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Abstract. We investigate equitorsion holomorphically projective mappings of generalized m-parabolic
Kähler manifolds and provide some necessary and sufficient conditions for the existence of these mappings
in form of linear PDE-systems. Also, we find an invariant geometric object with respect to a holomorphi-
cally projective mapping of generalized m-parabolic Kähler manifolds which is analogous to the Thomas
projective parameter.

1. Introduction and preliminaries

Many results on holomorphically projective (HP) mappings of parabolically-Kählerian spaces were
obtained by J. Mikeš, M. Shiha, P. Peška, H. Chuda [1, 5–9, 16, 22–25]. These results and many other related
results are included in two excellent monographs [6, 8]. In this paper we consider manifolds endowed
with a non-symmetric metric and a non-symmetric linear connection. Importance of investigation of these
manifolds comes from non-symmetric gravitational theory [2–4, 15]. Geometric aspects of manifolds with
non-symmetric linear connection were thoroughly studied by M. Prvanović and S.M. Minčć [10–14, 21, 26].
Further, generalized elliptic, hyperbolic and parabolic Kählerian spaces were developed in [14, 17–20, 26].
Recently, generalized m-parabolic Kähler manifolds were defined in [18]. We will transform necessary
and sufficient conditions for the existence of equitorsion HP mappings of generalized m-parabolic Kähler
manifolds from the paper [18] into linear PDE-systems.

Definition 1.1. [18] A generalized Riemannian manifold (M, 1) of even dimension n (n > 2) is said to be a gener-
alized m-parabolic Kähler manifold if there exists a tensor field F on M of type (1, 1) such that rank(F) = m ≤ n

2
and the following conditions hold

F2 =0,
1(X,FX) =0,

∇F =0,
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where∇ denotes the Levi-Civita connection corresponding to the symmetric part 1 of the metric 1 and X is an arbitrary
tangent vector field on M. In the case when rank(F) = m = n

2 the manifold (M, 1) is called a generalized parabolic
Kähler manifold.

2. Equitorsion HP mappings of generalized m-parabolic Kähler manifolds

A diffeomorphism f : M → M of generalized m-parabolic Kähler manifolds (M, 1,F) and (M, 1,F) is
said to be an equitorsion HP mapping if it preserves holomorphically planar curves and the torsion tensor
[18, 20, 26]. In this section we give necessary and sufficient conditions for the existence of an equitorsion
HP mapping in terms of the symmetric part 1 of the metric 1 and the covariant derivatives of the first and
second kind with respect to (w.r.t.) the metric 1.

Proposition 2.1. A necessary and sufficient condition for the existence of an equitorsion HP mapping f : M → M
of generalized m-parabolic Kähler manifolds M and M is given by

P
1
(X,Y) = ψ(X)Y + ψ(Y)X + ϕ(X)FY + ϕ(Y)FX,

where ϕ is a linear form, ψ is a gradient-like form such that ψ(X) = ϕ(FX).

Corollary 2.1. A generalized m-parabolic Kähler manifold M with a metric 1 admits an equitorsion HP mapping
onto a generalized m-parabolic Kähler manifold M with a metric 1 if and only if

(∇
µ

Z1)(X,Y) =2ψ(Z)1(X,Y) + ψ(X)1(Y,Z) + ϕ(X)1(Y,FZ)

+ ψ(Y)1(X,Z) + ϕ(Y)1(X,FZ),
(1)

where µ ∈ {1, 2}, 1 denotes the symmetric part of the metric 1, ϕ is a linear form, ψ is a gradient-like form such that
ψ(X) = ϕ(FX).

Remark 2.1. The condition (1) is equivalent with the condition [8]

(∇Z1)(X,Y) =2ψ(Z)1(X,Y) + ψ(X)1(Y,Z) + ϕ(X)1(Y,FZ)

+ ψ(Y)1(X,Z) + ϕ(Y)1(X,FZ),

where ∇ is the symmetric part of the non-symmetric linear connections ∇
µ

, µ ∈ {1, 2}.

2.1. Linear PDE-systems for the existence of an equitorsion HP mapping of generalized m-parabolic Kähler spaces
Following the idea of M. Shiha and J. Mikeš [23] we transform the non-linear systems (1) into linear

PDE-systems in covariant derivatives of the first and second kind.

