system one obtains $G_{11}, G_{12}, G_{22}, G_{33}$. As a particular case of the eq-s (2.2), let us take

$$
\begin{equation*}
x^{1}=\left(u^{1}\right)^{2}, \quad x^{2}=u^{1} u^{2}, \quad x^{3}=-\left(u^{2}\right)^{2} \tag{2.4}
\end{equation*}
$$

and for $g_{\alpha \beta}$:

$$
\begin{equation*}
g_{11}=\left(u^{2}\right)^{2}, \quad g_{22}=-g_{21}=u^{1}+u^{2}, \quad g_{22}=u^{1} u^{2} . \tag{2.5}
\end{equation*}
$$

Then it is

$$
\begin{array}{lll}
B_{1}^{1}=\partial x^{1} / \partial u^{1}=2 u^{1}, & B_{1}^{2}=u^{2}, & B_{1}^{3}=0 \\
B_{2}^{1}=\partial x^{1} / \partial u^{2}=0, & B_{2}^{2}=u^{1}, & B_{2}^{3}=-2 u^{2} \tag{2.6}
\end{array}
$$

and from obtained system it follows that

$$
\begin{align*}
& G_{11}=\frac{u^{1} g_{11}-u^{2} g_{12}}{4\left(u^{1}\right)^{3}}, \quad G_{12}=\frac{g_{12}-g_{21}}{2\left(u^{1}\right)^{2}} \tag{2.7}\\
& G_{22}=\frac{g_{21}}{u^{1} u^{2}}, \quad G_{33}=\frac{u^{2} g_{22}-u^{1} g_{21}}{4\left(u^{2}\right)^{3}}
\end{align*}
$$

(under condition $u^{1} u^{2} \neq 0$), where $g_{\alpha \beta}$ are functions of u^{1}, u^{2}, for ex. (2.5). We see that in generally is $G_{i j} \neq G_{j i}$, because of $g_{12} \neq g_{21}$. For example, $G_{21}=0$ by supposition, and from (2.7) it is $G_{12} \neq G_{21}$ generally. Accordingly, we have obtained $G R_{2} \subset G R_{3}$.

3. Relation between the connections $\overline{\mathrm{L}}$ and $\bar{\Gamma}$

We can start now to determine a relation between \bar{L} and $\bar{\Gamma}$, as we have said at the beginning of the Section 2. Let $h_{\alpha \beta}$ be the symmetric part of $g_{\alpha \beta}$, i.e.

$$
\begin{equation*}
h_{\alpha \beta}=\frac{1}{2}\left(g_{\alpha \beta}+g_{\beta \alpha}\right) \tag{3.1}
\end{equation*}
$$

and $h^{\alpha \beta}$ satisfies the condition

$$
\begin{equation*}
h_{\alpha \beta} h^{\nu \beta}=\delta_{\beta}^{\gamma} \tag{3.2}
\end{equation*}
$$

It is analogously

$$
\begin{equation*}
H_{i j} H^{k j}=\delta_{i}^{k} \tag{3.3}
\end{equation*}
$$

where $H_{i j}$ is symmetric part of $G_{i j}$. We can introduce a connection $\Gamma_{j k}^{i}$ on X_{N} by $G_{i j}$ as defined above. The connection $\bar{\Gamma}_{\beta \gamma}^{\alpha}$ can be found starting from Christoffel symbols in $G R_{M}$:

$$
\begin{equation*}
\bar{\Gamma}_{\beta \gamma}^{\alpha}=h^{\pi \alpha} \bar{\Gamma}_{\pi \cdot \beta \gamma}=\frac{1}{2} h^{\pi \alpha}\left(g_{\beta \pi, \gamma}-g_{\beta \gamma, \pi}+g_{\pi \gamma, \beta}\right) \tag{3.4}
\end{equation*}
$$

We find corresponding derivatives in the brackets, for example

$$
\begin{aligned}
g_{\beta \pi, \gamma} & =\frac{\partial}{\partial u^{\gamma}} g_{\beta \pi}=\left(G_{i j} B_{\beta}^{i} B_{\pi}^{j}\right)_{, \gamma} \\
& =G_{i j, k} B_{\gamma}^{k} B_{\beta}^{i} B_{\pi}^{j}+G_{i j} B_{\beta \gamma}^{i} B_{\pi}^{j}+G_{i j} B_{\beta}^{i} B_{\pi \gamma}^{j} .
\end{aligned}
$$

