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Abstract. After a brief review of the different types of quaternions, we develop a new perspective for dual
quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-
isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions.
Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via
these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use
these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.

1. Introduction

Quaternions were discovered by William R. Hamilton in 1843. In his works, he wanted to generalize
complex numbers to use geometric optics. Quaternions are the expansion of complex numbers and they are
used in many fields of science, computing and physical problems [1]. The approaches at the formulation
of physical laws by means of quaternions and octonions, also have a deep mathematical meaning in the
generalized Frobenius theorem [2]. This theorem shows that real numbers, complex numbers, quaternions
and octonions have an extraordinary position within the algebras because every real alternative algebra
with division is isomorphic to one of these number systems. It is obvious that the particular field of
applicability of real quaternions is Euclidean 4-space. Therefore, quaternions were used in theoretical
physics for the creation of special relativity with units; space and time, forming a 4-dimensional space-time.
Since a quaternion has four components, all of the components of a 4-vector can be included in it, [3].

There are some kinds of quaternions. One of them is called Minkowski quaternion. The difficulty with
Minkowski quaternions is that they do not form an algebraic ring, this means that the product of two
Minkowski quaternions is not always a Minkowski quaternion [4].

An important extension of Hamiltonian quaternions is the so-called binary(hyperbolic) quaternions. We
can see in studies that the different types of quaternions are suitable algebraic instruments for expressing
important space-time transformation as well as description of the classical and quantum fields [5]. As it
has been shown in [6] the general Lorenz space-time transformation can be expressed in terms of binary
quaternions.

Another important extension of Hamiltonian quaternions is the dual quaternions. Galilean transforma-
tions can be expressed in terms of dual quaternions, [7, 8]. Moreover, in terms of dual quaternions, this
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transformation gets an elegant, economical and compact form, showing its underlying algebraic proper-
ties. Additionally, this formulation of Galilean transformation by means of dual quaternions shows that
the linkage between space and time exists also in the Newtonian physics. In many studies, [7–9], a general
dual quaternion has the form

q = a0 + a1i + a2 j + a3k, ai ∈ R

where i, j and k are the dual quaternion units with i2 = j2 = k2 = i jk = 0.
If the literature is examined, it is seen that there is another quaternion which is called dual quaternion

again. This kind of quaternion was introduced by E.Study, [10]. This kind of dual quaternions form a
frequently used tool for the description of Euclidean kinematics in three dimensions, see [11–13] or [14].
In these studies, dual quaternions are defined as ”Quaternions with dual number entries”. Furthermore, a
general dual quaternion has the form

q = a0 + a1i + a2 j + a3k, ai ∈ D

where i, j and k are the quaternion units and D = { a + εb | a, b ∈ R, ε2 = 0} is the set of dual numbers.
Multiplication is defined with the relations for quaternion. Moreover, the dual unit ε commutes with the
quaternion units εi = iε, ε j = jε, εk = kε. Dual quaternions form an eight-dimensional vector space over
the real numbers. The basis elements are 1, i, j, k, ε, εi, ε j, εk, for more information see [15].

The concept of curves theory is also described in the real quaternion space by the help of Frenet elements
of pure real quaternionic curves. Baharathi and Nagaraj represented the curves by unit quaternions in E3

and E4 and called these curves quaternionic curves [16]. However, we could not define the Frenet elements
of the dual quaternionic curves with the current dual quaternion concept. By our new definitions, we will
obtain the identification capability of dual quaternionic curves using Frenet elements of pure quaternionic
curves.

In this paper, we will investigate dual quaternions and dual quaternionic curves. Firstly in section 2, we
will mention isomorphism between spaces and the types of quaternions. After that, in section 3, we will
define isotropic dual quaternions and non-isotropic dual quaternions. Moreover, we will examine some
properties of dual quaternions. Finally, in section 4 and 5, we define isotropic dual quaternionic curve and
non-isotropic dual quaternionic curve. Then, we will find Serret-Frenet formulae of these curves.

