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Abstract. The anisotropic Beltrami framework is introduced as an extended promising tool in image
processing. In this framework, image surface evolution is governed by an anisotropic flow determined by
an energy Lagrangian of Polyakov type. The Synge-Beil flow is derived, and applicative aspects illustrate
the developed theoretical results.

1. Introduction

Image evolution is one of techniques in image processing which enhance an image throughout slow
successive shifting its features. The evolution is commonly driven by a flow vector field, which impose
a geometrical viewpoint on the subject. The adequate geometrical setting is the Beltrami framework,
proposed in [24] as a valuable tool in computer vision and image processing.

An image is regarded as a two-dimensional surface embedded in appropriate (commonly Euclidean)
space of sufficiently large dimension, whose tangent vectors are pointers to neighbor pixels. Grayscale
image is modeled as a surface in 3-dimensional space, a color image is placed in a 5-dimensional one, while
multichannel images need a space whose dimension is channel number plus two.

The paper recalls in short the classical Beltrami framework and presents its anisotropic extension,
based on a directionally dependent metric structure of most general type, namely generalized Lagrangian
metrics. We further derive the illustrative particular case of Synge-Beil image evolution. Applications of
the anisotropic image evolution is discussed, with emphasis on the Synge-Beil evolution case.

2. The Beltrami framework

Theoretical foundations supporting the construction of Beltrami framework origin from differential
geometry, but they are closely related to subsurfaces [1, 2], variational calculus and PDE on manifolds [3, 5],
and harmonic maps [14, 23]. Comprehensive details can be found in [4, 16].

The Beltrami framework relies on two differentiable manifolds related by an embedding. It is uniquely
determined by a triple

(
X, (M, h), (Σ, 1)

)
, where:

• the ambient space (M, h) - an m-dimensional differentiable manifold with a Riemannian metric struc-
ture, defined by the tensor field h(x) = hi j(x)dxi

⊗ dx j, x ∈M;
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• the embedding X : D → M of a connected open domain D ⊂ Rn, (n < m), given by n smooth scalar
functions

X : (x1, . . . , xn) 7→
(
X1(x1, . . . , xn), . . . ,Xm(x1, . . . , xn)

)
; (1)

• the image surface Σ = X(D), a submanifold embedded in the ambient space M, and endowed with
the Riemannian metric 1, 1(x) = 1σµdxσ ⊗ dxµ,

and where the Greek and the Roman indices run, accordingly, within the ranges 1,n and 1,m. The Beltrami
framework uses the local intrinsic description of the manifolds M and Σ, and considers their metrics as
dynamical variables. The image metric 1 is not necessarily induced from the ambient one. The parameters
of the Beltrami framework are the embedding and the two metrics, and its unique global characteristic is
the energy of the image surface, taking the form of a Polyakov action [20]1),

S(Σ) := S(X, 1, h) =

∫
Σ

f 〈1radXi, 1radX j
〉1hi jdV =

∫
D

LΣ(xα) dx1
· · · dxn, (2)

where LΣ(xα) = f
√
1 1µνXi

µX j
ν hi j, (xα) ∈ D. (3)

where the scalar function f is the weight factor, which provides a directional impact on the desired image
enhancement (see e.g. [3, 21, 27]), and the local energy of the image is expressed by the Lagrangian density2),
L ≡ LΣ(xα). Within the Beltrami framework it is of the interest to minimize the Polyakov action, i.e., to solve
the problem ar1minΣ{S(X)}3). The standard methods of variational calculus confirm that the global and the
local energies are simultaneously minimized. The equivalent form of the problem is the Euler-Lagrange
PDE system stated in the ambient manifold4),

L,i − L,( i
α);α = 0. (4)

The integral submanifold in M corresponding to the solution cannot be generally obtained by means of
standard methods of variational calculus. In order to approach the solution submanifold, one may employ
within the initial image submanifold Σ the descent flow technique [4],

∂tX = −S′(X(t)), X(0) = X.

By taking t as an auxiliary variable, the equation is regarded as an ODE and the solution mapping X = X(x, t)
defines an one-parameter family of mappings Xt := Xt +∂tX and the corresponding family of submanifolds
Σt (called layers, in image processing). The validity of the technique is proved in [14], where the subject in
focus is the mapping X and not its underlying submanifold.