In this way, by substituting into (3.4), we get

$$
\begin{equation*}
\bar{\Gamma}_{\beta \gamma}^{\alpha}=\widetilde{B}_{i}^{\alpha}\left(\Gamma_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}+B_{\beta \gamma}^{i}\right) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{B}_{i}^{\alpha}=h^{\pi \alpha} H_{p i} B_{\pi}^{p} \tag{3.6}
\end{equation*}
$$

On the other hand, the induced connection from L_{N} into X_{M} is ([2], [3]):

$$
\begin{equation*}
\bar{L}_{\beta \gamma}^{\alpha}=\bar{B}_{i}^{\alpha}\left(L_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k}+B_{\beta \gamma}^{i}\right) . \tag{3.7}
\end{equation*}
$$

We will examine a relation between \bar{B}_{i}^{α} and $\widetilde{B}_{i}^{\alpha}$. By substituting $\widetilde{B}_{i}^{\alpha}$ into (1.3) instead \bar{B}_{i}^{α} and normals N_{A}^{i} on $G R_{M}$ in place of pseudonormals C_{A}^{i}, we conclude that these equations are satisfied. E.g., using (3.7,3.2), we have

$$
B_{\alpha}^{i} \widetilde{B}_{i}^{\beta} \underset{(3.6)}{=} B_{\alpha}^{i} h^{\pi \beta} H_{p i} B_{\pi}^{p}=h^{\pi \beta} h_{\alpha \pi} \underset{(3.2)}{=} \delta_{\alpha}^{\beta}
$$

By the same procedure can be checked the rest eq-s from (1.3). So, the matrix $\binom{\widetilde{B}_{i}^{\alpha}}{\widetilde{N}_{i}^{A}}$ is inverse for $\left(B_{\alpha}^{i}, N_{A}^{i}\right)$, (in $G R_{N}$ we have $\bar{C}_{i}^{A}=\bar{N}_{i}^{A}=\widetilde{N}_{i}^{A}$) and it follows that

$$
\begin{equation*}
\bar{B}_{i}^{\alpha}=\widetilde{B}_{i}^{\alpha} \tag{3.8}
\end{equation*}
$$

Taking in mind this equation, from (3.5), (3.7) one obtains

$$
\begin{equation*}
\bar{L}_{\beta \gamma}^{\alpha}-\bar{\Gamma}_{\beta \gamma}^{\alpha}=\left(L_{j k}^{i}-\Gamma_{j k}^{i}\right) \bar{B}_{i}^{\alpha} B_{\beta}^{j} B_{\gamma,}^{k} \tag{3.9}
\end{equation*}
$$

and that is the relation we look for.
From exposed it follows the next theorem
Theorem 3.1. Let $L_{N}=\left(X_{N}, L\right)$ be a space of nonsymmetric affine connection, defined by coefficients $L_{j k}^{i}$ on a differentiable manifold X_{N} and $G R_{M}=\left(X_{M}, g_{\alpha \beta}\right)$ a generalized Riemannian space defined by means of nonsymmetric basic tensor $g_{\alpha \beta}$ on the submanifold $X_{M} \subset X_{N}$, which is defined by (1.1). Then the equation (3.9) gives the relation between induced connection $\bar{L}_{\beta \gamma}^{\alpha}$ from L_{N} into X_{M} and the connection defined in X_{M} on the base of Christoffel symbols $\bar{\Gamma}_{\beta \gamma}^{\alpha}$ obtained wrt $g_{\alpha \beta}$, where $B_{\beta}^{j}=\partial x^{j} / \partial u^{\beta}$, and \bar{B}_{i}^{α} is defined by eq-s (1.3), (3.6) and (3.8).

Example 3.1. Suppose that, as in the Example 2.1., $X_{2} \subset X_{3}$ be defined by eq-s (2.4), $g_{\alpha \beta}$ by (2.5), $L_{j k}^{i}$ have values

$$
\begin{equation*}
L_{11}^{1}=x^{1}, \quad L_{12}^{1}=x^{1} x^{2}, \quad L_{21}^{1}=x^{1}+x^{2}, \quad \text { the rest } L_{j k}^{i}=0, \tag{3.10}
\end{equation*}
$$

and the values of $C_{A}^{i} \quad(A=3)$ are given as follows

$$
\begin{equation*}
C_{3}^{1} \equiv C^{1}=u^{1}, \quad C_{3}^{2} \equiv C^{2}=0, \quad C_{3}^{3} \equiv C^{3}=1 \tag{3.11}
\end{equation*}
$$