2. Preliminaries

Let’s start with examining R4,R4
1 and G4 which are real space, Minkowski space and Galilean space,

respectively. When these spaces are examined, it is seen that R4
1 and G4 are actually the similar spaces

with R4. These are the same point sets according to the sum of two ordered 4-tuple and a multiplication
of an ordered 4-tuple with a scalar. However, in vector space R4, for vectors −→x = (x0, x1, x2, x3) and
−→y =

(
y0, y1, y2, y3

)
;

i) If the Euclidean inner product
〈
−→x ,−→y

〉
=

∑3
i=0 xiyi is defined in R4, this space is called the Euclidean

space.
ii) If the Minkowski inner product

〈
−→x ,−→y

〉
M

=
∑2

i=0 xiyi − x3y3 is defined in R4, this space is called the
Minkowski space.

iii) If the Galilean inner product〈
−→x ,−→y

〉
G

=

{
x0y0 , x0 , 0 or y0 , 0

x1y1 + x2y2 + x3y3 , x0 = 0 and y0 = 0

is defined in R4, this space is called the Galilean space [17]. In Galilean space, the vectors are examined
in two groups according to whether their first components are zero or not. If the first component of any
vector is zero, that is x0 = 0 , then this vector is called isotropic vector, otherwise, if it is not zero, this vector
is called non-isotropic vector. If one of the vectors is non-isotropic and the other is isotropic, the first inner
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product is used. However, if the two vectors are isotropic vectors in the same way, these two vectors need
to use the same metric because the space G4 falls into the space R3, which is the subvector space. Thus, the
second inner product is used instead of the first, [17].

When the literature is examined, quaternions which are isomorphic to space R4 are real quaternions.
Real quaternions are shown as q = a0 + a1i + a2 j + a3k, where 1, i, j and k denote the elements of the standard
basis of R4 and ai ∈ R . These quaternions are defined by the following relations:

i2 = j2 = k2 = i jk = −1. (1)

Furthermore, when we think the set of pure real quaternions, it will be seen that pure real quaternion
space is isomorphic to R3 space. Hence, equations (1) also apply to the product of two pure quaternions,
[1]. When space R4

1 is examined, it is seen that this space is isomorphic to split quaternions space. Split
quaternions are defined by the following relationships:

i2 = j2 = −1, k2 = 1, i jk = 1. (2)

In this space, the set of pure split quaternions are isomorph to space R3
1 . Thus, when we deal with pure

split quaternions, we again apply the relations in (2), [18]. However, when we investigate quaternions that
are isomorphic to space G4, the quaternions that appear in papers [3, 7–9] are dual quaternions. The set of
dual quaternions is denoted byHD and is defined by the following relations:

i2 = j2 = k2 = i jk = 0. (3)

However, it can not be deduced that the set of dual quaternions is given by these relations is fully
isomorphic to space G4. Because in this space there is no equivalent of pure dual quaternions according to
(3). In order for the dual quaternion space to be isomorphic to the spaceG4, a multiplication operation must
be defined for pure dual quaternions. In this article, this deficiency in the literature will be eliminated.

In examining dual quaternions in our paper, we will use the e0 = 1, e1, e2, e3 symbols instead of the 1, i, j, k
symbols. Furthermore, when pure dual quaternions are examined, it is seen that pure dual quaternions
correspond to space R3 which is the subspace of G4. Hence, metric in space R3 should be used when
processing in pure dual quaternions. Also, the elements of pure dual quaternions should provide the
following relations:

e2
1 = e2

2 = e2
3 = e1e2e3 = −1 (4)

Therefore, by expanding the concept of dual quaternions in the literature, with the equation (4) we will
examine dual quaternions in two parts as isotropic and non-isotropic dual quaternions according to whether
the first components are zero or not. So, after our definition of dual quaternions, it will be discussed that
dual quaternionic space will be isomorphic to G4.