The Beltrami flow shifts the image surface to the state of minimal Polyakov action:

∂tXr = −
1
2

1
√
1

hir
(
L,i − L,( i

α);α

)
, r = 1, . . . ,m. (5)

The multiplier ensures the invariance with respect to reparametrization, hence the flow defines a global
vector field over the image surface. The geometrical properties of the Beltrami flow are discussed in [23].
The Beltrami flow supports interaction between all components of the embedding, which is extremely
important in image processing, where vector-valued features are often considered.

If the metrics h and 1 are fixed Rimannian ones, and the mapping X is an immersion, then the Beltrami
minimization is equivalent to minimization in harmonic maps theory. Namely, the Polyakov action, for the

1)For brevity, the same notation will be used for the metric tensor and its determinant: det (1µν) 1, and det (γµν) γ.
2)The standard notation for partial differentials will be further used in shortened form like, e.g., Xi

µ =: ∂Xi

∂xµ .
3)Here, the minimization with respect to the embedding is considered; for alternative approaches, see Sochen et al. [23, 24].

4)We use the brief notation: Φ;α :=
∂Φ
∂xα

Φ,i :=
∂Φ

∂Xi Φ
,( i
α)

:=
∂Φ

∂Xi
α

Φ
,( i
α);α =

∂
∂xα

(
∂Φ

∂Xi
α

)
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case of trivial weight f ≡ 1, is the energy of the mapping that is to be minimized. The extremal mappings
are characterized by the vanishing of the tension field τ(X) = (τ1(X), . . . , τm(X)),

τr(X) = 1σµXr
σµ − 1

σµΓνσµXr
ν + 1σµΓr

klX
k
σXl

µ,

where Γr
kl, Γσρθ are the Christoffel symbols of h and 1. However, the mapping can be adjusted by the tension

flow which is equal (up to a factor) with the Beltrami flow. For the Euclidean ambient metric, the tension
coincides with the Laplace-Beltrami operator of the image metric.

Particular choices of parameters in the Beltrami framework produce different Beltrami flows, and con-
sequent various enhancements of the digital image, like: smoothing, denoising, segmentation, registration,
etc. [12, 16, 17, 22, 24, 25].

Classical Beltrami flow may also depend on direction through the weight function, while the anisotropic
Beltrami flow avoids the weight and involves directional dependence of the metric structure on the image
surface.

3. The Synge-Beil metric structure

The Synge-Beil type metric is an anisotropic structure and provides the base differentiable manifold with
a generalized Lagrangian space structure. It lives on the tangent space of the base manifold as distinguished
tensor field [6, 7].

Let (Σ, 1) be a Riemannian manifold5). A vector field B ∈ χ(TΣ) compatible with reparametrizations
on the base manifold Σ (a d-tensor field) has its dual d-object a corresponding flat vector field having the
components Bσ = 1σµBµ. The deformation of the Riemannian metric by the d-vector field B and by the
scalar function c : TΣ→ R

γ(x, y) = γσµ(x, y)dxσ ⊗ dxµ, γσµ(x, y) = 1σµ(x) + c(x, y)Bσ(x, y)Bµ(x, y), (6)

is a d-tensor field called the Synge-Beil metric structure [8], widely used in theory of relativistic optics and
unified field theory [7, 11]. This is a special case of Beil metric that additively deforms a Finsler metric [6].
According to the algebra of tensors, particular properties of the Synge-Beil metric can be emphasized.

Proposition 3.1. The relation (6) defines a symmetric 2-covariant d-tensor field over the slit tangent bundle T̃Σ. If
c(x, y) ≥ 0, then the bilinear form γ(x,y)(u, v), u, v ∈ TxΣ is regular and positive definite, for all y ∈ TxΣ \ {0}.

Related geometrical objects of the Synge-Beil metric are also characterized, as follows:

Proposition 3.2. The inverse metric of (6) has the following components

γσµ = 1σµ −
c

1 + c‖B‖21
BσBµ,

where ‖B(x, y)‖21 = 1σµ(x)Bσ(x, y)Bµ(x, y), and the corresponding determinant value is:

γ =
(
1 + c‖B‖21

)
· 1.

