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Abstract. In this paper, we study if T is an (m,C)-isometric operator and CT∗C commutes with T, then T∗ is
an (m,C)-isometric operator. We also give local spectral properties and spectral relations of (m,C)-isometric
operators, such as property (β), decomposability, the single-valued extension property and Dunford’s
boundedness. We also investigate perturbation of (m,C)-isometric operators by nilpotent operators and by
algebraic operators and give some properties.

1. Introduction

We denote byH a complex separable Hilbert space endowed with the inner product 〈., .〉 and byL(H) be
the algebra of all bounded linear operators on a separable complex Hilbert spaceH . If T ∈ L(H), we write
σ(T), σp(T), σap(T), σsu(T), σcomp(T), σr(T), σc(T), σe(T), σle(T), σre(T), σse(T), σes(T), σb(T), σω(T), for the spectrum,
the point spectrum, the approximate point spectrum, the surjective spectrum, the compression spectrum,
the residual spectrum, the continuous spectrum, the essential spectrum, the left essential spectrum, the right
essential spectrum, the semi-regular spectrum, the essentially semi-regular spectrum, Browder spectrum,
and Weyl spectrum of T, respectively.

In [1], S. R. Garcia and M. Putinar investigated complex symmetric operators. In [2–4], M. Chō, E. Ko
and J. Lee investigated m-complex symmetric operators. In [5], S. Jung, E. Ko, M. Lee and J. Lee defined
the (m,C)-isometric operator as follows: an operator T ∈ L(H) is said to be (m,C)-isometric if there exists
some conjugation C such that

∑m
j=0(−1) j(m

j )T∗m− jCTm− jC = 0 for some positive integer m.

Let Λm(T) :=
∑m

j=0(−1) j(m
j )T∗m− jCTm− jC, then T is an (m,C)-isometric operator with conjugation C if and

only if Λm(T) = 0, note that

T∗Λm(T)CTC −Λm(T) = Λm+1(T). (1)

Hence, if Λm(T) = 0, then Λn(T) = 0 for all n ≥ m. Moreover, it is clear that T is an (m,C)-isometric
operator if and only if CTC is an (m,C)-isometric operator. In [5], S. Jung, E. Ko, M. Lee and J. Lee have
given some properties and we will give some other properties of (m,C)-isometric operators.
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An operator T ∈ L(H) is said to have the single-valued extension property (or SVEP) if for every open
subset G of C and anyH-valued analytic function f on G such that (T − λ) f (λ) ≡ 0 on G, we have f (λ) ≡ 0
on G. For an operator T ∈ L(H) and for a vector x ∈ H, the local resolvent set ρT(x)of T at x is defined as the
union of every open subset G ofC on which there is an analytic function f : G→ H such that (T−λ) f (λ) ≡ x
on G. The local spectrum of T at x is given by σT(x) = C\ρT(x). We define the local spectral subspace of
T ∈ L(H) by HT(F) = {x ∈ H : σT(x) ⊂ F} for a subset F ofC. An operator T ∈ L(H) is said to have Dunford’s
property (C) if HT(F) is closed for each closed subset F of C. An operator T ∈ L(H) is said to have Bishop’s
property (β) if for every open subset G of C and every sequence { fn} of H-valued analytic functions on G
such that (T−λ) fn(λ) converges uniformly to 0 in norm on compact subsets of G, we get that fn(λ) converges
uniformly to 0 in norm on compact subsets of G. An operator T ∈ L(H) is said to be decomposable if for
every open cover {U,V} of C there are T-invariant subspaces X and Y such that H = X +Y, σ(T | x) ⊂ U
and σ(T | y) ⊂ V. It is well-known that

Decomposable⇒ Bishop’s property (β). Decomposable⇒ Dunford’s property (C)⇒ SVEP.
In this paper, we study if T is an (m,C)-isometric operator and CT∗C commutes with T, then T∗ is an

(m,C)-isometric operator. We also give local spectral properties and spectral relations of (m,C)-isometric
operators, such as property (β), decomposability, the single-valued extension property and Dunford’s
boundedness. We also investigate perturbation of (m,C)-isometric operators by nilpotent operators and by
algebraic operators and give some properties.

2. Some properties of Λm(T)

In this section we will give some properties of (m,C)-isometric operators.

Theorem 1. Let T ∈ L(H) be an (m,C)-isometric operator, where C is a conjugation on H . If T commutes with
CT∗C, then T∗ is an (m,C)-isometric operator.