We can show the spaces, corresponding quaternions and their multiplication rules in the current litera-
ture with the following table:

Spaces Corresponding Quaternions Multiplication Rules References
Euclidean Space, R4 Real Quaternions i2 = j2 = k2 = i jk = −1 1, 2

Minkowski Space, R4
1 Split Quaternions i2 = j2 = −1, k2 = 1, i jk = 1 4, 6, 18

Galilean Space, G4 Dual Quaternions i2 = j2 = k2 = i jk = 0 3, 7, 8

3. Dual Quaternions

In the literature, there are many articles about Dual quaternions. Some basic information and properties
can be found in [3, 7–9]. But, in this section, we will define dual quaternions with a new perspective inspired
by Galilean geometry.

A dual quaternion is written in the form q = a0e0 + a1e1 + a2e2 + a3e3 where a0, a1, a2, a3 are real numbers
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and e0 = 1, e1, e2, e3 are dual quaternion units. Also, dual quaternions can be written in form q = Sq + Vq,
where Sq = a0 denotes the scalar part of q and Vq = a1e1 + a2e2 + a3e3 denotes vector part of q. If a0 = 0,
then q is called isotropic dual quaternion. If a0 , 0, then q is called non-isotropic dual quaternion. Dual
quaternion units e1, e2, e3 satisfy the following multiplication rules:

(i) if q is a non-isotropic dual quaternion, that is a0 , 0, then

e2
1 = e2

2 = e2
3 = e1e2e3 = 0

where e2
1 = e1 × e1 = e1e1, here ” × ” denotes that the product of two non-isotropic dual quaternion.

(ii) if q is an isotropic dual quaternion, that is a0 = 0, then

e2
1 = e2

2 = e2
3 = e1e2e3 = −1

where e2
1 = e1 ×δ e1 = e1e1, here ” ×δ ” denotes that the product of two isotropic dual quaternion.

The set of non-isotropic dual quaternions and isotropic dual quaternions are shown withHD andHp
D

respectively. Moreover, these spaces are called non-isotropic dual quaternionic space and isotropic dual
quaternionic space. Additionally, the set of isotropic dual quaternionic space is the subspace of non-
isotropic dual quaternionic space and it is clear that isotropic dual quaternionic spaceHp

D
is isomorphic to

R3.
The sum of two dual quaternions is also a dual quaternion. This sum is the usual componentwise sum.

The sum of two dual quaternions can be defined as follows,
⊕ :HD ×HD →HD(

q, p
)
→ q ⊕ p =

(
Sq + Vq

)
⊕

(
Sp + Vp

)
= Sq + Sp + Vq + Vp = Sq+p + Vq+p

It is easy to show (HD,⊕) is an Abelian group with identity element.

Definition 3.1. Multiplication with a scalar of a dual quaternion is defined as follows,
� : R ×HD →HD(

λ, q
)
→ λ � q = λ �

(
Sq + Vq

)
= λSq + λVq

this operation implies the following statements

(i) λ �
(
q + p

)
=

(
λ � q

)
⊕

(
λ � p

)
,

(ii) (λ1 + λ2) � q =
(
λ1 � q

)
⊕

(
λ2 � q

)
,

(iii) (λ1.λ2) � q = λ1 �
(
λ2 � q

)
,

(iv) 1 � q = q.

Thus, (HD,⊕,�) is a vector space over the real number field. Moreover, we get dimHD = 4 and HD =
Sp {1, e1, e2, e3}.