3.1. Synge-Beil structures in the Beltrami framework

Let (X, (M, h), and (Σ, 1)) be a Beltrami framework with the Riemannian ambient metric h and the induced
image metric

1σµ = hi jXi
σX j

µ. (7)

5)Though we assume the section to be an embedded image surface, the whole construction is valid in the general case.
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Within the Beltrami framework, the simplest Synge-Beil structure on the image surface is the canonically
deformed induced metric,

γσµ(x, y) = 1σµ(x) + c(x, y)yσyµ, c(x, y) ≥ 0, y ∈ TxΣ, x ∈ Σ. (8)

The squared induced length of a vector y ∈ TxΣ is briefly denoted by V(x, y) = ‖y‖21 = 1σµ(x)yσyµ.

Corollary 3.3. The canonically deformed induced metric (8) determines a positive definite generalized Lagrangian
structure, having the following inverse metric components and the determinant value

γσµ = 1σµ + S · yσyµ, γ = K · 1,

where the scalar fields over the tangent bundle TΣ are

S(x, y) = −
c

1 + cV
, (9)

K(x, y) = 1 + cV. (10)

Similar to the isotropic case (3), the Synge-Beil metric defines an anisotropic local energy over the image
surface. The Lagrangian density is expressed by L(x, y) = f

√
γγµνXi

µX j
ν hi j, and direct computation based

on the previous Corollary produces the following result:

Proposition 3.4. The Lagrangian density in the Beltrami framework (X,M,Σ) with canonically deformed induced
metric is the scalar field over the tangent bundle TΣ given by the expression

L(x, y) = f
√

1 + c‖y‖21

n −
c‖y‖21

1 + c‖y‖21

 √1.
The Polyakov action is the function S : χ(Σ)→ R,

S(Y) =

∫
D

L(x,Y(x))dx1 . . . dxn.

4. The anisotropic image evolution

The directional dependence of the evolution of curves is developed in [13, 15, 19] for object extractions
and segmentation in image processing, while the analogous 2-dimensional problem is considered in [25–27]
for the minimization of the deformation field in image registration. Initial theoretical aspects of the subject
can be found in [9, 10, 18, 21].

The anisotropic evolution is accomplished within the anisotropic Beltrami framework (X, (M, h), (Σ, γ))
containing the embedded image surface regarded as generalized Lagrangian space. The embedding X and
the ambient metric of Riemannian type are assumed to be fixed, and only the image metric will be allowed
to vary. The anisotropic nature of the image metric γ causes a directional dependence of the Lagrangian
density (3), and further of the Polyakov action (2), and the corresponding Beltrami flow (5) further depend
on tangent vectors as well. Therefore, the weight factor (which enables a directional impact) is not needed
and hence, is omitted.

The form of the Lagrangian density L imposes the simultaneous consideration of two metrics on the
image surface: the anisotropic one, γ = γσµ(x, y) dxσ ⊗ dxµ, and the induced one 1 = 1σµ(x) dxσ ⊗ dxµ given
by (7). Without loss of generality, we may assume that the anisotropic metric can be regarded as an additive
extension of the induced one,

γσµ(x, y) = 1σµ(x) + ϕσµ(x, y),

where ϕσµ are the components of an arbitrarily chosen d-tensor field on TΣ. The induced metric is related
to the Beltrami framework, and its derivatives show its dependency on the embedding.
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Proposition 4.1. Let X be an embedding (1) into the Riemannian space (M, hi j), which produces the submanifold Σ,
and let 1σµ be the induced metric. Then the derivatives of the metric components involved in the evolution process are

1σµ;α = hkl, jX
j
αXk

σXl
µ + hklXk

σαXl
µ + hklXk

σXl
µα,

1σµ,i = hkl,iXk
σXl

µ,

1σµ,( i
α) = hilδ

α
σXl

µ + hikXk
σδ
α
µ,

1σµ,( i
α);α = hil, jX

j
σXl

µ + hki, jX
j
µXk

σ + 2hi jX
j
σµ.

The anisotropic Lagrangian density may be written in the following simple form L(x, y) = f
√
γγσµ1σµ,

which is more appropriate for further considerations.
The most general case of anisotropic Beltrami flow, also called generalized Lagrangian flow, is considered

in [10]. This represents a proper valid generalization of the classic Beltrami flow.

Theorem 4.2. The explicit form of the anisotropic Beltrami flow which minimizes the non-weighted Polyakov action
with generalized Lagrange image metric γ, is

∂tXr = τr(X) +
1
2

hir
{
1σµ;α

[
(γσµ),( i

α) + γσµ(ln
√
γ),( i

α)

]
+

1σµ

[
(γσµ),( i

α);α+(γσµ),( i
α)(ln

√
γ);α+(γσµ);α(ln

√
γ),( i

α)+γσµ
1
√
γ

(
√
γ),( i

α);α−(γσµ),i−γσµ(ln
√
γ),i

]}
,

where the tension field components τr(X) are also anisotropic, i.e., are defined by the metrics γ(x, y) and h, and by
their Christoffel symbols Γ

ρ
σµ(x, y) and Γr

kl.

