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Solutions of Some Types of Soliton Equations in R3

Adara M. Blagaa

aWest University of Timişoara

Abstract. Solutions of ome types of soliton equations in the 3-dimensional Euclidean space are given and
some examples are provided.

1. Introduction

Let 1 be a Riemannian metric on the n-dimensional manifold M, Ric its Ricci curvature tensor field and
r the scalar curvature of M. Fix a vector field V and a 1-form η on M. If there exist two smooth functions λ
and µ on M such that

1
2

£V1 + Ric + λ1 + µη ⊗ η = 0, (1)

where £V denotes the Lie derivative in the direction of V, then the data (V, η, λ, µ) is called an almost η-Ricci
soliton on (M, 1) [2]; in particular, if λ and µ are constants, then (V, η, λ, µ) is an η-Ricci soliton [3], if µ = 0,
(V, λ) is an almost Ricci soliton [6], respectively a Ricci soliton [5] if λ is a function, respectively a constant. The
soliton is called shrinking, steady or expanding according as λ is negative, zero or positive, respectively [4].
If the potential vector field V is of gradient type, V = 1rad( f ), for f a smooth function on M, then (V, η, λ, µ)
is called a gradient almost η-Ricci soliton.

Similarly, if there exist two smooth functions λ and µ on M such that

1
2

£V1 + (λ − r)1 + µη ⊗ η = 0, (2)

then the data (V, η, λ, µ) is called an almost quasi-Yamabe soliton on (M, 1) [1].

2. Almost η-solitons in R3

Consider the 3-dimensional Euclidean space (R3, 1 :=
∑3

i=1 dxi
⊗ dxi), where {x1, x2, x3

} denotes the local
coordinates. Then the components of the Levi-Civita connection, of the Ricci tensor field, and the scalar
curvature all vanish. In this case, the equations (1) and (2) coincide and, in what follows, we shall call the
data (V, η, λ, µ) an almost η-soliton.
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Let V =
∑3

i=1 Vi ∂
∂xi and η =

∑3
i=1 η

idxi with Vi and ηi smooth functions on R3.
Replacing £V1(X,Y) = 1(∇XV,Y) + 1(X,∇YV) in (1) and computing it in ( ∂

∂xi ,
∂
∂x j ) we obtain:

1
2

[
1

(
∇ ∂

∂xi
V,

∂

∂x j

)
+ 1

(
∂

∂xi ,∇ ∂

∂xj
V
)]
+ λδi j + µηiη j = 0, (∀) i, j ∈ {1, 2, 3}

equivalent to

1
2

(
∂V j

∂xi +
∂Vi

∂x j

)
+ λδi j + µηiη j = 0, (∀) i, j ∈ {1, 2, 3}, (3)

for δi j the Kronecker symbol.

Theorem 2.1. The system (3) is verified by the functions Vi and ηi given by:

Vi(x1, x2, x3) = c′xi + c′′ f (x1, x2, x3) (4)

ηi(x1, x2, x3) = c′′′
√

c′ (5)

with c′ ∈ R∗+, c′′ ∈ R, c′′′ ∈ R∗ and f : R3
→ R one of the following functions:

f (x1, x2, x3) ∈ {sin(x1 + x2 + x3), cos(x1 + x2 + x3), sinh(x1 + x2 + x3), cosh(x1 + x2 + x3), ex1+x2+x3
}.

In this case,

(V, η, λ, µ) =

 3∑
i=1

(c′πi + c′′ f )
∂

∂xi , c
′′′
√

c′
3∑

i=1

dxi,−c′ − c′′
∂ f
∂xi0
− µc′(c′′′)2, µ

 (6)

define a gradient almost η-soliton on (R3, 1), where πi : R3
→ R, πi(x1, x2, x3) := xi, i ∈ {1, 2, 3}. Moreover,

V = 1rad(h) with the potential function h : R3
→ R given by h(x1, x2, x3) := c′

2

∑3
i=1(xi)2 + c′′ f̄ (x1, x2, x3) + c′′′′,

c′′′′ ∈ R and f̄ : R3
→ R with the property ∂ f̄

∂xi = f , i ∈ {1, 2, 3}.

Remark 2.2. For the gradient almost η-soliton (6):
i) If f = c ∈ R is a constant, then

(V, η, λ, µ) =

 3∑
i=1

(c′πi + c)
∂

∂xi , c
′′′
√

c′
3∑

i=1

dxi,−c′[1 + µ(c′′′)2], µ

 (7)

define an almost η-soliton on (R3, 1) with c′ ∈ R∗+, c′′′ ∈ R∗, where πi : R3
→ R, πi(x1, x2, x3) := xi, i ∈ {1, 2, 3}.