Definition 3.2. Quaternion product over dual quaternions is defined as follows; Let q = a0 + a1e1 + a2e2 + a3e3 and
p = b0 + b1e1 + b2e2 + b3e3 be two dual quaternions. Then

if a0 , 0 or b0 , 0 , that is q or p is non-isotropic dual quaternion, then the quaternion product of them is

q × p = (a0 + a1e1 + a2e2 + a3e3) × (b0 + b1e1 + b2e2 + b3e3)
= SqSp + SqVp + SpVq.

if a0 = 0 and b0 = 0 , that is q and p are isotropic dual quaternion, then the special quaternion product of them is

q ×δ p = (a1e1 + a2e2 + a3e3) ×δ (b1e1 + b2e2 + b3e3)
= − < Vq,Vp > +Vq ∧ Vp.

where <,> and ∧ denote the inner product and vector product in Euclidean 3-space, respectively. Additionally note
that, if q and p are isotropic dual quaternion, then their quaternion product is q × p = 0.
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Definition 3.3. Let q = Sq + Vq ∈HD. Conjugate of a dual quaternion is defined as q = Sq − Vq ∈HD.

Other properties of dual quaternions can be shown as follows:

(i) Let q = a0 + a1e1 + a2e2 + a3e3 be any non-isotropic dual quaternion. The following equation implies

q × q = q × q = S2
q − SqVq + SqVq

= S2
q = a2

0 .

Beside, if q = a1e1 + a2e2 + a3e3 is any isotropic dual quaternion, then the equation

q ×δ q = q ×δ q = − < Vq,−Vq > +Vq ∧ −Vq

= < Vq,Vq >= a2
1 + a2

2 + a2
3.

implies. From the last equation, we obtain q ×δ q ≥ 0 and if q ×δ q = 0 then q = 0.

(ii) Let q = Sq +Vq and p = Sp +Vp be two dual quaternion. Then, even if q and p are isotropic or non-isotropic

q + p = q + p , q = q , λq = λq

equalities are always hold, where λ ∈ R.

(iii) Let q = Sq + Vq and p = Sp + Vp be two dual quaternions. If q and p are non-isotropic dual quaternion,

then q × p = q × p and Sq =
q+q

2 ,Vq =
q−q

2 . In addition to this, if q = Sq then q = q and if q = Vq then q = −q.
On the other hand, if they are isotropic dual quaternion, then q ×δ p , q ×δ p.

Definition 3.4. The norm of a non-isotropic dual quaternion is defined by∥∥∥q
∥∥∥ =

√
q × q =

√
q × q =

√
a2

0 = |a0| .

On the other hand, if q is isotropic dual quaternion, the norm of q is defined by∥∥∥q
∥∥∥
δ

=
√

q ×δ q =
√

q ×δ q =
√

a2
1 + a2

2 + a2
3.

If
∥∥∥q

∥∥∥ = 1, then q is called unit non-isotropic dual quaternion. For any non-isotropic dual quaternion or
isotropic dual quaternion, the following properties of norm operations hold:

(i)
∥∥∥q × p

∥∥∥ =
∥∥∥q

∥∥∥ ∥∥∥p
∥∥∥ =

∥∥∥p × q
∥∥∥ ,

(ii)
∥∥∥q + p

∥∥∥ ≤ ∥∥∥q
∥∥∥ +

∥∥∥p
∥∥∥ ,

(iii)
∥∥∥q

∥∥∥2
+

∥∥∥p
∥∥∥2

= 1
2

(∥∥∥q + p
∥∥∥2

+
∥∥∥q − p

∥∥∥2
)
,

(iv)
∥∥∥q

∥∥∥ =
∥∥∥q

∥∥∥ .
In addition to this equalities, if q is an isotropic dual quaternion then

∥∥∥q
∥∥∥ = 0 holds only q = 0.