The features of the chosen image metric in a particular anisotropic Beltrami framework determine the
implementation of the generalized Lagrangian flow.

To achieve image evolution of the Synge-Beil type, it is necessary to reconsider the previous Theorem
by reconsidering the form of the metric structure (8). Namely, the single terms from the flow equation
determined in Theorem 4.2 had to be considered with the induced metric and with the additional tensor
given in (8). Various types of derivatives of the inverse and of the determinant term corresponding to the
Synge-Beil image metric need to be specified by means of the following auxiliary results.

Lemma 4.3. Let γ be a metric tensor of the Synge-Beil type, with its components given by (8) on the image surface
Σ. Then, the derivatives of the corresponding inverse tensor are given by(

γσµ
)
? =

(
1σµ

)
? + S?yσyµ,

(
γσµ

)
,( i
α);α =

(
1σµ

)
,( i
α);α + S,( i

α);αyσyµ,

where ? is an unified notation for the three types of the first order partial derivatives, ∂
∂xα ,

∂
∂Xi ,

∂
∂Xi

α
.

Lemma 4.4. Let γ be a metric tensor of the Synge-Beil type with its components given by (8) on the image surface
Σ. Then, the derivatives of the term ln

√
γ are(

ln
√
γ
)
?

=
1

2γ
(
K?1 + K1?

)
,

1
√
γ

(√
γ
)
,( i
α);α

=
1

4K2

(
2KK,( i

α);α − K,( i
α)K;α

)
+

1
412

(
211,( i

α);α − 1,( i
α)1;α

)
+

1
4γ

(
K,( i

α)1;α + K;α1,( i
α)

)
,

where 1 is the determinant of the induced metric.
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Lemma 4.5. For the scalar functions K and S defined on the image surface TΣ by (10) and (9), the ?-derivatives are

K? = c?V + cV?, S? =
1

K2

(
c2V? − c?

)
and the mixed derivatives are

K,( i
α);α = c,( i

α);αV + c,( i
α)V;α + c;αV,( i

α) + cV,( i
α);α

S,( i
α);α =

1
K3

[
c3

(
V,( i

α);αV − 2V,( i
α)V;α

)
− c,( i

α);α

+ 2c,( i
α)cV;α + 2c;αcV,( i

α) + c2V,( i
α);α − V(c,( i

α);αc − 2c,( i
α)c;α)

]
.

The merging of the previous Theorem and Lemmas yields the main result of this article:

Theorem 4.6. The PDEs of the Synge-Beil evolution flow, which provide the minimality of the Polyakov energy on
the image surface Σ embedded into the Riemannian manifold (M, h) by the mapping (1), are given by

∂tXr = τr(X) +
1
2

hir
[
(1σµ),( i

α);α1σµ + (1σµ),( i
α)1σµ;α + 1σµ1σµ,i

]
+

1
2

hir

[
c

1
2γ

(
1σµ1σµ;α(V,( i

α)1 + V1,( i
α)) − n(V,i1 + V1,i)

)
+ c,( i

α)
1

2γ
V1σµ1σµ;α1

− c,i
n

2γ
V1 +

1
2γ

(
1σµ1σµ;α1,( i

α) − n1,i
)]

+
1
2

hir 1
2K21

[
c2

(
(V,( i

α)1 − V1,( i
α))1σµ;α + (V1,i − V,i1)1σµ

)
− cc,( i

α)V1σµ;α1

+ cc,iV1σµ1 − 2c,( i
α)1σµ;α1 + 2c,i1σµ1 − c1σµ;α1,( i

α) + c1σµ1,i
]

vσvµ

+
1
2

hir 1
4γ2

[
c2

(
2V

{
V;α(1σµ),( i

α) + V,( i
α)(1σµ);α

}
1σµ1

2

+2V2
{
(1σµ),( i

α)1;α + (1σµ);α1,( i
α)

}
1σµ1 + n

{
2VV,( i

α);α − V,( i
α)V;α

}
12

+nV2
{
211,( i

α);α − 1,( i
α)1;α

}
+ nV

{
V,( i

α)1;α + V;α1,( i
α)