If µ = − 1
(c′′′)2 , the soliton is steady, if µ > − 1

(c′′′)2 , the soliton is shrinking and if µ < − 1
(c′′′)2 , the soliton is

expanding.
ii) If µ = 0 we obtain the almost Ricci soliton

(V, λ) =

 3∑
i=1

(c′πi + c′′ f )
∂

∂xi ,−c′ − c′′
∂ f
∂xi0

 (8)

and in particular, a shrinking Ricci soliton given by (V, λ) =
(∑3

i=1(c′πi + c) ∂
∂xi ,−c′

)
, c′ ∈ R∗+, c ∈ R.

Proposition 2.3.

(V, η, λ, µ) =

 ∑
1≤i≤3,i,i0

ci
∂

∂xi + f
∂

∂xi0
, ηi0 dxi0 ,− f ′ − µ(ηi0 )2, µ

 (9)

define a gradient almost η-soliton on (R3, 1), where ηi0 is a nowhere zero function and f : R → R is a smooth
function depending only on xi0 . Moreover, V = 1rad(h) with the potential function h : R3

→ R given by
h(x1, x2, x3) :=

∑
1≤i≤3,i,i0 cixi + f̄ (xi0 ) + c, c ∈ R and f̄ : R3

→ R a smooth function that depends only on xi0 , with

the property ∂ f̄
∂xi0
= f .
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Remark 2.4. For the gradient almost η-soliton given by (9):
i) If µ = − f ′

(ηi0 )2 , the soliton is steady, if µ > − f ′

(ηi0 )2 , the soliton is shrinking and if µ < − f ′

(ηi0 )2 , the soliton is
expanding.

ii) If µ = 0 we obtain the almost Ricci soliton

(V, λ) =

 ∑
1≤i≤3,i,i0

ci
∂

∂xi + f
∂

∂xi0
,− f ′

 (10)

which is steady if f is a constant map, shrinking if f is strictly increasing, and expanding if f is strictly decreasing.
iii) If f is a constant, then

(V, η, λ, µ) =

 3∑
i=1

ci
∂

∂xi , η
i0 dxi0 ,−µ(ηi0 )2, µ

 (11)

define an almost η-soliton on (R3, 1) with ci ∈ R at least one of them nonzero and ηi0 a nowhere zero function.
In this case, if µ = 0, we have a steady Ricci soliton, if µ > 0, the soliton is shrinking and if µ < 0, the soliton is

expanding.

Proposition 2.5.

(V, η, λ, µ) =

 ∑
1≤i≤3,i,i0,i,i1

ci
∂

∂xi + f0
∂

∂xi0
+ f1

∂

∂xi1
, ηi0 dxi0 ,− f ′0 +

ηi0

2ηi1
f ′1 ,−

1
2ηi0ηi1

f ′1

 (12)

define a gradient almost η-soliton on (R3, 1), where ηi0 is a nowhere zero function and f0, f1 : R→ R are two smooth
functions depending only on xi0 and xi1 , respectively. Moreover, V = 1rad(h) with the potential function h : R3

→ R
given by h(x1, x2, x3) :=

∑
1≤i≤3,i,i0,i,i1 cixi + f̄0(xi0 ) + f̄1(xi1 ) + c, c ∈ R and f̄0, f̄1 : R3

→ R two smooth functions

that depend only on xi0 and xi1 , respectively, with the property ∂ f̄0
∂xi0
= f0 and ∂ f̄1

∂xi1
= f1.

Remark 2.6. For the gradient almost η-soliton (12):
i) If f ′0 =

ηi0

2ηi1
f ′1 , the soliton is steady, if f ′0 >

ηi0

2ηi1
f ′1 , the soliton is shrinking and if f ′0 <

ηi0

2ηi1
f ′1 , the soliton is

expanding.
ii) If f1 is a constant, then

(V, λ) =

 ∑
1≤i≤3,i,i0

ci
∂

∂xi + f0
∂

∂xi0
,− f ′0

 (13)

define an almost Ricci soliton on (R3, 1) with f0 a nonzero function or at least one of ci ∈ R nonzero. In this case, the
soliton is steady if f0 is a constant map, shrinking if f0 is strictly increasing, and expanding if f0 is strictly decreasing.