The set of non-isotropic dual quaternion is a commutative ring under the non-isotropic dual quaternion
multiplication and also it is 4-dimensional vector space on R and its basis is {1, e1, e2, e3} . The interesting
property of dual quaternions is that by their means one can express the Galilean transformation in one dual
quaternion equation. Because of the multiplication and ratio of two non-isotropic dual quaternions are also
a non-isotropic dual quaternion, the set of non-isotropic dual quaternions form a division algebra under
addition and multiplication. On the other hand, the set of isotropic dual quaternions is a 3-dimensional
vector space over R and its basis is the set {e1, e2, e3}. Moreover, the set of isotropic dual quaternions are
isomorphic with R3.
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Definition 3.5. Let q = a0 + a1e1 + a2e2 + a3e3 be a non-isotropic dual quaternion. The inverse of q is defined as

q−1 =
q∥∥∥q
∥∥∥2 =

a0 − a1e1 − a2e2 − a3e3

a2
0

.

On the other hand, let q = a1e1 + a2e2 + a3e3 be isotropic dual quaternion, the inverse of q is defined as

q−1 =
q∥∥∥q
∥∥∥2 =

−a1e1 − a2e2 − a3e3

a2
1 + a2

2 + a2
3

.

For any dual quaternion q, inverse operation holds following properties,

(i)
∥∥∥q−1

∥∥∥ =
∥∥∥q

∥∥∥−1
,

(ii) q × q−1 = q ×
(∥∥∥q

∥∥∥−2
q
)

=
∥∥∥q

∥∥∥−2 (
q × q

)
=

∥∥∥q
∥∥∥−2 ∥∥∥q

∥∥∥2
= 1 = q−1

× q.

Definition 3.6. The inner product of non-isotropic dual quaternions is defined as follows

<,>: HD ×HD → R

< q, p > =
1
2
(
q × p + p × q

)
.

4. Isotropic Dual Quaternionic Curves

In this section, firstly Serret-Frenet formulae will be given for isotropic dual quaternionic curves. Here, it
will be considered that the isotropic dual quaternion space is isomorphic with the 3-dimensional Euclidean
space. Then we will obtain the Serret-Frenet formulae for non-isotropic dual quaternionic curves using the
equations we have for isotropic dual quaternions.

Definition 4.1. The set of isotropic dual quaternionic curves is defined with the space of
{
γ ∈Hp

D
, γ + γ = 0

}
.

Let I = [0, 1] denote the unit interval of the real line and s ∈ I be the parameter along the smooth curve

γ : I ⊂ R→H
p
D

s → γ (s) =

3∑
i=1

γi (s) ei

is called an isotropic dual quaternionic curve.

Definition 4.2. If an isotropic dual quaternionic curve provides the following equation, it is called the unit speed
isotropic dual quaternionic curve∥∥∥γ′ (s)

∥∥∥2
=

〈
γ
′

(s), γ
′

(s)
〉

=
1
2

[γ
′

(s) ×δ γ
′ (s) + γ

′

(s) ×δ γ
′ (s)] = γ

′

(s) ×δ γ
′ (s) = 1.

Definition 4.3. The tangent vector of any unit speed isotropic dual quaternionic curve is defined as

t(s) = γ
′

(s) =

3∑
i=1

γ
′

i (s) ei.

This tangent vector has unit length, ‖t(s)‖ = 1, for all s. This unitary condition implies:

t
′

×δ t + t ×δ t′ = 0 (5)

Equation (5) implies the following, that’s why it is interesting:
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(i) t′ is orthogonal to t and

(ii) t′ ×δ t is an isotropic dual quaternion.

Because t′ is itself an isotropic dual quaternion, we define the isotropic dual quaternion n1 by n1 = t′

‖t′‖
.

Then the property above (i) implies: n1 is orthogonal to t. Moreover, property above (ii) implies that there
is a unit isotropic dual quaternion n2 such that

n2 = t ×δ n1 = − 〈t,n1〉 + t ∧ n1 = −n1 ×δ t. (6)

Furthermore, it implies t×δ n2 = −n1 = −n2×δ t and n2×δ n1 = −t = −n1×δ n2. Thus t,n1and n2 are mutually
orthogonal unit isotropic dual quaternions. That is, {t,n1,n2} is orthonormal vector system. This system is
called Frenet frame of γ.