Theorem 2.1. A necessary and sufficient condition for the existence of an equitorsion HP mapping f : M → M of
generalized m-parabolic Kähler manifolds M and M is given by

(∇
µ

Za)(X,Y) =λ(X)1(Y,Z) + λ(Y)1(X,Z)

+ θ(X)1(FY,Z) + θ(Y)1(FX,Z), µ ∈ {1, 2},
(2)

or in local form

∇
µ

kai j =λi1 jk + λ j1ik + θi1pkFp
j + θ j1pkFp

i , µ ∈ {1, 2},

where

ai j = e2ψ1
pq
1pi1qj, λi = θpFp

i , θi = −e2ψ1
pq
1qiϕp.
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Remark 2.2. The condition (2) is equivalent with the condition [8]

(∇Za)(X,Y) =2ψ(Z)1(X,Y) + ψ(X)1(Y,Z) + ϕ(X)1(Y,FZ)

+ ψ(Y)1(X,Z) + ϕ(Y)1(X,FZ),

which in local coordinates reads

∇kai j =λi1 jk + λ j1ik + θi1pkFp
j + θ j1pkFp

i ,

where

ai j = e2ψ1
pq
1pi1qj, λi = θpFp

i , θi = −e2ψ1
pq
1qiϕp.

Here ∇ denotes the symmetric part of the non-symmetric linear connections ∇
µ

, µ ∈ {1, 2}.

2.2. Relations between curvature tensors with respect to an equitorsion HP mapping
On generalized parabolic Kähler manifolds one can define five linearly independent curvature tensors

[13]:

R
µ

(X,Y)Z =∇
µ

X∇
µ

YZ − ∇
µ

Y∇
µ

XZ − ∇
µ

[X,Y]Z, µ = 1, 2,

R
3

(X,Y)Z =∇
2

X∇
1

YZ − ∇
1

Y∇
2

XZ + ∇
2
∇
1

YXZ − ∇
1
∇
2

XYZ,

R
4

(X,Y)Z =∇
2

X∇
1

YZ − ∇
1

Y∇
2

XZ + ∇
2
∇
2

YXZ − ∇
1
∇
1

XYZ,

R
5

(X,Y)Z =
1
2

(
∇
1

X∇
1

YZ − ∇
2

Y∇
1

XZ + ∇
2

X∇
2

YZ − ∇
1

Y∇
2

XZ

+ ∇
1

[Y,X]Z + ∇
2

[Y,X]Z
)
.

Corollary 2.2. Let f : M → M be an equitorsion HP mapping and let R
ν

and R
ν

are ν-kind (ν = 1, . . . , 5) curvature

tensors of the generalized m-parabolic Kähler manifolds M and M, respectively. Then the following relations are valid

R
1

(X,Y)Z =R
1

(X,Y)Z − ψ(Z,Y)X + ψ(Z,X)Y − ϕ(Z,Y)FX

+ ϕ(Z,X)FY +
(
ϕ(Y,X) − ϕ(X,Y)

)
FZ,

R
2

(X,Y)Z =R
2

(X,Y)Z − ψ(Z,Y)X + ψ(Z,X)Y − ϕ(Z,Y)FX

+ ϕ(Z,X)FY +
(
ϕ(Y,X) − ϕ(X,Y)

)
FZ,

R
3

(X,Y)Z =R
3

(X,Y)Z − ψ(Z,Y)X + ψ(Z,X)Y − ϕ(Z,Y)FX

+ ϕ(Z,X)FY +
(
ϕ(Y,X) − ϕ(X,Y)

)
FZ,

R
4

(X,Y)Z =R
4

(X,Y)Z − ψ(Z,Y)X + ψ(Z,X)Y − ϕ(Z,Y)FX

+ ϕ(Z,X)FY +
(
ϕ(Y,X) − ϕ(X,Y)

)
FZ,

R
5

(X,Y)Z =R
5

(X,Y)Z − ψ(Z,Y)X + ψ(Z,X)Y − ϕ(Z,Y)FX

+ ϕ(Z,X)FY +
(
ϕ(Y,X) − ϕ(X,Y)

)
FZ,

where ϕ(X,Y) is defined by

ϕ(X,Y) =∇Yϕ(X) − ψ(X)ϕ(Y) − ϕ(X)ψ(Y),

and ψ(X,Y) is defined by

ψ(X,Y) = ϕ(FX,Y) = ∇Yψ(X) − ψ(X)ψ(Y).
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3. An invariant geometric object of HP mappings of generalized m-parabolic Kähler manifolds

A necessary and sufficient condition for the existence of a HP mapping f : M→M between generalized
m-parabolic Kähler manifolds M and M is given by [18]

Γh
ij = Γh

ij + ψ(iδ
h
j) + ϕ(iFh

j) + ξh
ij, (3)

where ϕi is a covector, ψi = ϕpFp
i , and ψi is a gradient, i.e., there exists a function ψ such that ψi =

∂ψ
∂xi , and

ξh
ij is an anti-symmetric tensor field of type (1, 2) determined by

ξh
ij =

1
2

(
T
1

h
ij − T

1

h
ij

)
.