Remark 2.7. Assume that
∑3

i=1(ηi)2 , 0 everywhere. Then the compatibility conditions of the system (3) in λ and µ
are: 

(i) (η1)2
(
∂V2

∂x2 −
∂V3

∂x3

)
+ (η2)2

(
∂V3

∂x3 −
∂V1

∂x1

)
+ (η3)2

(
∂V1

∂x1 −
∂V2

∂x2

)
= 0

(ii) ((ηi)2
− (η j)2)

(
∂Vk

∂xi +
∂Vi

∂xk

)
− 2ηkηi

(
∂Vi

∂xi −
∂V j

∂x j

)
= 0

(iii) ηlη j
(
∂V j

∂xt +
∂Vt

∂x j

)
− η jηt

(
∂Vl

∂x j +
∂V j

∂xl

)
= 0

(14)

for any i, j, k, l, t ∈ {1, 2, 3} with i , k, l , j and t , j.
If there exists i1 ∈ {1, 2, 3} such that ηi1 , 0 everywhere and ηi = 0, for any i ∈ {1, 2, 3}, i , i1, then:

∂Vi

∂xi =
∂V j

∂x j , for any i , i1, j , i1,
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∂Vi1

∂x j = −
∂V j

∂xi1
, for any j , i1

and

λ + µ(ηi1 )2 = −
∂Vi1

∂xi1
.

If there exists i2 ∈ {1, 2, 3}, i2 , i1 such that ηi2 , 0 everywhere and ηi = 0, for i , i1, i , i2, then:

∂Vi1

∂xi = −
∂Vi

∂xi1
,
∂Vi2

∂xi = −
∂Vi

∂xi2
, (ηi1 )2

(
∂Vi2

∂xi2
−
∂Vi

∂xi

)
= (ηi2 )2

(
∂Vi1

∂xi1
−
∂Vi

∂xi

)
,

2
(
∂Vi1

∂xi1
−
∂Vi2

∂xi2

)
=

(
ηi1

ηi2
−
ηi2

ηi1

) (
∂Vi1

∂xi2
+
∂Vi2

∂xi1

)
, 2

(
∂Vi1

∂xi1
−
∂Vi

∂xi

)
=
ηi1

ηi2

(
∂Vi1

∂xi2
+
∂Vi2

∂xi1

)
and 

λ = − ∂Vi1

∂xi1
+

ηi1

2ηi2

(
∂Vi1

∂xi2
+ ∂Vi2

∂xi1

)
µ = −

∂Vi1

∂xi2
+ ∂Vi2

∂xi1

2ηi1ηi2

.

We end these considerations by giving two families of examples of almost η-Ricci solitons in R3.

Example 2.8. Let 1̃ := k1dx1
⊗ dx1 + k2dx2

⊗ dx2 + dx3
⊗ dx3 with k1, k2 ∈ R be a Riemannian metric on R3. Then:

i) there exists no almost η-Ricci soliton (with η nontrivial) having the potential vector field V := ∂
∂x3 ;

ii) if k1 = k2 =: 1
c2 , c ∈ R∗+, for η := dx3 and

V1(x1, x2, x3) = c1x1 + c2x2 + h1(x3)
V2(x1, x2, x3) = −c2x1 + c1x2 + h2(x3)
V3(x1, x2, x3) = − x1

c h′1(x3) − x2

c h′2(x3) + h3(x3)

with hi : R→ R, i ∈ {1, 2, 3}, smooth functions depending only on xi, respectively, and c1, c2 ∈ R, then the data:

(V, η, λ, µ) =

 3∑
i=1

Vi ∂

∂xi , dx3,−cc1, cc1 +
x1

c
h′′1 +

x2

c
h′′2 − h′3

 (15)

define an almost η-Ricci soliton which is shrinking if c1 > 0, steady if c1 = 0 and expanding if c1 < 0.

Example 2.9. For f : I ⊂ R3
→ R one of the following functions

f (x1, x2, x3) ∈ {sin(x1 + x2 + x3), cos(x1 + x2 + x3), sinh(x1 + x2 + x3), cosh(x1 + x2 + x3), ex1+x2+x3
}

with f nowhere zero on the domain I, the almost η-Ricci soliton (V, η, λ, µ) on I with the induced metric by
1̃ := 1

f 2 dx1
⊗ dx1 + 1

f 2 dx2
⊗ dx2 + dx3

⊗ dx3, for η := dx3 and V := ∂
∂x3 , is given by

λ = −µ =
1
f

 ∂2 f
∂(x3)2 −

∂ f
∂x3 − 2

1
f
·

(
∂ f
∂x3

)2 .
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