}
1

)
+ n

(
2cc,( i

α);α − c,( i
α)c;α

)
V212 + cc,( i

α)V
(
2V(1σµ);α1σµ1 + nV;α1 + nV1;α

)
1

+cc;αV
(
2V(1σµ),( i

α)1σµ1 + nV,( i
α)1 + nV1,( i

α)

)
1 + 2nc,( i

α);αV12

+c,( i
α)
(
2V(1σµ);α1σµ1 + 2nV;α1 + nV1;α

)
1 + c;α

(
2V(1σµ),( i

α)1σµ1 + 2nV,( i
α)1 + nV1,( i

α)

)
1

+c
(
2
{
V;α1 + 2V1;α

}
(1σµ),( i

α)1σµ1 + 2
{
V,( i

α)1 + 2V1,( i
α)
}
(1σµ);α1σµ1

+2nV,( i
α);α1

2 + 2nV
{
211,( i

α);α − 1,( i
α)1;α

}
+ n

{
V,( i

α)1;α + V;α1,( i
α)
}
1

)
+2

(
(1σµ),( i

α)1;α + (1σµ);α1,( i
α)

)
1σµ1 + n

(
211,( i

α);α − 1,( i
α)1;α

)]
+

1
2

hir V
K31

[
c3

({
2VV,( i

α);α − V,( i
α)V;α

}
12
− V2

{
211,( i

α);α − 1,( i
α)1;α

}
− 2V,( i

α)V;α1
2

+ V
{
V,( i

α)1;α + V;α1,( i
α)

}
1

)
+ c2c,( i

α)V
(
V;α1 − V1;α

)
1 + c2c;αV

(
V,( i

α)1 − V1,( i
α)

)
1

−c
(
2cc,( i

α);α − c,( i
α)c;α

)
V212 + 2

(
2c,( i

α)c;α − 3cc,( i
α);α

)
V12

+c2
(
V,( i

α);α1
2 +

{
V,( i

α)1;α + V;α1,( i
α)

}
1 − 2V

{
211,( i

α);α − 1,( i
α)1;α

})
+cc,( i

α)
(
4V;α1 − 3V1;α

)
1 + cc;α

(
4V,( i

α)1 − 3V1,( i
α)

)
1 − c

(
211,( i

α);α − 1,( i
α)1;α

)
−4c,( i

α);α1
2
− 2c,( i

α)1;α1 − 2c;α1,( i
α)1

]
,

(11)
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where τ(X) is the tension of the embedding X, 1 is the induced metric tensor field, and c = c(X) is the scalar field
which defines the Synge-Beil metric.

Corollary 4.7. Within the anisotropic Beltrami framework (X,M,Σ) endowed with Synge-Beil image metric with
components γσµ(x, y) = 1σµ(x) + c · yσyµ where c = const, the image surface evolves toward the minimal Polyakov
action by means of the flow:

∂tXr =τr(X) +
1
2

hir
·

{
c

2K

[ c
K

V,( i
α)1σµ;α −

1
1
1σµ;α1,( i

α)
]
yσyµ + (1σµ),( i

α);α1σµ + 1σµ;α(1σµ),( i
α) − 1σµ(1σµ),i

+
1

21
(n −

cV
K

)
(
1,( i

α);α − 1,i

)
−

1
412 (n −

cV
K

)1,( i
α)1;α +

1
21
1σµ(1σµ),( i

α)1;α +
c

4K1
(n +

cV
K

)
(
V,( i

α)1;α + V;α1,( i
α)
)

+
c

2K
1σµ(1σµ),( i

α)V;α −
c

2K
(n −

cV
K

)V,i +
c

2K
(n +

cV
K

)V,( i
α);α −

c2

4K2 (n +
3cV
K

)V,( i
α)V;α

}
.

5. Anisotropic Beltrami framework in image processing

Within the Beltrami framework, a digital image is commonly modeled as 2-dimensional surface deter-
mined by an embedding X : (x1, x2)→ (x1, x2, I(x1, x2)). The mapping I usually stands for an image feature,
and can be vector valued.