Definition 4.4. Let γ be an isotropic dual quaternionic curve with Frenet frame {t,n1,n2} . The first and second
curvature functions of this curve are defined as

k1(s) = κ =
〈
t
′

,n1

〉
=

1
2

(t
′

×δ n1 + n1 ×δ t′ ),

k2(s) = τ =
〈
n
′

1,n2

〉
=

1
2

(n
′

1 ×δ n2 + n2 ×δ n′1).

Here, it is easy to see that k1(s) = κ =
∥∥∥t′

∥∥∥ .
Theorem 4.5. Let (t,n1,n2, κ, τ) be the Frenet apparatus for isotropic dual quaternionic curve γ. The Serret-Frenet
formulae of γ are

t
′

= κn1,

n
′

1 = −κt + τn2,

n
′

2 = −τn1.

Proof. First of all, from the definition n1 = t′

‖t′‖
, we get t′ =

∥∥∥t′
∥∥∥ n1. Then via using κ =

∥∥∥t′
∥∥∥, we obtain

t
′

= κn1. (7)

We differentiate equation (6) to obtain

n
′

2 = −κ.e0 + t.n
′

1

using equation (7) and the fact n1 ×δ n1 = −1, where e0 = −1. Since t ×δ t = −1, the equation above now
becomes

n
′

2 = t ×δ
(
κt + n

′

1

)
(8)

Again, n′2 is an isotropic dual quaternion which is orthogonal to n2.Therefore, we obtain n′1 +κt is orthogonal
to t and n1, implying

n
′

1 = −κt + τn2 (9)

Substituting (9) into (8), we finally obtain

n
′

2 = −τn1. (10)

So, we get Serret Frenet formulae for the isotropic dual quaternionic curve, where t is the unit tangent,
n1 is the unit principal normal and κ is the principal curvature, n2 is the unit binormal and τ is the torsion
of γ.
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5. Non-Isotropic Dual Quaternionic Curves

In this section, Serret Frenet formulas will be given for non-isotropic dual quaternionic curves. We will
use the result of the previous section.

Definition 5.1. Let I = [0, 1] denote the unit interval of the real line and s ∈ I be the parameter along the smooth
curve, then

β : I ⊂ R→HD

s → β (s) = β0e0 +

3∑
i=1

βi (s) ei = (s, β1 (s) , β2 (s) , β3 (s))

is called isotropic dual quaternionic curves.

Definition 5.2. If a non-isotropic dual quaternionic curve provides the following equation, it is called the unit speed
non-isotropic dual quaternionic curve∥∥∥β′ (s)

∥∥∥2
=

〈
β
′

(s), β
′

(s)
〉

=
1
2

[β
′

(s) × β′ (s) + β
′

(s) × β′ (s)] = β
′

(s) × β′ (s) = 1.

Then the non-isotropic dual quaternionic curve β should be defined as

β (s) = se0 +

3∑
i=1

βi (s) ei.

Definition 5.3. The tangent vector of any unit speed non-isotropic dual quaternionic curve β is defined as

T(s) = β
′

(s) = 1 +

3∑
i=1

β
′

(s)ei =
(
1, β

′

1 (s) , β
′

2 (s) , β
′

3 (s)
)
.

This tangent vector has unit length: ‖T(s)‖ = 1 for all s. This unitary condition implies:

T
′

× T + T × T′ = 0 (11)

Equation (11) implies the following, that’s why it is interesting:

(i) T′ is orthogonal to T and

(ii) T′ × T is an isotropic dual quaternion.

Definition 5.4. N1 = T′

‖T′‖
, where T′ is orthogonal to T.