Find components of induced connection $\bar{L}_{\beta \gamma}^{\alpha}$ from L_{3} into X_{2} using (3.7).
Solution. In order to apply (3.7), we firstly find $\bar{B}_{i}^{\alpha}, \bar{C}_{i}^{A}$. In the present case is

$$
\begin{align*}
\mathcal{M}=\left(B_{\alpha}^{i}, C_{A}^{i}\right) & =\left(\begin{array}{ll}
B_{\alpha}^{1} & C_{A}^{1} \\
B_{\alpha}^{2} & C_{A}^{2} \\
B_{\alpha}^{3} & C_{A}^{3}
\end{array}\right)=\left(\begin{array}{lll}
B_{1}^{1} & B_{2}^{1} & C^{1} \\
B_{1}^{2} & B_{1}^{2} & C^{2} \\
B_{1}^{3} & B_{1}^{3} & C^{3}
\end{array}\right) \tag{3.12}\\
& =\left(\begin{array}{ccc}
2 u^{1} & 0 & u^{1} \\
u^{2} & u^{1} & 0 \\
0 & -2 u^{2} & 1
\end{array}\right),
\end{align*}
$$

$$
\begin{equation*}
|\mathcal{M}|=\operatorname{det} \mathcal{M}=2\left(u^{1}\right)^{2}-2 u_{1}\left(u^{2}\right)^{2} \tag{3.13}
\end{equation*}
$$

$$
\mathcal{M}^{-1}=\binom{\bar{B}_{i}^{\alpha}}{\bar{C}_{i}^{A}}=\left(\begin{array}{ccc}
\bar{B}_{1}^{\alpha} & \bar{B}_{2}^{\alpha} & \bar{B}_{3}^{\alpha} \tag{3.14}\\
\bar{C}_{1} & \bar{C}_{2} & \bar{C}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\bar{B}_{1}^{1} & \bar{B}_{2}^{1} & \bar{B}_{3}^{1} \\
\bar{B}_{1}^{2} & \bar{B}_{2}^{2} & \bar{B}_{3}^{2} \\
\bar{C}_{1} & \bar{C}_{2} & \bar{C}_{3}
\end{array}\right) .
$$

On the other hand wrt (3.12) is

$$
\mathcal{M}^{-1}=\frac{1}{|\mathcal{M}|}\left(\begin{array}{ccc}
u^{1} & -2 u^{1} u^{2} & -\left(u^{1}\right)^{2} \tag{3.15}\\
u^{2} & -2 u^{1} & -u^{1} u^{2} \\
-2\left(u^{2}\right)^{2} & 4 u^{1} u^{2} & 2\left(u^{1}\right)^{2}
\end{array}\right)
$$

By comparing of (3.14) and (3.15), we conclude:

$$
\begin{equation*}
\bar{B}_{1}^{1}=\frac{u^{1}}{|\mathcal{M}|}, \quad \bar{B}_{2}^{1}=-\frac{2 u^{1} u^{2}}{|\mathcal{M}|}, \quad \ldots \quad \bar{C}_{3}=\frac{2\left(u^{1}\right)^{2}}{|\mathcal{M}|} . \tag{3.16}
\end{equation*}
$$

To find $\bar{L}_{\beta \gamma}^{\alpha}$ by virtue of (3.7), remark that B_{α}^{i} are given in (2.6), \bar{B}_{i}^{α} in (3.16), $L_{j k}^{i}$ in (3.10), where x^{i} have the values (2.4).

References

[1] Einsenhart, L.P., Generalized Riemannian spaces, Proc. Nac. Acad. Sci. USA, Vol. 37, (1951), 311-315.
[2] Minčíć, S. M., Derivational equations of submanifolds in an asymmetric affine connection space, Krag. Journal of Math., Vol. 35, No 2 (2011), 265-276.
[3] Yano, K., Sur la théorie des deformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo, 6 (1949), 1-75.

[^0]: 2010 Mathematics Subject Classification. Primary 53B05, Secondary 53B20, 53C15.
 Keywords. non-symmetric affine connexion space, generalized Riemannian space, subspace
 Received: 01 October 2018; Accepted: 05 November 2018
 Communicated by Mića S. Stanković
 Email address: mincic.svetislav@gmail.com (Svetislav M. Minčić)