Proof. Since T is an (m,C)-isometric operator, we obtain Λm(T) = 0, so

Λm(T∗) =

m∑
j=0

(−1) j(m
j )(T∗)∗m− jC(T∗)m− jC

=

m∑
j=0

(−1) j(m
j )(T)m− jC(T∗)m− jC

=

m∑
j=0

(−1) j(m
j )C(T∗)m− jC(T)m− j = Λm(T)∗ = 0.

Hence, Λm(T∗) is an (m,C)-isometric operator.

Theorem 2. Let T ∈ L(H) be an (m,C)-isometric operator and C be a conjugation on H . If T∗ has property (β),
then T has property (β).

Proof. Suppose T∗ has property (β). Let sequence { fn} : G → H be H-valued analytic functions on G
such that limn→∞ ‖(T − λ) fn(λ)‖ = 0 on compact subset of G. Then limn→∞ ‖(Tk

− λk) fn(λ)‖ = 0 and

limn→∞ ‖(CTkC − λ
k
) fn(λ)‖ = 0 on compact subset of G for some k ∈ N ). Since T is an (m,C)-isometric
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operator, then Λm(T) =
∑m

j=0(−1) j(m
j )(T∗)m− jC(T)m− jC = 0. Then

lim
n→∞
‖Λm(T)C fn(λ)‖ = lim

n→∞
‖[

m∑
j=0

(−1) j(m
j )(T∗)m− jC(T)m− jC]C fn(λ)‖

= lim
n→∞
‖[

m∑
j=0

(−1) j(m
j )(T∗)m− jλ

m− j
]C fn(λ)‖

= lim
n→∞
‖(T∗λ − 1)mC fn(λ)‖

= 0

on compact subset of G.
Choose an open set G1 $ G such that 0 < G1, the we obtain limn→∞ ‖(T∗ − 1

λ
)mC fn(λ)‖ = 0 on G1. Set

λ = a+bi, for a, b ∈ R. Then 1
λ

= 1
a−bi = 1

a2+b2λ = γλ, where γ = 1
a2+b2 is positive real number. So limn→∞ ‖(T∗−

γλ)mC fn(λ)‖ = 0 for a positive real number γ, set µ = γλ. Define 1 : γG1 → G1 by 1(µ) = 1
γµ, then we

have limn→∞ ‖(T∗ − µ)mC fn(1(µ))‖ = 0 on γG1. Since T∗ has property (β), we have limn→∞ ‖C fn(1(µ))‖ = 0
on γG1 and so limn→∞ ‖C fn(λ)‖ = 0 on G1. Moreover, since C is isometric, limn→∞ ‖ fn(λ)‖ = 0 on G1. Since
limn→∞ ‖ fn(λ)‖ = 0 on G1 and G1 is an open set of domain G of fn. It follows that limn→∞ ‖ fn(λ)‖ = 0 on G.
Hence T has the property (β).

Corollary 3. Let T ∈ L(H) be an (m,C)-isometric operator, where C be a conjugation onH . If T∗ has property (β),
if and only if T is decomposable.

Proof. Since the converse implication holds by ([6], Theorem 1.2.29 and Theorem 2.2.5). From Theorem 3, we can
obtain that T has property (β) and so T is decomposable from [6]. Hence, we conclude that T∗ has property (β), if and
only if T is decomposable.

Corollary 4. Let T ∈ L(H) be an (m,C)-isometric operator, where C be a conjugation on H . If T∗ is hyponormal,
then T is decomposable.

Proof. since T∗ is hyponormal, then T has the property (β). From Corollary 3, we obtain T is decomposable.

Corollary 5. Let T ∈ L(H) be an (m,C)-isometric operator, where C be a conjugation onH . If T∗ has property (β)
and σ(T) has nonempty interior. Then T has a nontrivial invariant subspace.

Proof. If T∗ has property (β), then T is decomposable from Corollary 4. So in this case T has the property (β) by
Theorem 3, since σ(T) has nonempty interior, we obtain this result from ([7], Theorem 2.1).

Lemma 6. Let C be a conjugation on H . Assume T ∈ L(H) is an (m,C)-isometric operator. If T∗ has the
single-valued extension property, then CTC has the single-valued extension property.