Lemma 5.5. Since N1×T is isotropic dual quaternion, let γ be the isotropic dual quaternionic curve that takes vector
N1 × T as the unit tangent vector. Thus, we can define the curve β in HD corresponding to γ in Hp

D
. Therefore,

we can write that N1 × T = t. Moreover, it is obvious that t has unit magnitude since both N1 and T have unit
magnitudes. We can now write N1, as follows:

N1 = t × T. (12)

Definition 5.6. For non-isotropic dual quaternionic curve β : I ⊂ R→HD, let us define N2 = n1 × T and
N3 = n2 × T. Here n1 and n2 are the Frenet vectors of the isotropic curves γ which correspond with β.

Now we obtain a Frenet frame over β. The elements of this frame are T, N1 = T′

‖T′‖
, N2 = n1 × T and

N3 = n2 × T. Moreover, {T,N1,N2,N3} system is orthonormal.
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Definition 5.7. Let β be a non-isotropic dual quaternionic curve with Frenet frame {T,N1,N2,N3} . The curvature
functions of this curve are defined as follows

K1(s) =
〈
T
′

,N1

〉
=

1
2

(T
′

×N1 + N1 × T′ ),

K2(s) =
〈
N
′

1,N2

〉
=

1
2

(N
′

1 ×N2 + N2 ×N′

1),

K3(s) =
〈
N
′

2,N3

〉
=

1
2

(N
′

2 ×N3 + N3 ×N′

2).

Theorem 5.8. Let {T,N1,N2,N3} is the Frenet Frame for non-isotropic dual quaternionic curve β. Also, let’s say the
curvatures of this curve are K (s), κ (s), τ (s). Here κ (s) and τ (s) are the 1st and 2nd curvature of the curve γ which
implies N1 × T = t. So, the Serret Frenet formulae of β are

T
′

= KN1,

N
′

1 = κN2,

N
′

2 = −κN1 + τN3,

N
′

3 = −τN2,

where the system {t,n1,n2, κ, τ} is the Frenet apparatus of the isotropic dual quaternionic curve γ.

Proof. From the definition of the first curvature, it can be seen that K1(s) = K =
∥∥∥T′

∥∥∥. Also, via using

N1 = T′

‖T′‖
we get

T
′

= KN1.

We now differentiate N1 = t × T and substitute equations t′ = κn1 and N2 = n1 × T, we obtain

N
′

1 = κN2.

We differentiate N2 = n1 × T and substitute equations n′1 = −κt + τn2, N1 = t × T and N3 = n2 × T, we get

N
′

2 = −κN1 + τN3.

Finally, we differentiate N3 = n2 × T and substitute equations n′2 = −τn1 and N3 = n2 × T, we get

N
′

3 = −τN2.

In summary, {T,N1,N2,N3,K, κ, τ} gives the Frenet apparatus for the curve β.
Note 1. We have obtained the Serret-Frenet formulae and the Frenet apparatus for the non-isotropic curve
β using Serret-Frenet formulae for the isotropic curve γ. In addition, it should be noted that the torsion of
β is the principal curvature of γ and the bitorsion of β is the torsion of γ.

6. Conclusion

When we review the literature, we can see that there are many studies on quaternionic curves in the
literature. For example, the Serret-Frenet formulae for a Real quaternionic curves in R3 are introduced by
K. Bharathi and M. Nagaraj. Moreover, they obtained the Serret-Frenet formulae for the Real quaternionic
curves in R4 by the formulae in R3, [16]. Then, lots of studies have been published by using this studies.
One of them is A. C. Coken and A. Tuna’s study [19] which they gave Serret-Frenet formulas, inclined
curves, harmonic curvatures and some characterizations for a quaternionic curve in the semi-Euclidean
spaces E3

1 and E4
2.

On the other hand, no studies have been conducted on dual quatenionic curves. In our paper, we have
studied dual quaternions and their properties in detail. Moreover, we have define dual quaternionic curves
and also we have find Serret-Frenet formulae of dual quaternions. Thereby, this deficiency in the literature
has been eliminated with this work.
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