In the case of monochrome digital images, this function is a scalar one, and the surface is of Monge
type. The surface evolves within a Beltrami framework, while the flow has only one nonzero component,
∂tI := ∂tX3. Within a 3-dimensional Euclidean ambient space having the metric (hi j) = Dia1(1, 1, β2), the
canonically deformed metric induced on the embedded surface has the following components

(γσµ(x, y)) =

 1 + β2I2
x1 β2Ix1 Ix2

β2Ix1 Ix2 1 + β2I2
x2

 + c ·
(

(y1)2 y1y2

y1y2 (y2)2

)
. (12)

The evolution of the image surface relies on Theorem 4.6 and on Corollary 4.7, and the following derivatives
are essential in the implementation process:

Corollary 5.1. Within the Beltrami framework, the induced metric tensor on the Monge surface has the following
nontrivial derivatives

1σµ;α = β2IσαIµ + β2IσIµα
1σµ,(3

α) = β2δασIµ + β2Iσδαµ

1σµ,(3
α);α = 2β2Iσµ.

Corollary 5.2. The induced 1-quadratic form is

V = (y1)2 + (y2)2 + β2
(
I2
x1 (y1)2 + 2Ix1 Ix2 y1y2 + I2

x2 (y2)2
)
.

and the corresponding derivatives are

V,i = 0,

V;α = 2β2
(
Ix1 Ix1xα (y1)2 + (Ix1xα Ix2 + Ix1 Ix2xα )y1y2 + Ix2 Ix2xα (y2)2

)
,

V,(3
1) = 2β2

(
Ix1 (y1)2 + Ix2 y1y2

)
,

V,(3
2) = 2β2

(
Ix1 y1y2 + Ix2 (y2)2

)
,

V,(3
α);α = 2β2

(
Ix1x1 (y1)2 + 2Ix1x2 y1y2 + Ix2x2 (y2)2

)
.
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The implementation of the Beltrami framework in image processing is enabled through the discretization
of the image surface and of the Beltrami flow. The discretization is induced by the discretization of the
domain, hence a monochrome digital image is presented as an image matrix Σ =

(
I(i, j)

)
, where i and j are

nonnegative integers. The elements I(i, j) are in correspondence with the locations of the pixels of the image
(i, j) = (x1, x2) =: x, and their values I(i, j) ∈ {0, 1, . . . , 255} represent the level of their grey color intensity.
The matrix dimensions are determined by the image resolution. The tangent vectors in the model point to
the neighboring pixels, and the partial derivatives of the feature I are determined by

Ix1 (i, j) = I(i + 1, j) − I(i, j), Ix2 (i, j) = I(i, j + 1) − I(i, j),
Ix1x1 (i, j) = I(i + 2, j) + I(i, j) − 2I(i + 1, j), Ix2x2 (i, j) = I(i, j + 2) + I(i, j) − 2I(i, j + 1).
Ix1x2 (i, j) = I(i + 1, j + 1) + I(i, j) − I(i + 1, j) − I(i, j + 1).

The gradient vector is discretized by the shift tangent vector computed as max-abs of the shifts towards the
pixels of the eight nearest neighbors of the current pixel. The image surface I(x1, x2) evolves as a geometric
active surface by the successive shifting of the image feature

I(i, j) I(i, j) + 4I(i, j),

where 4I(i, j) discretizes the Beltrami flow ∂tI. For details on the discretization within the frame of the level
set formulation we mainly refer to [4].

The Beltrami-induced evolution of the image Σ =
(
I(i, j)

)
is achieved by successive shifting, where each

iteration implies the following steps:

1. raster-sequentially passing through all pixels (i, j);

2. determining the shift tangent vector y(i, j);

3. applying the flow expression to obtain the feature variation 4I(i, j);

4. altering the feature value to I I + 4I.

The main difference in the implementation of both classic and anisotropic Beltrami evolution deals with
the steps 2 and 3. Namely, in the classic case, a shift tangent vector is fixed, commonly the gradient
one, and substituted into the flow expression to obtain the shift 4I. The anisotropic evolution enables to
interchange the order of steps. The flow expression produces eight shifting values at each pixel, which
allow extra shifting alternatives. The feature value at the pixel may be further modified by a particular one,
afterwards by additional task criterions. This processing is more sensitive than the classic one, but also it is
substantially slower, and requires higher computing performance.

An appropriate embedding, ambient space, and image metric, are chosen according to the purpose of
the processing. A comprehensive overview of Beltrami frameworks can be found in [3, 4].

The further works on the subject will extend the study of the Beltrami flow applications for specific
direction-dependent anisotropic metric structures.

Acknowledgement. The authors express their gratitude to the anonymous referees for the valuable
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