Proof. Suppose T∗ has the single-valued extension property. Let f : G → H be an analytic function such that
(CTC − λ) f (λ) ≡ 0 on G, where G is a domain of f . Then (CTkC − λk) f (λ) ≡ 0 on G, for some k ∈ N. Since T is an
(m,C)-isometric operator, it follows that

0 = Λm(T) f (λ) =

m∑
j=0

(−1) j(m
j )(T∗)m− jC(T)m− jC f (λ)

=

m∑
j=0

(−1) j(m
j )(T∗)m− jλm− j f (λ) = (T∗λ − 1)m f (λ).

Since λ , 0, then (T∗ − 1
λ )m f (λ) = 0. Let µ = 1

λ , λ = 1
µ = 1(µ) and 1 : G→ G. Then (T∗ − µ)m f (1(µ)) = 0. Since

T∗ has the single-valued extension property, then f (1(µ)) = 0. We obtain f (λ) = 0, hence CTC has the single-valued
extension property.
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Corollary 7. Let C be a conjugation on H . Assume T ∈ L(H) is an (m,C)-isometric operator. If T∗ has the
single-valued extension property, then σT∗ (x) ⊆ σT(Cx).

Proof. Since T∗ has the single-valued extension property, so does CTC. Moreover, by [6] we know σT∗ (x) ⊆ σCTC(x)
for all x ∈ H . Let λ0 ∈ ρCTC(x), then there is an H-valued analytic function f (λ) in a neighborhood D of λ0, such
that (CTC − λ) f (λ) ≡ x, for every λ ∈ D. Therefore (T − λ)C f (λ) ≡ Cx, for every λ ∈ D∗. Since C f (λ) is analytic
on D∗, we get λ0 ∈ ρT(Cx), so λ0 ∈ ρT(Cx)∗. Hence ρCTC(x) ⊆ ρT(Cx)∗.

Conversely, assume that λ0 ∈ ρT(Cx)∗, then there exist anH-valued analytic function f (λ) in a neighborhood D
of λ0, such that (T − λ) f (λ) ≡ Cx, for every λ ∈ D. Then we have (CT − λC) f (λ) = (CTC − λ)C f (λ) ≡ x, for every
λ ∈ D, that means that (CTC − λ)C f (λ) ≡ x, for every λ ∈ D∗, therefore λ0 ∈ ρCTC(x), then ρT(Cx)∗ ⊆ ρCTC(x).
Hence, ρT(Cx)∗ = ρCTC(x). Since (C\G)∗ = C\G∗ for any subset G of C. We have σT(Cx)∗ = σCTC(x), since
σT∗ (x) ⊆ σCTC(x), hence σT∗ (x) ⊆ σT(Cx)∗.

Let us recall that we assume that T has the single-valued extension property, if there exists a constant K
such that for every x, y ∈ H with σT(x) ∩ σT(y) = ∅, we have ‖x‖ ≤ K‖x + y‖, where K is independent of x
and y, we say that an operator T satisfies Dunford’s boundedness condition (B).

Corollary 8. Let T ∈ L(H) be an (m,C)-isometric operator and let C be a conjugation on H . If T∗ has the single-
valued extension property and Dunford’s boundedness condition (B), then T has Dunford’s boundedness condition
(B).

Proof. The proof is similar to ([3], Theorem 4.12).

Lemma 9. ([5], Corollary 3.11) Let C be a conjugation onH . Assume T ∈ L(H) is an (m,C)-isometric operator. If
T∗ has the single-valued extension property, then the following properties hold:

(i) σ(T) = σsu(T) = σap(T) = σse(T).
(ii) σes(T) = σb(T) = σω(T) = σe(T).
(iii) H0(T − λ) = HT({λ}) and H0(T∗ − λ) = HT∗ ({λ}) for all λ ∈ C.
(iv) T is biquasitriangular.

Theorem 10. Let C be a conjugation onH . Assume T ∈ L(H) is an (m,C)-isometric operator. If T commutes with
CT∗C, then the following properties hold:

(i) σap(T) = 1
σap(T∗)∗ , σp(T) = 1

σp(T∗)∗ , σcomp(T) = 1
σcomp(T∗)∗ , σsu(T) = 1

σsu(T∗)∗ .

(ii) σle(T) = 1
σle(T∗)∗

, σre(T) = 1
σre(T∗)∗

.
(iii) If T∗ has the single-valued extension property, then
σ(T) = σsu(T) = 1

σsu(T∗)∗ = σap(T) = 1
σap(T∗)∗ = σse(T).