It is not difficult to prove
(
see for instance equation (3.16) in [17]

)
ξp

ip =
1
2

(
T
1

p
ip − T

1

p
ip

)
= 0.

Now, by contracting relation (3) on the indices h and j one obtains

ψi =
1

n + 2

(
Γ

p
ip − Γ

p
ip

)
, (4)

and by applying the Voss-Weyl formula in the last relation we get

ψi =
∂ψ

∂xi ,

where the function ψ is defined by

ψ :=
1

2(n + 2)
ln

(det 1

det 1

)
.

Substituting (4) into (3) we get

G
h
ij = Gh

ij + ϕ(iFh
j) + ξh

ij, (5)

where

Gh
ij = Γh

ij −
1

n + 2
Γ

p
jpδ

h
i −

1
n + 2

Γ
p
ipδ

h
j ,

and G
h
ij is defined in the same manner in the space (M, 1,F).

Let us suppose that there exists the bivector εiηh which satisfies

Fp
qε

qηp = 1, (6)

and

ξp
qjε

qηp = 0. (7)

This bivector is independent of HP mappings of generalized m-parabolic Kähler spaces (M, 1,F) and (M, 1,F),
see [9].
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By contracting (5) with εiε jηh we get

ϕpε
p =

1
2

(
G

p
qrε

qεrηp − Gp
qrε

qεrηp

)
and contracting (5) with ε jηh we obtain

ϕi = G
p
iqε

qηp −
1
2

G
p
qrε

qεrηpFs
iηs −

(
Gp

iqε
qηp −

1
2

Gp
qrε

qεrηpFs
iηs

)
. (8)

Plugging (8) into (5) we get

T
h
ij = T h

ij ,

where the geometric object T h
ij is defined by

T
h
ij = Γh

ij −
1

n + 2
Γ

p
jpδ

h
i −

1
n + 2

Γ
p
ipδ

h
j

−

(
Gp

jqε
qηp −

1
2

Gp
qrε

qεrηpFs
jηs

)
Fh

i

−

(
Gp

jqε
qηp −

1
2

Gp
qrε

qεrηpFs
jηs

)
Fh

j

(9)

and the geometric object T
h
ij is defined in the same manner in the space (M, 1,F). Thus we can state the

result which is similar to the main result from [9].

Theorem 3.1. Let (M, 1,F) and (M, 1,F) be generalized m-parabolic Kähler spaces of dimension n > 2 and f : M→
M be a HP mapping. If there exists a bivector εiηh which satisfies (6) and (7), then the geometric objectT h

ij determined
by (9) is invariant w.r.t. the mapping f .

As a direct consequence of Theorem 3.1 we have obtained the same result for an equitorsion HP mapping
between two generalized m-parabolic Kähler spaces.

Corollary 3.1. Let (M, 1,F) and (M, 1,F) be generalized m-parabolic Kähler spaces of dimension n > 2 and f : M→
M be an equitorsion HP mapping. If there exists a bivector εiηh which satisfies condition (6), then the geometric object
T

h
ij determined by (9) is invariant w.r.t. the mapping f .

Proof. In the case of an equitorsion HP mapping f : M → M of generalized m-parabolic Kähler spaces
(M, 1,F) and (M, 1,F) the anti-symmetric tensor ξh

ij from the basic equations (3) identically vanishes, so the
condition (7) is fulfilled and consequently the proof directly follows from Theorem 3.1.

Remark 3.1. We should note that in (9) generalized Christoffel symbols appeared, so the geometric object T h
ij given

by (9) is more general than the corresponding geometric object that was found in [9].
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[6] J. Mikeš et al., Differential geometry of special mappings, Univ. Press, Olomouc, 2015.
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[8] J. Mikeš, A. Vanžurová, I. Hinterleitner, Geodesic Mappings and Some Generalizations, Palacky University, Faculty of

Science, Olomouc, 2009.
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