Proof. (i) From ([5], Theorem 3.4 (i)), we know that σap(T) ⊆ 1
σap(T∗)∗ , we need only to prove 1

σap(T∗)∗ ⊆ σap(T). Let

λ ∈ σap(T∗), if {xn} is a sequence of unit vectors such that limn→∞(T∗−λ)xn = 0, then limn→∞(CT∗C−λ)Cxn = 0 and
limn→∞(C(T∗)kC − (λ)k)Cxn = 0 for every k ∈ N. Since T ∈ L(H) is an (m,C)-isometric operator and T commutes
with CT∗C, we obtain Λm(T∗) = 0 from Theorem 1. Then

0 = lim
n→∞

Λm(T∗)Cxn = lim
n→∞

(
m∑

j=0

(−1) j(m
j )(T)m− jC(T∗)m− jC)Cxn

= lim
n→∞

(
m∑

j=0

(−1) j(m
j )(T)m− jλ

m− j
)Cxn = lim

n→∞
(Tλ − 1)mCxn.

From ([5], Lemma 3.1 (ii)), we know thatλ , 0, we can obtain limn→∞[(T− 1
λ

)mCxn] = 0. If limn→∞
(T− 1

λ
)m−1Cxn

‖(T− 1
λ

)m−1Cxn‖
, 0,

then 1
λ
∈ σap(T) and λ ∈ 1

σap(T)∗ , otherwise, limn→∞(T − 1
λ

)m−1Cxn = 0. If limn→∞
(T− 1

λ
)m−2Cxn

‖(T− 1
λ

)m−2Cxn‖
, 0, then 1

λ
∈ σap(T)
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and λ ∈ 1
σap(T)∗ , otherwise, limn→∞(T − 1

λ
)m−2Cxn = 0. By induction, we have limn→∞(T − 1

λ
)Cxn = 0, so we have

1
λ
∈ σap(T) and λ ∈ 1

σap(T)∗ , therefore 1
σap(T∗)∗ ⊆ σap(T). Hence, σap(T) = 1

σap(T∗)∗ .

For σp(T) = 1
σp(T∗)∗ , the proof is similar to the σap(T) = 1

σap(T∗)∗ .

For any S ∈ L(H), we have σcomp(S)∗ = σp(S∗), it’s easy to get σcomp(T) = 1
σcomp(T∗)∗ .

For any S ∈ L(H), we have σsu(S)∗ = σap(S∗), it’s easy to get σsu(T) = 1
σsu(T∗)∗ .

(ii) If λ ∈ σle(T), then there exist a sequence {xn} of unit vectors in H such that {xn} weakly converges to 0 and

limn→∞ ‖(T − λ)xn‖ = 0 for any T ∈ L(H), then we have limn→∞ ‖(CTkC − λ
k
)Cxn‖ = 0. Since T ∈ L(H) is an

(m,C)-isometric operator, so Λm(T) = 0, it follows that

0 = lim
n→∞
‖Λm(T)Cxn‖ = lim

n→∞
‖[(

m∑
j=0

(−1) j(m
j )(T∗)m− jCTm− jC)Cxn]‖

= lim
n→∞
‖(

m∑
j=0

(−1) j(m
j )(T∗)m− jλ

m− j
)Cxn‖ = lim

n→∞
‖(T∗λ − 1)mCxn‖

= lim
n→∞
‖(T −

1

λ
)mCxn‖.

Moreover, since {xn} weakly converges to 0, {Cxn} weakly converges to 0. Hence, σle(T) ⊆ 1
σle(T∗)∗

.
Conversely, λ ∈ σle(T∗), then there exists a sequence{xn} of unit vectors inH such that {xn} weakly converges to 0

and limn→∞ ‖(T∗ − λ)xn‖ = 0 for any T ∈ L(H), then we have limn→∞ ‖(C(T∗)kC − λ
k
)Cxn‖ = 0. Since T ∈ L(H)

is an (m,C)-isometric operator. From Theorem 1, we obtain Λm(T∗) = 0. It follows that

0 = lim
n→∞
‖Λm(T∗)Cxn‖ = lim

n→∞
‖(

m∑
j=0

(−1) j(m
j )(T)m− jC(T∗)m− jC)Cxn‖

= lim
n→∞
‖(

m∑
j=0

(−1) j(m
j )Tm− jλ

m− j
)Cxn‖ = lim

n→∞
‖(Tλ − 1)mCxn‖.

We obtain limn→∞ ‖(T − 1
λ

)mCxn‖ = 0. Moreover, since {xn} weakly converges to 0, {Cxn} weakly converges to 0.
Therefore, 1

σle(T∗)∗
⊆ σle(T). Hence σle(T) = 1

σle(T∗)∗
.

For σre(T) = 1
σre(T∗)∗

, since for any S ∈ L(H), σre(S)∗ = σle(S∗). It is easy to get σre(T) = 1
σre(T∗)∗

.

(iii) From Lemma 9 and (i), we obtain σ(T) = σsu(T) = 1
σsu(T∗)∗ = σap(T) = 1

σap(T∗)∗ = σse(T).

3. Perturbation of (m,C)-isometric operators by nilpotent operators

In this section, we provide some properties of perturbation of (m,C)-isometric operators by nilpotent
operators, we need some preliminaries.

Recall that an operator N ∈ L(H) is said to be nilpotent of order n, if Nn = 0 and Nn−1 , 0 for some
positive integer n. Let G be a commutative group and denote its operation by +. Given a sequence a = (an)n≥0
in G , the difference sequence Da = (Da)n≥0 is defined by (Da)n≥0 := an+1 − an. The powers of D are defined
recursively by D0a := a,Dk+1a = D(Dka). It is easy to show that

(Dka)n =

k∑
i=0

(−1)k−i(k
i )ai+n, (2)
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for all k ≥ 0 and i ≥ 0 integers. A sequence a in a group G is called an arithmetic progression of order
h = 0, 1, 2, . . . if Dh+1a = 0. Equivalently,

h+1∑
i=0

(−1)h+1−i(h+1
i )ai+n = 0, (3)

for n = 0, 1, 2, . . . . It is well known that the sequence a in G is an arithmetic progression of order h if and
only if there exists a polynomial p(n) in n, with coefficients in G and of degree less than or equal to h, such
that p(n) = an, for every n = 0, 1, 2, . . . ; that is, there are γh, γh−1, · · · , γ1, γ0 ∈ G, which depend only on G,
such that, for every n = 0, 1, 2, . . . ,

an = p(n) =

h∑
i=0

γini (4)

We say that the sequence a is an arithmetic progression of strict order h = 0, 1, 2, . . . , if h = 0 or if it is of
order h > 0 but is not of order h − 1; that is, the polynomial p of (4) has degree h. Moreover, a sequence a in
a group G is an arithmetic progression of order h if and only if, for all n ≥ 0,

an = p(n) =

h∑
k=0

(−1)h−k n(n − 1)...
︷ ︸︸ ︷
(n − k) ...(n − h)

k!(h − k)!
ak; (5)

that is,

an =

h∑
k=0

(−1)h−k(n
k )(n−k−1

n−k )ak. (6)

Now we give a basic result about perturbation of (m,C)-isometric operators by nilpotent operators.

Theorem 11. Let T ∈ L(H) be a strict (m,C)-isometric operator with conjugation C. If and only if there are
Bm−1,Bm−2, ...,B1,B0 in L(H), which depend only on T and C, such that, for every n = 0, 1, 2 . . .,

T∗nCTnC =

m−1∑
i=0

Bini (7)

that is, the sequence (T∗nCTnC)n≥0 is an arithmetic progression of strict order m − 1 in L(H).

Proof. From ([8], Theorem 1). Since T is a strict (m,C)-isometric operator with conjugation C, then Λm(T) =∑m
j=0(m

j )(−1) jT∗m− jCTm− jC = 0. Let m − j = k, so Λm(T) =
∑m

k=0(−1)m−k(m
k )T∗kCTkC = 0. So we have

T∗iΛm(T)CTiC = T∗i
m∑

k=0

(−1)m−k(m
k )T∗kCTkC)CTiC

=

m∑
k=0

(−1)m−k(m
k )T∗k+iCTk+iC = 0.

Then we obtain

m∑
k=0

(−1)m−k(m
k )T∗k+iCTk+iC = 0. (8)
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Since T ∈ L(H) is a strict (m,C)-isometric operator with conjugation C, then Λm−1(T) , 0. We obtain

m−1∑
k=0

(−1)m−1−k(m−1
k )T∗kCTkC , 0. (9)

By (3) the operator sequence (T∗nCTnC)n≥0 is an arithmetic progression of strict order m − 1, Therefore,
from (4) we obtain that there is a polynomial p(n) of degree m − 1 in n, with coefficients in L(H) satisfying
p(n) = T∗nCTnC for every n = 0, 1, 2, ...,

T∗nCTnC = Bm−1nm−1 + Bm−2nm−2 + ... + B1n + B0.

Conversely, if (T∗nCTnC)n≥0 is an arithmetic progression of strict order m−1, then (9) and (10) hold, take i = 0,
we obtain Λm(T) =

∑m
j=0(m

j )(−1) jT∗m− jCTm− jC = 0 and Λm−1(T) , 0, hence T ∈ L(H) is a strict (m,C)-isometric
operator.

Theorem 12. Let T ∈ L(H) be an (m,C)-isometric operator and N ∈ L(H) be an n−nilpotent (n ≥ 1inte1er) such
that TN = NT. Then T + N is a strict (2n + m − 2,C)-isometric operator.

Proof. From ([8], Theorem 3). Let R = T + N, k = 2n + m − 2, then we need to prove that Λk(R) =∑k
i=0(k

i )(−1)iR∗k−iCRk−iC = 0. Let q = k − i, h = min{q,n − 1}, for

R∗qCRqC = (T∗ + N∗)q(CTC + CNC)q

= [
h∑

j=0

(q
j )N

∗ jT∗q− j][
h∑

r=0

(q
r )CTq−rCCNrC]

=

h∑
j=0

(q
j )(

q
r )N∗ jT∗q− jCTq−rCCNrC

=
∑

0≤ j≤r≤h

(q
j )(

q
r )N∗ jT∗r− j(T∗q−rCTq−rC)CNrC

+
∑

0≤r≤ j≤h

(q
j )(

q
r )N∗ j(T∗q− jCTq− jC)CT j−rCCNrC

from (8) we obtain, for certain Bm−1,Bm−2, ...,B1,B0 , we have

T∗q−rCTq−rC =

m−1∑
w=0

Bw(q − j)w,

then we have

(T∗ + N∗)q(CTC + CNC)q

=
∑

0≤ j≤r≤h

(q
j )(

q
r )N∗ jT∗r− j

m−1∑
w=0

Bw(q − r)wCNrC

+
∑

0≤r≤ j≤h

(q
j )(

q
r )N∗ j

m−1∑
w=0

Bw(q − j)wCT j−rCCNrC.

Let

H1 = N∗ jT∗r− jBwCNrC,
H2 = N∗ jBwCT j−rCCNrC,
Q1 = (q

j )(
q
r )(q − r)w,

Q2 = (q
j )(

q
r )(q − j)w.
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Note that (q
j ) and (q

r ) are real polynomials in q of degree less than or equal to h ≤ n − 1, and (q − r)w

and (q − j)w degree w ≤ m − 1, hence Q1 and Q2 are real polynomials of degree less than an equal to
m − 1 + 2(n − 1) = 2n + m − 3. Consequently, we can write

(T∗ + N∗)q(CTC + CNC)q =
∑m−1

0≤ j≤r≤h H1Q1 +
∑m−1

0≤r≤ j≤h H2Q2,

which is a polynomial of q of degree less than or equal to 2n + m − 3 with coefficients in L(H), by Theorem
11, the operator T + N is a strict (2n+m-2,C)-isometric operator.

Corollary 13. Let T ∈ L(H) be a strict (1,C)-isometric operator and N ∈ L(H) be an n−nilpotent (n ≥ 1,n ∈ N)
such that TN = NT, then T + N is a strict (2n − 1,C)-isometric operator.

Proof. The proof is similar to ([8], Theorem 4).

Theorem 14. Let T ∈ L(H) be a strict (m,C)-isometric operator and N ∈ L(H) be an n−nilpotent (n ≥ 1,n ∈ N)
such that TN = NT, let R = T + N, then the following arguments hold:

(i) If T∗ has the single-valued extension property, then R∗ and R has the single-valued extension property.
(ii) If T has Dunford’s property (C) and σT(x) ⊂ σR(Nn−1x)∩ σR(x) for all x ∈ H , then R has Dunford’s property

(C).

Proof. (i) Let G be an open set in C and let f : G→H be an analytic function such that (R∗− z) f (z) ≡ 0 on G, which
implies

(R∗ − z) f (z) = (T∗ + N∗ − z) f (z) = (T∗ − z) f (z) + N∗ f (z) ≡ 0.

Since N∗n = 0 and T∗N∗ = N∗T∗, it follows that (T∗ − z)N∗n−1 f (z) = 0. Since T∗ has the single-valued extension
property, we have N∗n−1 f (z) = 0, moreover, since (T∗ − z) f (z) + N∗ f (z) ≡ 0 , we can obtain (T∗ − z)N∗n−2 f (z) = 0.
Since T∗ has the single-valued extension property, we get N∗n−2 f (z) = 0. By similar process, we obtain that f (z) = 0,
hence R∗ has the single-valued extension property. From Lemma 2, we can obtain T has the single-valued extension
property, similarly, we get R has the single-valued extension property.

(ii) If T has Dunford’s property (C) and σT(x) ⊂ σR(Nn−1x) for all x ∈ H , then it suffices to show that σR(Nn−1x) ⊂
σT(x), assume z0 ∈ ρT(x), then there is an H-valued analytic function f (z) in an neighborhood D of z0 such that
(T−z) f (z) = x for every z ∈ D, since TN = NT and Nn = 0, it follows that (R−z)Nn−1 f (z) = (T−z)Nn−1 f (z) = Nn−1x
on D. Since Nn−1 f (z) is analytic on D, we get z0 ∈ ρR(Nn−1x), then ρT(x) = ρR(Nn−1x) on D. For any S ∈ L(H),
σS(x) = C \ ρS(x). So σR(Nn−1x) ⊂ σT(x). Thus σT(x) = σR(Nn−1x), therefore, we have Nn−1HR(F) = HT(F).
Since Nn−1HR(F) ⊂ HT(F) , it follows that HT(F) ⊂ Nn−1HR(F), where F is closed subset of C. Moreover, since
σT(x) ⊂ σR(x) for all x ∈ H , it follows that HR(F) ⊂ HT(F) and so HR(F) = HT(F) is closed for each closed subset F
of C, hence R has Dunford’s property (C), this completes the proof.

Corollary 15. Let T ∈ L(H) be an (m,C)-isometric operator and N ∈ L(H) be an n−nilpotent (n ≥ 1inte1er) such
that TN = NT, let R = T + N and if T∗ has the single-valued extension property, then the following properties hold:

(i) σ(R) = σsu(R) = σap(R) = σse(R).
(ii) σes(R) = σb(R) = σω(R) = σe(R).
(iii) H0(R − λ) = HR({λ}) and H0(R∗ − λ) = HR∗ ({λ}) for all λ ∈ C.

Proof. Since T∗ has the single-valued extension property, it follows that R and R∗ the single-valued extension property,
hence it follows from Lemma 10.

Proposition 16. Let T ∈ L(H) be an (m,C)-isometric operator and N ∈ L(H) be an n−nilpotent (n ≥ 1inte1er)
such that TN = NT, let R = T + N, if T∗ has the single-valued extension property and T∗ commutes with CTC, then
the following properties hold:

(i) σap(R) ⊂ 1
σap(T∗)∗ ∪ 0, σp(R) ⊂ 1

σp(T∗)∗ ∪ 0, σcomp(R) ⊂ 1
σcomp(T∗)∗ ∪ 0, σsu(R) ⊂ 1

σsu(T∗)∗ ∪ 0.
(ii) σle(R) ⊂ σle(T), σre(R∗)∗ ⊂ σre(T∗)∗.
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Proof. (i) Let R = T + N, where T ∈ L(H) is an (m,C)-isometric operator , Nn = 0 and TN = NT. It follows from
Theorem 11 and ([6], Page256) that σap(R) = σap(T) + σap(N), it is easy to obtain σap(N) = 0. Since 0 < σap(T) from
Theorem 11, we obtain σap(T) = 1

σap(T∗)∗ , therefore we have σap(R) ⊂ 1
σap(T∗)∗ ∪ 0. By the similar method we get that

σp(R) = 1
σp(T∗)∗ ∪ 0. From the proof of Theorem 11, we can obtain σcomp(R) ⊂ 1

σcomp(T∗)∗ ∪ 0, σsu(R) ⊂ 1
σsu(T∗)∗ ∪ 0.

(ii) The proof is similar to ([2], Proposition 16). If λ ∈ σle(R) , then there exists a sequence xi of unit vectors inH
such that xi weakly converges to 0 and limi→∞ ‖(R − λ)xi‖ = 0. Put yi = Nn−1xi

‖Nn−1xi‖
, for some n ≥ 1,since Nn = 0 and

TN = NT, it follows that

lim
i→∞
‖(T − λ)yi‖ = lim

i→∞
‖(T − λ)

Nn−1xi

‖Nn−1xi‖
‖

= lim
i→∞
‖Nn−1(T + N − λ)

xi

‖Nn−1xi‖
‖

= lim
i→∞
‖Nn−1(R − λ)

xi

‖Nn−1xi‖
‖

In addition, if xi weakly converges to 0, then yi weakly converges to 0. Therefore, λ ∈ σle(T), hence σle(R) ⊂ σle(T).
Since σre(S∗) = σle(S)∗, for any S ∈ L(H), we have σre(R∗)∗ ⊂ σre(T∗)∗.

4. Perturbation of (m,C)-isometric operators by algebraic operators

In this section, we will give some properties of perturbation of (m,C)-isometric operators by algebraic
operators, we will consider the decomposability of T + A and TA where T is (m,C)-isometric and A is an
algebraic operator.

Proposition 17. Let T ∈ L(H) be an (m,C)-isometric operator and A ∈ L(H) be a algebraic operator of order k, if
R = T + A or TA where T commutes with A, then the following properties are equivalent:

(i) T is decomposable.
(ii) T∗ has the property (β).
(iii) R∗ has the property (β).

Proof. (1) Since the proof of from Theorem 3 and Corollary 4, we get (i) ⇔ (ii), we only consider the following
implication (ii)⇔ (iii). Assume that T∗ has the property (β), let R = T + A, since A ∈ L(H) is a algebraic operator
of order k, there exists a nonconstant polynomial P(λ) = (λ − γ1)(λ − γ2)(λ − γ3)...(λ − γk) such that P(A) = 0,
set P0(λ) = 1 and P j(λ) = (λ − γ1)(λ − γ2)(λ − γ3)...(λ − γ j) for j = 1, 2, 3, ..., k. Let G be an open set in C and
fn : G→H be a sequence of analytic functions such that

lim
n→∞
‖(R∗ − z) f (z)‖K = lim

n→∞
‖(T∗ + A∗ − z) f (z)‖K = 0 (10)

for every compact set K in D, fix any compact subset K of D. Since Pk(A)∗ = (A∗ − γ1)(A∗ − γ2)(A∗ − γ3)...(A∗ −
γk−1)(A∗ − γk) = 0, we obtain Pk−1(A)∗(A∗ − γk) = 0, therefore Pk−1(A)∗A∗ = Pk−1(A)∗γk this gives that

lim
n→∞
‖Pk−1(A)∗(R∗ − z) f (z)‖K = lim

n→∞
‖Pk−1(A)∗(T∗ + A∗ − z) f (z)‖K

= lim
n→∞
‖Pk−1(A)∗(T∗ + γk − z) f (z)‖K

= lim
n→∞
‖(T∗ + γk − z)Pk−1(A)∗ f (z)‖K

= 0.

Moreover, since T∗ + γk has the property(β), we have

lim
n→∞
‖Pk−1(A)∗ f (z)‖K = 0. (11)
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Equations (10) and (11) imply that limn→∞ ‖Pk−2(A)∗(T∗+γk−1−z) f (z)‖K = limn→∞ ‖Pk−2(A)∗(T∗+A∗−z) f (z)‖K = 0.
Since T∗+γk−1 has the property (β), we get that limn→∞ ‖Pk−1(A)∗ f (z)‖K = 0.Hence, by induction limn→∞ ‖ f (z)‖K =
0. Therefore, R∗ has the property (β).

(2) In the case R = TA. Assume that T∗ has the property (β). Let G be an open set in C and fn : G → H be a
sequence of analytic functions such that limn→∞ ‖(R∗ − z) f (z)‖K = limn→∞ ‖(T∗A∗ − z) f (z)‖K = 0 for every compact
set K in D, fix any compact subset K of D. Thus, it holds that

lim
n→∞
‖(A∗ − γk)T∗ f (z) + γkT∗ f (z) − z f (z)‖K = 0. (12)

Since Pk(A)∗ = (A∗ − γ1)(A∗ − γ2)(A∗ − γ3)...(A∗ − γk−1)(A∗ − γk) = Pk−1(A)∗(A∗ − γk) = 0 and A∗T∗ = T∗A∗. We
obtain that from (12)

lim
n→∞
‖Pk−1(A)∗(A∗ − γk)T∗ f (z) + Pk−1(A)∗γkT∗ f (z) − Pk−1(A)∗z f (z)‖K = 0.

So we have

lim
n→∞
‖Pk−1(A)∗γkT∗ f (z) − Pk−1(A)∗z f (z)‖K = 0. (13)

Since T∗γk has the property (β), we have limn→∞ ‖Pk−1(A)∗ f (z)‖K = 0. Following from the proof of (1), so we have
limn→∞ ‖ f (z)‖K = 0. Hence, R∗ has the property (β). The converse implication holds by the similar arguments
above.
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